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Amplification of the quantum superposition macroscopicity of a flux qubit by a magnetized Bose gas
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We calculate a measure of superposition macroscopicity M for a superposition of screening current states in a
superconducting flux qubit (SFQ), by relating M to the action of an instanton trajectory connecting the potential
wells of the flux qubit. When a magnetized Bose-Einstein condensed (BEC) gas containing NB ∼ O(106) atoms
is brought into a O(1) μm proximity of the flux qubit in an experimentally realistic geometry, we demonstrate
the appearance of a twofold to fivefold amplification of M over the bare value without the BEC, by calculating
the instanton trajectory action from the microscopically derived effective flux Lagrangian of a hybrid quantum
system composed of the flux qubit and a spin-F atomic Bose gas. Exploiting the connection between M and the
maximal metrological usefulness of a multimode superposition state, we show that amplification of M in the
ground state of the hybrid system is equivalent to a decrease in the quantum Cramér-Rao bound for estimation
of an externally applied flux. Our result therefore demonstrates the increased usefulness of the BEC-SFQ hybrid
system as a sensor of ultraweak magnetic fields below the standard quantum limit.
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I. INTRODUCTION

The development of hybrid quantum devices for quantum
information processing grows out of the desire to achieve
disparate and seemingly mutually exclusive goals: quantum
information should be both long lived and immune to deco-
herence, as well as easy to retrieve and manipulate [1,2]. These
goals have been intensely pursued in hybrid quantum devices
at the interface of solid-state physics and atomic physics,
including superconductors interacting with other quantum
systems (see, e.g., Refs. [3–9]), inter alia, with ultracold atomic
Bose gases [10–14].

In this paper, we reveal two related facets of a hybrid
quantum system consisting of a superconducting flux qubit
(SFQ) and magnetized Bose-Einstein condensate (BEC): (i)
its increased usefulness over a nonhybrid SFQ for external
magnetic field sensing, and (ii) the larger scale on which it
exhibits quantum mechanical behavior as quantified by an
appropriate measure M. For J , a finite index set having |J |
elements, the macroscopicity M of a superposition |�〉 of
product states in (C2)⊗|J | is defined as the maximal variance
in |�〉

M := 1

|J | max
H

(〈�|H 2|�〉 − 〈�|H |�〉2) (1)

over all 1-local observables H , i.e., having the form H =∑
j∈J T (j ) ⊗ IJ\{j} with ‖T (j )‖ = 1 [15]. Specifically, we have

in mind the case for which J is a subset of momentum space
containing the Fermi momentum of a superconducting metal
and |�〉 ∝ |�〉 + |�〉 is a superposition of screening currents
in the SFQ. Several measures of pure state macroscopicity
for finite-dimensional quantum systems have been shown to
be equivalent to M [16]. Whereas highly correlated quantum
superpositions, e.g., Greenberger-Horne-Zeilinger states, en-
tangled coherent states, have been shown to exhibit M scaling
as O(|J |) [16–24], certain two-component superpositions
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occurring in noncritical degenerate matter, such as the ground-
state flux superposition of a superconducting flux qubit (SFQ),
exhibit much lower macroscopicity values [21,25,26]. Motiva-
tion for understanding how the superposition macroscopicity
M of SFQs can be increased arises due the close relationship
between M and optimal usefulness of the superposition state
as a probe in an appropriate quantum metrology protocol [see
Eq. (12) below]. In addition to their prominence as information
carriers in quantum computers [27], SFQs have been proposed
as highly sensitive magnetometers [28,29], with theoretically
greater flux sensitivity compared to an rf-SQUID device [30].

The main result of the present work is that the macro-
scopic quantum character of a ground-state screening current
superposition in a SFQ, quantified by the measure M,
can be amplified by coupling the electric current of the
superconductor, on the microscopic interaction level, to the
local magnetic moment of a proximal spinor Bose gas (Fig. 1).
Our proof proceeds according to the following schematic logic:
(i) M increases when the value of − ln |〈� | �〉| increases
(Sec. II); (ii) The quantity − ln |〈� | �〉| increases linearly
with the Euclidean action of an instanton propagating between
the potential wells of the SFQ (Sec. II); (iii) The Euclidean
action of an instanton can be amplified by the proximal spinor
Bose gas (Sec. IV). In Sec. III, we relate the amplification
of M to an increase in usefulness of the hybrid system for
quantum magnetometry over a SFQ alone.

Physically, the amplification of M is a consequence of the
large renormalization of the inductance of a SFQ in the proxim-
ity of a magnetized Bose gas (e.g., a spin-F BEC). In particular,
we show that when the externally applied flux is tuned to �0/2
so that the SFQ potential has degenerate minima [31,32], the
inductance renormalization K > 0 appearing in the effective
action of the flux variable S

(2)
eff = ∫ β�

0 dτ [C( d�
dτ

)2 + V (�)]
where

V (�) = Ic�0

2π
cos

2π�

�0
+
(

1

2L
+ K

)
�2 (2)

to second-order in perturbation theory, is O(1/2L) for appro-
priate geometric arrangements of the hybrid device and an
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FIG. 1. Schematic of the geometry and relevant dynamical quan-
tities of the proposed hybrid flux qubit, where the oblate BEC (red)
is positioned at distance D above the superconducting loop circuit of
wire thickness 2RS (black). The tunnel junction (orange) is labeled
JJ and the ground-state screening current superposition is shown by
the green arrows; vS is the superflow velocity. The local magnetic

moment density of the atoms 〈φ̂†
μφ̂〉 contains μ := gf μB (σx,σy,σz)

and the spin-F field operator φ̂.

experimentally achievable density of Bose condensed atoms.
In Eq. (2), �0 = π�/e is the flux quantum in SI units, Ic

is the critical current of the Josephson junction, C is the
capacitance of the tunnel junction, and L is the self-inductance
of the SFQ. This doubling of K arises due to an approximate
cancellation of the small atomic magnetic moments in the Bose
gas by the large density of states at the Fermi surface of the
superconductor, cf. Eqs. (16) and (19) below.

