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Dynamic decoupling in the presence of colored control noise

Ido Almog,1 Gil Loewenthal,1 Jonathan Coslovsky,1 Yoav Sagi,2 and Nir Davidson1

1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
2JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics,

University of Colorado, Boulder, Colorado 80309-0440, USA
(Received 30 March 2016; published 12 October 2016)

An optimal dynamic decoupling of a quantum system coupled to a noisy environment must take into account
also the imperfections of the control pulses. We present a formalism which describes, in a closed-form expression,
the evolution of the system, including the spectral function of both the environment and control noise. We show
that by measuring these spectral functions, our expression can be used to optimize the decoupling pulse sequence.
We demonstrate this approach with an ensemble of optically trapped ultracold rubidium atoms, and use quantum
process tomography to identify the effect of the environment and control noise. Our approach is applicable and
important for any realistic implementation of quantum information processing.
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I. INTRODUCTION

The paradigm of a two-level system (TLS) is central to
quantum information (QI), where it is applied as a quantum bit
(qubit), the building block for information transfer, quantum
memory, or the computational gates. Coupling to a noisy
environment, which is inherent to any system, reduces the
purity of the TLS, and thus limits its usefulness for any
QI application. Several techniques have been developed to
increase the quality of the quantum operation of the TLS,
which is usually quantified by a measure called fidelity [1].

One of these techniques is dynamic decoupling (DD), where
a pulsed control field is used to couple the two levels of the
TLS, and thus reduce their coupling to the environment [2].
In QI, DD is used mainly to reduce the decay of the fidelity
of a TLS, making it useful for longer times, as demonstrated
in a large variety of systems [3–10]. It was theoretically and
experimentally shown that the success of these schemes can be
predicted using a measurable spectral function that describes
the coupling of the system to the environment, sometimes
referred to as the “bath spectrum” [10–19]. In all of these
proposals, higher rates of the control pulses generate better
decoupling from the environment. However, in any realistic
implementation there are imperfections