II. MACROSCOPICITY OF FLUX QUBIT SCREENING
CURRENT SUPERPOSITION STATE

We begin by showing that the SFQ ground state |G〉SFQ for
the model of Eq. (2) is of the general form

1√
N

⎛
⎝⊗

j∈J

|φj 〉 +
⊗
j∈J

|ψj 〉
⎞
⎠, (3)

and calculating M for this general superposition state.
|G〉SFQ is an equal weight superposition of screening currents
|G〉SFQ := 1√

N (|�〉 + |�〉), which can be described micro-
scopically as a superposition of variational Bardeen-Cooper-
Schrieffer ground states [33] |�〉 and |�〉 corresponding to
Cooper pairing at center of mass momenta QL and QR

respectively. Using |0〉k (|1〉k := a
†
k,↑a

†
−k,↓|0〉k) to denote the

absence (presence) of an s-wave Cooper pair of relative
electron momentum 2k, and σ

(k)
j (j = 1,2,3) to be the Pauli

matrices in the {|0〉k,|1〉k} subspace, |G〉SFQ takes the form
of Eq. (3) with |φk〉 := exp ( − i tan−1(v QL

k /u
QL

k )σ (k)
y )|0〉k,

|ψk〉 := exp(−i tan−1(v QR

k /u
QR

k )σ (k)
y )|0〉k. The normaliza-

tion factor is N = (2 + 2e−λ), where e−λ := 〈� | �〉 =∏
k u

QL

k u
QR

k + v
QL

k v
QR

k . However, for a SFQ with multiple
Josephson junctions and exposed to engineered external fields,
an accurate calculation of the momenta amplitudes v

QR

k , v
QL

k ,
from which M can be inferred exactly, must be obtained

from a self-consistent solution of the Bogoliubov equations. In
Proposition 1, we calculate M for the superposition Eq. (3).
Subsequently, we show how the value M for the state |G〉SFQ

depends on the physical parameters of the system by relating it
to the action of an instanton trajectory connecting the minima
of V (�). Later, in Sec. IV, we use the same relation to show
that an increase of the inductive term in V (�) due to a proximal
magnetized Bose gas results in an amplification of M for the
ground-state screening current superposition in the SFQ.

The technique used in the proof of Proposition 1 is similar
to that used in Ref. [34] to calculate M for a state of the form
∝ |φ〉⊗|J | + U⊗|J ||φ〉⊗|J | for a unitary U . For the statement
of Proposition 1, let {|φj 〉}j∈J and {|ψj 〉}j∈J in Eq. (3) be
collections of normalized pure states indexed by a finite set J

having cardinality |J | and define zj := 〈φj |ψj 〉 for all j ∈ J .
Proposition 1. The normalized superposition state

|G〉 := 1√
2 + 2Re

∏
j zj

⎛
⎝⊗

j∈J

|φj 〉 +
⊗
j∈J

|ψj 〉
⎞
⎠ (4)

has macroscopicity

M = 1 +
∑

j �=k

√
(1 − |zj |2)(1 − |zk|2)

|J |(1 + Re
∏

j zj )
. (5)

Proof of Proposition 1. Consider the operator H =∑
j∈J T (j ) where T (j ) = (|φj 〉〈φj | − |ψj 〉〈ψj |)/

√
1 − |zj |2. It

is clear that ‖T (j )‖ = 1. Then a simple calculation shows that

〈(�H )2〉|G〉 = |J | +
∑

j �=k

√
(1 − |zj |2)(1 − |zk|2)

1 + Re
∏

j zj

. (6)

We now show that H exhibits maximal variance over the set
of all 1-local observables on (C2)⊗|J | having operator norm
equal to 1. The proof is by induction: let J = {1, . . . ,N}.
the base case is to consider the states |φj 〉 and |ψj 〉 in
C2 and let 〈φj |ψj 〉 ∈ R without loss of generality. Form
the orthonormal basis |e(j )

± 〉 := (|φj 〉 ± |ψj 〉)/
√

2 ± 2zj and

define the Pauli operators σ
(j )
x , σ

(j )
y , σ

(j )
z with σ

(j )
z |e(j )

± 〉 =
±|e(j )

± 〉. With zj ∈ R, the most general norm 1 operator has
the form T

(j )
θ = σ

(j )
x sin θ + σ

(j )
z cos θ . For a single mode, say,

mode 1 in J , the state in Eq. (4) becomes |e(1)
+ 〉 and the maximal

variance of T
(1)
θ in |e(1)

+ 〉 is achieved for θ = π/2, i.e., T
(1)
π/2 =

(|φ1〉〈φ1| − |ψ1〉〈ψ1|)/
√

1 − z2
1. Assume now that the 1-local,

norm one operators HM := ∑M
j=1 T

(j )
π/2 maximize the variance

in |GM〉 := (⊗M
j=1|φj 〉 + ⊗M

j=1|ψj 〉)/
√

2 + 2
∏M

j=1 zj for all
M ∈ {1, . . . ,N − 1}. We calculate the maximum over θ of
the variance of the operator Hθ := IJ\{N} ⊗ T

(N)
θ + HN−1 ⊗

IJ\{1,...,N−1} in the state of Eq. (4).
We find that

〈G|Hθ |G〉 =
∏N−1

j=1 z2
j(

1 +∏N−1
j=1 zj

)2 cos2 θ (7)
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and

〈G|H 2
θ |G〉 = 〈

IJ + H 2
N−1 ⊗ IJ\{1,...,N−1}

+ 2T
(N)
θ ⊗ HN−1

〉
|G〉. (8)

Taking the partial derivative of Eq. (8) with respect to θ

produces the condition

cot θ =
〈
σ (N)

z ⊗ HN−1
〉
|G〉〈

σ
(N)
x ⊗ HN−1

〉
|G〉

. (9)

Since 〈φN |σ (N)
z |φN 〉 = 〈ψN |σ (N)

z |ψN 〉 = 0 and 〈φ1| ⊗ · · · ⊗
〈φN−1 |HN−1 |ψ1〉 ⊗ · · · ⊗ |ψN−1〉 = 〈ψ1| ⊗ · · · ⊗ 〈ψN−1

|HN−1|φ1〉 ⊗ · · · ⊗ |φN−1〉 = 0, it is clear that θ = π/2 is an
extremum, which is easily verified to be a maximum. By the
definition of M in Eq. (1), we find the value of M given by
Eq. (5). �

It is clear that M is close to the maximal value |J | if and
only if (1 − |zj |)2(1 − |zk|)2 is close to 1. As discussed below,

this is not the case for zj = u
QL

j u
QR

j + v
QL

j v
QR

j , which appear
when |G〉 = |G〉SFQ. This is the reason that M for |G〉SFQ

does not achieve values of the same order of magnitude as
|J |, where in this case, J is the subset of momentum space
 obtained by removing a subset defined by a cutoff k0, i.e.,
J =  \ {‖k‖ > k0}.

In Appendix A, we derive the following tight upper bound
for M:

M � 2λ

1 + e−λ
(1 − ||−1) + 1, (10)

which is a function of |〈� | �〉| only. Although the condition
|〈� | �〉|  1 is satisfied by all operating bare flux qubits, the
macroscopicity M can be further increased by manipulating
an isolated or hybrid SFQ system in such a way that |〈� | �〉|
is decreased. In the remaining part of this section, we show that
the relationship between M and λ given by Eq. (10) allows the
macroscopicity to be calculated to good approximation from
the action of an instanton connecting |�〉, |�〉.

An accurate estimate of λ in Eq. (10) can be obtained
experimentally by spectroscopic determination of spectral
gap of the SFQ or theoretically from the shape of the flux
potential V (�) with degenerate minima ±�0/2 that occur
when the externally applied flux �ext satisfies �ext = �0/2,
which falls in the parameter regimes explored in recent
experiments demonstrating macroscopic superpositions in
flux qubits [27,35–37]. To show how λ can be estimated
from the spectral gap of a SFQ, we consider a two-level,
quasidegenerate Hamiltonian Hd := (γ /2)(|�〉〈�| + |�〉〈�|)
(γ > 0), which describes the dynamics of nearly orthogonal
screening current states at the point �ext = �0/2. The states
|�〉, |�〉 correspond to well-defined values �0/2, −�0/2,
respectively, of the flux, and have the same expected energy
〈Hd〉 = (γ /2)(1 + e−2λ) with respect to Hd. The spectral
gap of Hd is found to be �E = γ e−λ. Knowledge of the
expected energy 〈Hd〉 can be combined with the spectroscopic
determination of �E to obtain a value for λ. On the other hand,
the flux values ±�0/2 corresponding to |�〉, |�〉 are analogous
to the degenerate minima ±q0 of the double-well potential
that is traditionally used to illustrate instanton methods. For
the present flux potential V (�), the spectral gap �E can be

computed using the semiclassical method [38], which yields
�E = 2�Re−Sinst , where Sinst = ∫ �0/2

−�0/2 d�
√

2CV (�) is the
action of an instanton solution � of the imaginary time
equation of motion corresponding to Eq. (2) and R is a ratio of
fluctuation determinants. From the above equivalent methods
of computing �E, we obtain an equation for λ:

λ = Sinst

�
+ ln

[
γ

�R

]
. (11)

Combined with Eq. (10), Eq. (11) leads to a major conclusion
of the present work: A decrease of the overlap between the
degenerate flux states |�〉, |�〉 (i.e., increase in λ) results in
greater superposition macroscopicity M through the increase
in the action of an instanton traveling between the degenerate
potential minima in imaginary time. For the experimental
demonstration of SFQ in Ref. [35] in which �2

0/2L = 645 K,
Ic = (152π/�0)K and EC = 9 × 10−3K, we find that M �
481, which is lower than the upper bound M � 3800 derived
by considering the displacement of Fermi surfaces of the two
components of |G〉SFQ [25]. For the experiment in Ref. [36]
with (Ic�0/2π )/EC = 38 ± 8 and (�2

0/2L)/EC ≈ 2 × 104,
we find M � 227.

III. METROLOGICAL USEFULNESS OF FLUX QUBIT

To relate a large value of M to the usefulness of |G〉SFQ as
a quantum magnetometer, we note that if H0 is the observable
giving the maximum variance in Eq. (1), the quantum Cramér-
Rao theorem [40] implies that a single-shot unbiased estimate
θ̂ of the phase θ in the unitary operator exp(−iθH0) satisfies√

〈(�θ̂)2〉 � (4〈(�H0)2〉|�〉)−1/2 = (4M|J |)−1/2. (12)

Increasing M from 1 to |J | interpolates the quantum Cramér-
Rao bound between standard quantum limit precision scaling
O(|J |−1/2) and Heisenberg limit precision scaling O(|J |−1)
for estimation of θ . For a measurement-imposed momentum
cutoff k0 and for small Q, we show in Appendix B that the
1-local Hamiltonian, which has largest variance in |Gk0〉SFQ,
is approximately H0 = ∑

k σ (k)
z , where the operator equal-

ities σ (k)
z = 1 − a

†
k,↑ak,↑ − a

†
k,↓ak,↓ and σ (k)

x = ak,↑a−k,↓ +
a
†
−k,↓a

†
k,↑ hold in the subspace {|0〉k,|1〉k}. The variance of the

operator
∑

k σ (k)
z (

∑
k σ (k)

x ) corresponds to number fluctuation
(order parameter fluctuation). Since the total electron number
operator is the canonical conjugate of the flux operator of
the SFQ, |Gk0〉SFQ is most useful as a probe for estimation
of displacements of flux through the SFQ. The quantum
Cramér-Rao bound for the error of a single-shot, unbiased
estimator �̂ of the flux in |Gk0〉SFQ is given by√

〈(��̂)2〉|Gk0 〉SFQ

�0
� 1√

M
1√

4| \ {‖k‖ > k0}|
, (13)

where | \ {‖k‖ > k0}| is the number of momentum modes
inside the cutoff radius. Because |Gk0〉SFQ exhibits a value of
M greater than that of |�〉 or |�〉 (each having M = 1), its
corresponding quantum Cramér-Rao bound is reduced below
the standard quantum limit by a factor of 1/

√
M. Note that

Eq. (13) implies M can be extracted from the measurement
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statistics of a flux estimator if that estimator is optimal (in
the sense of achieving the quantum Cramér-Rao bound [39]);
otherwise one extracts a lower bound for M. The upper bound
in Eq. (10) can be extracted from knowledge of the parameters
of flux potential V (�) [35], obtained from theoretically from
the microscopic theory or experimentally from spectroscopy
of the SFQ.

IV. EFFECTIVE ACTION OF INDUCTIVELY COUPLED
BOSE GAS AND FLUX QUBIT

We now demonstrate that bringing an ultracold magnetized
Bose gas into magnetic contact with the SFQ increases λ,
and hence M, in an experimentally realizable geometry
(Fig. 1). We thus explicitly construct a hybrid SFQ-BEC
device that allows an amplified value of M for |Gk0〉SFQ,
and thereby increases the metrological usefulness of the
superconductor screening-current superposition state for
quantum magnetometry.

Integration of a magnetically trapped BEC setup into a
superconducting quantum circuit has already been exper-
imentally achieved in a similar geometry with BEC/SFQ
distance D = 17 μm [14]. The experimental realization of the
amplification of M in the present setup requires that the SFQ
be held at temperatures T ∼ 10 − 100 mK [27], that the Bose
gas be magnetized and thermally insulated from the SFQ, and
that the Bose gas be held within D = 3 μm of the SFQ [cf.
discussion after Eq. (19) below]. The fully magnetized Bose
gas can be achieved by cooling a spinor Bose gas through
the magnetization transition in an optical trap, and bringing it
into proximity with the SFQ by, e.g., magnetic conveyor under
ultrahigh vacuum, as demonstrated in Ref. [41], or by using
trapping wire currents and a bias magnetic field to locally
position the Bose gas. In order to exploit the amplification
of M for magnetometry, the measurement of �̂ should be
unbiased and should at least achieve the standard quantum limit
for flux estimation. In addition, it must be carried out within
the coherence time of |G〉SFQ (∼ 1 − 10 μs [42,43]). Because
of these demands, a magnetometry protocol benefitting from
the amplification of M would likely involve a readout of the
SFQ by quantum memory engineered in the Bose gas itself
[12] or by a spin ensemble coupled to the SFQ [44].

We now derive the inductance renormalization K due to
the proximal magnetized Bose gas, which increases λ by
Eq. (11) and thereby increases M of the state |G〉SFQ by
Eq. (10). In the vicinity of a superconducting tunnel junction,
the SFQ consists of a left region V

(L)
S and a right region V

(R)
S

of s-wave, type-II superconductor with characteristic radius
RS . The spinor Bose gas is trapped in a volume VB which we
assume can be brought to within a few multiples of RS from
the plane of the SFQ [see Fig. (1)]. To calculate the effective
action of the flux instanton in this geometry, we use the
bosonic-fermionic imaginary time coherent state path integral
describing the dynamics of the electron (Nambu) fields
� = (ψ↑,ψ∗

↓)T , �∗ = (ψ∗
↓,ψ↑) and the complex bosonic

fields φ, φ corresponding to a spin-F atomic Bose gas.
Integrating over the electron fields leaves only the flux and
the atoms as quantum degrees of freedom. Building upon
the microscopic derivation of the capacitive, inductive, and
sinusoidal terms of the effective flux action [45], we focus

on the effective contribution arising from the Bose gas-SFQ
interaction, which is taken to be a linear Zeeman coupling of
the magnetic moment of the spinor Bose gas and the magnetic
field produced by the supercurrent in the SFQ [11,12].

The magnetic field in the Bose gas due to the su-
perconducting currents is calculated from the Biot-Savart
law using the gauge-invariant superconducting current J =
(e�/2me)

∑
σ∈±1/2 ψ∗

σ (−i∇ − e
�

A)ψσ + G.c., where G.c.
signifies the Grassmann conjugate of the preceding term. The
magnetic interaction can be simplified by implementing the
local change of basis ψσ �→ ψσe−iθL/R/2, ψ∗

σ �→ ψσeiθL/R/2

on the electron fields, where θL/R is the phase field of the
superconductor order parameter in the left or right regions of
the SFQ proximal to the tunnel junction. This rotation allows
us to consider a spatially constant, temperature-dependent
value for the modulus of the superconductor order parameter
�L = �R = � obtained from the BCS gap equation while
retaining the quantum fluctuations of the order parameter phase
[46]. In addition, we introduce the gauge-invariant velocity
vS := −�/2me(∇θ + 2e

�
A), where θ smoothly varies between

the values θL and θR achieved at the respective left and right
of the tunnel junction, which is connected to the flux degree
of freedom via∥∥∥∥

∫
C

d� · vS

∥∥∥∥ = e

me

� = π�

me

�

�0
, (14)

according to the fluxoid quantization condition [47].
The full form of the interaction in Nambu space is

Sint = −C1

R∑
m=L

∫ β�

0
dx0

∫ (x)

VB

φσiφεij�

∫ (x′)

V
(m)
S

∂�‖x − x′‖−1

×�∗
m

[
(i

←−
∂ ′
j − i∂ ′

j )I + 2me

�
vS,j τz

]
�m, (15)

where C1 = gf μBμ0e�/8πme in SI units, σ = (σx,σy,σz) is

a vector of spin-F operators, the spatial integrals over VB and
V

(m)
S are labeled with their respective coordinates x and x′,

and summation over repeated indices is implied. The Nambu
space Pauli operators I, τx , τy , τz have been introduced. We
leave the dynamics of the spinor Bose gas unspecified, as we
eventually only require a fully magnetized state, which exists
as an eigenstate of several atomic Hamiltonians.

In the self-consistent BCS mean-field theory, the super-
conducting (SSC) and interaction (Sint) contributions to Stot are
quadratic in the Nambu spinors. Upon performing the Gaussian
integral over �, �∗, the effective action becomes S

(2)
eff =

− 1
2 tr[G0(G−1

int +∑
j G−1

j )G0(G−1
int +∑

j G−1
j )] at lowest

nonzero order of expansion of the functional determinant
in terms of G−1

int (Appendix C). Here, G−1
int is the integral

kernel arising from Eq. (15) and G−1
j are the kernels arising

from the chemical potential across the tunnel junction, the
kinetic energy of the superfluid velocity vS , and the tunneling
amplitude, respectively. G0 is the free 2 × 2 Gor’kov Green’s
function of the superconductor and the trace is taken over
all internal momenta and Matsubara frequency in addition
to the Nambu space indices. The first-order contribution of
G−1

int vanishes, along with the second-order terms of the
form tr[G0G

−1
int G0G

−1
j ] (see Appendix C). The tunneling
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contribution to S
(2)
eff is nonlocal in imaginary time, giving

rise to dissipative real time evolution of the flux degree of
freedom. We will show that time nonlocality also appears in
the interaction contribution S

(2)
eff,int to S

(2)
eff and then proceed to

study the low-temperature (coherent) limit.
The first term in brackets in Eq. (15) van-

ishes because only terms that are even in momen-
tum contribute to the sum over internal momenta
in the expression S

(2)
eff,int = − 1

2 tr[G0(ωn,k)G−1
int (k,ωn; k′,ωm)

G0(k′,ωm)G−1
int (k′,ωm; k,ωn)]. We make the approximation

k = k′, which amounts to neglecting scattering of Bogoliubov
quasiparticles from the superconducting superfluid current.
This approximation results in a phase space factor proportional
to the energy scale of the attractive BCS electron pairing:∫

d3k′/(2π )3 ≈ (ρ(EF )/4π2)
∫

�ωD

−�ωD
dε, where we have used

εk = �
2‖k‖2

2me
− μ as the free electron dispersion (μ = μL =

μR ≈ EF is the T = 0 chemical potential of the SFQ), ωD is
the Debye frequency and ρ(EF ) is the density of quasiparticle
states at the Fermi surface. The intermediate expression for
the effective action due to G−1

int is, with implicit integrals over
x0,x

′
0 assumed, given by

− C2

(β�)2

∫ ( y)

VB

∫
d3q

(2π )3

M(x0, y) · (vS(x0,q) × q)eiq· y

‖q‖2

×
∫ ( y′)

VB

∫
d3q ′

(2π )3

M(x ′
0, y′) · (vS(x ′

0,q
′) × q ′)eiq ′ · y′

‖q ′‖2

×
∫

�ωD

−�ωD

dε
∑

(n,r)∈Z×Z

S(ωn,ωr,ε)eiωn(x ′
0−x0)eiωr (x0−x ′

0), (16)

where M(x0, y) := φ(x0, y)σφ(x0, y), S(ωn,ωr,ε) is the
temperature-dependent factor arising from the matrix trace
of the free Green’s functions, and

C2 = (gf μBμ0e)2ρ(EF )2
�ωD/8π4. (17)

The integrand of Eq. (16) is nonlocal in time and can be
computed in terms of the Bickley function Ki1(0) [48]. For the
present purpose of calculating the inductance renormalization
K in Eq. (2), we evaluate the Matsubara sum and take the
coherent part of Eq. (16), i.e., x0 = x ′

0. After an inverse Fourier
transform, we assume that (x − x′) · (〈M(x0,x)〉|BEC〉 ×
vS(x0,x′)) ≈ D‖〈M(x0,x)〉|BEC〉‖‖vS(x0,x′)‖ in the geometry
of Fig. 1, where |BEC〉 represents a condensed state of the Bose
gas such that

∫
VB

d3x‖〈M(x0,x)〉|BEC〉‖ ∈ O(NB) with NB the
total number of atoms. Making use of Eq. (14) by approximat-
ing

∫
V

(L)
S �V

(R)
S

d3x‖vS(x0,x′)‖ ≈ (π�R2
S/me)�(x0)/�0, the ef-

fective action is

S
(2)
eff,int = π�C2

25

(
RS

D

)4

N2
B

∫ β�

0
dx0

�(x0)2

�2
0

. (18)

We then have in Eq. (2)

K = π�C2

25�2
0

(
RS

D

)4

N2
B. (19)

To estimate feasible values for K, we use ρ(EF ) =
4.58 × 1046J−1m−3, |gf | = 2, and �ωD = 3.21 × 10−20J for
Al, which results in π�C2/25 = 1.57 × 10−31J. If RS = 1μm
and D = 3 μm, which are within reach for hybrid systems

composed of SFQ and Bose gas [14], then NB = 2 × 106

condensed atoms are sufficient for the renormalized inductive
energy EL′ := �2

0K to approximately equal the bare inductive
energy EL of the SFQ in Ref. [35]. Using Eq. (11) and
EL + �2

0K = 2 × 645 K now gives M � 677. In the more
extreme case of RS = D, NB = 5 × 106, M � 3114, which
gives a lower quantum Cramér-Rao bound for external flux
estimation by a factor of 1/2 compared to RS/D = 1/3.
The renormalized action for an instanton, and hence the
macroscopicity M [see Eq. (10)], scales as O(NB). From
this analysis, we see that a screening current superposition
|G〉SFQ in the SFQ of the hybrid system has a twofold to
fivefold larger value of M than the analogous state of the
nonhybrid SFQ. Assuming an optimal measurement on the
superconductor can be carried out, the hybrid system can
therefore act as a quantum magnetometer operating further
below the standard quantum limit than is possible for probe
states of the SFQ in the absence of the magnetized Bose gas.

We note that the inductance renormalization has important
consequences for the operation of the SFQ. In order to exhibit
the nonlinear potential defining the qubit, the inductance
of the Josephson junction �0(Ic cos �γ )−1 should cancel
the renormalized inductance of the loop [31]. This requires
that the expected phase difference �γ across the junction
must increase toward π/2. A large value of M can thus be
interpreted physically as a result of the large macroscopic
phase difference across the tunnel junction maintained in the
|�〉, |�〉 flux branches.

V. CONCLUSIONS

In summary, we have shown that the macroscopicity M
of the SFQ ground state |G〉SFQ is amplified by coupling
to a proximal magnetized spinor Bose gas. The required
magnetization can be achieved by preparation of the spinor
Bose gas in a polar Bose-Einstein condensate phase. It is useful
to note that the lack of electrical conductivity of the Bose gas
and the tunability of the gas magnetization by control of the
number of trapped atoms and control of the transition into
the polar phase make the SFQ-BEC hybrid system considered
in the present work a superior setting for hybrid quantum
magnetometry compared to, e.g., a hybrid system of a SFQ
and a static metallic magnet.

Amplification of M in the hybrid system indicates the
greater theoretical precision obtainable (compared to the
ground-state superposition of a nonhybrid SFQ) when |G〉SFQ

is used to probe magnetic displacements. We expect this result
to stimulate further research on the quantum macroscopicity of
hybrid persistent current qubits and on optimal preparation and
measurement protocols for achieving the quantum Cramér-
Rao bound for magnetometry in hybrid systems.
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APPENDIX A: PROOF OF UPPER BOUND FOR
M IN EQ. (10)

Consider λ = − log |〈� | �〉| = − log(
∏

k u
QL

k u
QR

k + v
QL

k

v
QR

k ) in the simple case of a superposition of uniform
supercurrent, e.g., with QR = 0 and variable QL satisfying
‖ QL‖  √

2me�/�. By calculating u
QL

k , u0
k, v

QL

k , and v0
k in

the vicinity of the Fermi momentum k = kF [see Eq. (B3)],
one finds that u

QL

k u0
k + v

QL

k v0
k ≈ 1 [47]. Introducing the

real numbers xk satisfying 0 < xk  1 defined by xk :=
1 − (uQL

k u0
k + v

QL

k v0
k)2 for each k, it follows from the series

expansion of the logarithm that

2λ =
∑

k

xk + 1

2

∑
k

x2
k + · · · . (A1)

As a consequence of Proposition 1 in Sec. II, the macroscop-
icity M of |G〉SFQ is M = 1 +∑

k �=k′
√

xkxk′/||(1 + e−λ),
where || is the volume of momentum space for which
Cooper pairing occurs. By the arithmetic mean-geometric
mean inequality and the fact that

∑
k xk � 2λ, it follows that∑

k �=k′
√

xkxk′ �
∑

k �=k′
xk+xk′

2 � 2(|| − 1)λ and therefore,

M � 2λ

1 + e−λ
(1 − ||−1) + 1. (A2)

Assuming that ‖ QL‖  √
2me�/�, the quantity u

QL

k uk +
v

QL

k vk does not vary significantly over k near the Fermi
surface and is nearly equal to 1. As a consequence,∑

k �=k′
√

xkxk′ is well approximated by (|| − 1)
∑

k xk =
(|| − 1)[2λ − O(

∑
k x2

k)] and the bound in Eq. (A2) is

tight. Quantitatively, the condition |xk − xk′ | < ||−1 for all
k,k′ ∈  is sufficient to guarantee that the difference between
M and the upper bound of Eq. (A2) is less than 1. Note that λ

can increase if and only if
∑

k �=k′
√

xkxk′ increases. Therefore,
as the superposed BCS states of |G〉SFQ become orthogonal,
the macroscopicity M increases.

APPENDIX B: METROLOGICAL USEFULNESS OF |G〉SF Q

Here we determine the 1-local, norm one operator H which
exhibits maximal variance in |G〉SFQ (we take Q′ = 0, and
Q �= 0 for simplicity). According to the proof of Proposition 1

H =
∑
k∈

e−i tan−1(vk/uk)σ (k)
y |0〉k〈0|ke

i tan−1(vk/uk)σ (k)
y

− e−i tan−1(v Q
k /u

Q
k )σ (k)

y |0〉k〈0|ke
i tan−1(v Q

k /u
Q
k )σ (k)

y

=
∑
k∈

c(k)
z σ (k)

z + c(k)
x σ (k)

x , (B1)

where (c(k)
z )2 + (c(k)

x )2 = 1 for all k and

c(k)
z =

(
u2

k − (
u

Q
k

)2)√
1 − (

uku
Q
k − vkv

Q
k

)2

c(k)
x :=

(
ukvk − u

Q
k v

Q
k

)
√

1 − (
uku

Q
k − vkv

Q
k

)2
. (B2)

The coefficient c(k)
z is plotted in Fig. (2).

The explicit expressions for the amplitudes appearing in the
variational BCS ground states with center of mass momentum
pairing at Q = 0 and Q �= 0, respectively, are

v
Q
k := �√

�2 + (
�2‖k‖2

2me
+ �2‖ Q‖2

2me
− EF +

√(
�2‖k‖2

2me
+ �2‖ Q‖2

2me
− EF

)2 + �2
)2

u
Q
k :=

�
2‖k‖2

2me
+ �

2‖ Q‖2

2me
− EF +

√(
�2‖k‖2

2me
+ �2‖ Q‖2

2me
− EF

)2 + �2√
�2 + (

�2‖k‖2

2me
+ �2‖ Q‖2

2me
− EF +

√(
�2‖k‖2

2me
+ �2‖ Q‖2

2me
− EF

)2 + �2
)2

. (B3)

We have uk = u
Q=0
k , vk = v

Q=0
k and u2

k + v2
k = (uQ

k )
2 +

(v Q
k )

2 = 1 for all k as required by normalization of each
single Cooper pair state. The value of c(k)

z from Eq. (B2) is
plotted in Fig. 2. Consider the superposition |Gk0〉SFQ cut off
at momentum k0 such that c(k)

z ≈ 1 for ‖k‖ � k0:

∣∣Gk0

〉
SFQ

:= 1√
N

⎡
⎣ ⊗

‖k‖<k0

(uk|0〉k + vk|1〉k)

+
⊗

‖k‖<k0

(
u

Q
k |0〉k + v

Q
k |1〉k

)⎤⎦. (B4)

Then for ‖ Q‖  √
2me�/� and k0  √

2me�/�, the ob-
servable

∑
‖k‖<k0

σ (k)
z gives the largest variance in the super-

position |Gk0〉SFQ over all 1-local, unit norm Hamiltonians.
Flux displacement is generated by the canonically conjugate
operator

∑
k σ (k)

z . Most of the terms in
∑

k σ (k)
z correspond to

‖k‖ in a small neighborhood [kF − k0,kF + k0] due to the large
density of states at the Fermi surface. Hence, the probe state
|Gk0〉SFQ is more useful for estimation of flux displacements
than any other parameter displacements imprinted on the state
by unitary evolution generated by a 1-local, unit norm operator.
The quantum Cramér-Rao bound for a single-shot, unbiased
measurement �̂ of the flux is then given by the result in Eq. (13)
where | \ {‖k‖ > k0}| is the number of momentum modes
inside the cutoff radius.
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FIG. 2. The coefficient c(k)
z appearing in the 1-local, unit norm Hamiltonian H maximizing 〈H 2〉|G〉 − 〈H 〉2

|G〉 in terms of εk :=
�

2‖k‖2/2me − EF and �
2‖ Q‖2/2me, where the latter energies are given in units of the superconductor gap �.

APPENDIX C: DERIVATION OF FIRST-ORDER AND SECOND-ORDER CONTRIBUTIONS of G−1
int

We consider the total partition function Z = ∫
D[· · · ] exp [− 1

�

∫ β�

0 Stot], where Stot is the total action and
∫
D[· · · ] symbolizes

the path integral over bosonic (complex) fields φ, φ with periodic boundary condition on [0,β�] and over all fermionic
(Grassmann) fields � = (ψ↑,ψ∗

↓)T , �∗ = (ψ∗
↓,ψ↑) with antiperiodic boundary condition on [0,β�].

SSC :=
∫ β�

0
dx0

∑
m=L,R

⎡
⎣∫ (xm)

VS,m

∑
σ,σ ′∈±1/2

(
ψ∗

σ

(
�∂0 − i

2
∂0θ + ieϕ − μ

)
ψσ + �

2

2me

(
i∇ − e

�
A
)

ψ∗
σ

(
− i∇ − e

�
A
)

ψσ

)

− (|�|ψ∗
↑ψ∗

↓ + |�|ψ↑ψ↓) + 1

g
|�|2

⎤
⎦+

∫ (xL)

VS,L

∫ (xR )

VS,R

∑
σ∈±1/2

ψ∗
σ (xL)TxL,xR

e
i�γ

2 ψσ (xR) + G.c., (C1)

where all fields are defined at the same imaginary time. We do not specify the dynamics of the spinor Bose gas. The Grassmann
integral is performed to second order by using

∫
D[�∗,�] exp

[
−1

�

∫ β�

0
(SSC + Sint)

]

=:
∫

D[�∗,�] exp �∗(G−1
0 + G−1

θ̇
+ G−1

T + G−1
vS

+ G−1
int

)
�

∝ exp

[(
trG0

(∑
j

G−1
j

)
− 1

2
trG0

(∑
j

G−1
j

)
G0

(∑
j

G−1
j

)
+ O

(∑
j

G−1
j

)3)]

as an exponential of a quadratic form in Nambu space, where the G−1
j are given in Nambu space in terms of momenta and

Matsubara frequency as follows:

G−1
θ̇

(ωn,k; ωm,k′) = 1

(2π )6(β�)2

(−�(ωn − ωm)

2
θ (ωn − ωm,k − k′) − ieϕ(ωn − ωm,k − k′)

)
τz

G−1
vS

(ωn,k; ωm,k′) = 1

(2π )6(β�)2
( − �vS(ωn − ωm,k − k′) · k′)I

− 1

(2π )6(β�)2

(
m

2(2π )3β�

∑
r∈Z

∫
d3qvS(ωr,q) · vS(ωn − ωm − ωr,k − k′ − q)

)
τz. (C2)
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G−1
int is given by Eq. (15) in the main text. In momentum space, it is given by

G−1
int (k,ωn; k′,ωm) = −i

(
gf μBμ0e�

2me

)∫ β�

0
dx0

(∫
VB

d3xφσiφ

)
εij�

×
[

1

(2π )6(β�)2

eix0(ωm−ωn)e−i(k−k′)x

‖k − k′‖2
(k� − k′

�)(kj + k′
j )I

+ 2me

�

1

(2π )9(β�)3

∫
d3q

∑
s∈Z

eix0(ωs−(ωn−ωm))e−i(k−k′−q)·x

‖k − k′ − q‖2
(k′

� − k′′
� − q�)vS,j (ωs,q)τz

]
. (C3)

We omit writing out the expression for G−1
T since the second-order cross term − 1

2 tr(G0G
−1
int G0G

−1
T ) can be shown to vanish

by a simple argument, viz., G−1
int is nonzero if and only if its momentum arguments are on the same side of the Josephson junction

while G−1
T is nonzero if and only if its momentum arguments are on different sides of the Josephson junction.

G0 is local in momentum space and is given by the well-known expression

G0(ωn,k; ωm,k′) = (2π )3(�β)

�2ω2
n + ε2

k + �2
(i�ωnI − εkτz + �τx)δ(k − k′)δn,m, (C4)

where εk := �
2‖k‖2/2me − EF . The matrix trace of G0(ωn,k; ωm,k′) is (2π)3(�β)(2i�ωn)

�2ω2
n+ε2

k+�2 δn,mδ(k − k′) while the matrix trace of

G0(ωn,k; ωm,k′)τz is (2π)3(�β)(−2εk)
�2ω2

n+ε2
k+�2 δn,mδ(k − k′). For the first-order contribution of G−1

int , we have the following:

tr
(
G0G

−1
int

) = gf μBμ0e�

me

∫ β�

0
dx0

(∫
VB

d3xφσiφ

)
εij�

×
⎛
⎝ 1

β�

∑
(m,n)∈Z×Z

∫
d3kd3k′

(2π )3

�ωn(k� − k′
�)(kj + k′

j )(
�2ω2

n + ε2
k + �2

)‖k − k′‖2
e−i(k−k′)·xeix0(ωm−ωn)δ(k − k′)δωn,ωm

+ i
2me

�(�β)2(2π )6

∑
(m,n,s)∈Z3

∫
d3kd3k′d3q

εk′(k′
� − k� − q�)vS,j (ωs,q)e−i(k′−k−q)·x(

�2ω2
m + ε2

k′ + �2
)‖k′ − k − q‖2

× eix0(ωs−(ωn−ωm))δ(k − k′)δωn,ωm

⎞
⎠. (C5)

It is clear that the δ(k� − k′
�) integration causes the first term to vanish. That the second term vanishes follows from the fact that∫

d3k

(2π )3

εk(
�2ω2

m + ε2
k + �2

) = 1

(2π )2

∫
�ωD

−�ωD

dερ(ε)
ε(

�2ω2
m + ε2 + �2

) = 0, (C6)

where ρ(ε) := me

�2

√
2meε

�2 .

From Eq. (C2), it is clear that G−1
θ̇

vanishes if we assume that the imaginary time Josephson-Anderson relation (imaginary

time ac Josephson equation) ∂θL(R)

∂τ
= 2e

�
ϕL(R) holds on the left- and right-hand sides of the Josephson junction, respectively.

Hence, the second-order cross term − 1
2 tr(G0G

−1
int G0G

−1
θ̇

) is zero. The second-order term − 1
2 tr(G0G

−1
θ̇

G0G
−1
θ̇

) gives rise to the
capacitive term in the flux action Eq. (2) [45].

The second-order cross term − 1
2 tr(G0(ωn,k)G−1

int (ωn,k; ωm,k′)G0(ωm,k′)G−1
vS

(ωm,k′; ωn,k)) contains one term of order
O(‖vS‖3), which we ignore. In addition, if we make the assumption that the supercurrent has zero divergence, then k · vS = 0
so that the first term of G−1

vS
in Eq. (C2) does not contribute at second order in perturbation theory. The remaining term is

proportional to

i

∫
d3kd3k′d3q

∑
(n,m,r)∈Z3

∫ β�

0
dx0

∫ (x)

VB

[M(x0,x) · (k + k′) × (k − k′)]

× 2i�(ωn + ωm)εk(
�2ω2

n + ε2
k − �2

)(
�2ω2

m + ε2
k′ − �2

) eix0(ωm−ωn)e−i(k−k′)·x

‖k − k′‖2
vS(ωr,q) · vS(ωm − ωn − ωr,k − k′ − q). (C7)

Making the approximation k = k′ due to the fact that vS can be considered to have only a single Fourier component, the above
integration takes the simplified form

∫
d3k 2(M · k)g(‖k‖), where g symbolizes the even parity part of the integrand. This integral

evaluates to zero because of the odd parity of k.
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Finally, we show in detail the derivation of Eq. (18) from Eq. (16), which involves an approximation to an effective action
that is nonlocal in imaginary time. In order to simplify the discussion, we derive S

(2)
eff,int in the T = 0 limit. In Eq. (16), the factor

S(ωn,ωr,ε) is given by

(�2ωnωr + �2 − ε2)eiωn(x ′
0−x0)eiωr (x0−x ′

0)(
�2ω2

n + ε2 − �2
)(

�2ω2
r + ε2 − �2

) . (C8)

For β → ∞, the residue theorem is used to evaluate the sum
∑

(n,r)∈Z×Z S(ωn,ωr,ε). The result is:

∑
(n,r)∈Z×Z

S(ωn,ωr,ε) = 1

4�2

(
1 + �2 − ε2

�2 + ε2

)
e

−
√

ε2+�2 |x0−x′
0 |

� . (C9)

Taking x0 = x ′
0, we have 1

4�2

∫
�ωD

−�ωD
dε (1 + �2−ε2

�2+ε2 ) = �
�2 tan−1(�ωD/�) > 0. Carrying out the

∫ β�

0 dx ′
0 integration gives

approximately �/� because this is the characteristic inverse frequency scale of superconductivity. Equation (18) then follows
from the line of reasoning presented in the main text.

However, it is clear that Eq. (C9) is nonlocal in imaginary time. We have∫
�ωD

−�ωD

dε
∑

(n,r)∈Z×Z

S(ωn,ωr,ε) = 1

2�2

∫
�ωD

−�ωD

dε
�2

ε2 + �2
e

−
√

ε2+�2 |x0−x′
0 |

�

= �2

�2

∫ sinh−1(�ωD/�)

0
du(� cosh u)−1e−�|x0−x ′

0| cosh(u)/�. (C10)

Using the T = 0 BCS gap equation V0ρ(EF ) = sinh−1(�ωD/�) where V0 is the effective electron-electron attraction, and taking
V0ρ(EF ) to be large, the integral above is approximately 1

�2

∫∞
�|x0−x ′

0|/�
dxK0(x) =: Ki1(�|x0 − x ′

0|/�), where Ki1(x) is the
Bickley function [48]. This nonlocal kernel can be used to carry out an analysis of the dissipative evolution of the hybrid
BEC-SFQ system.
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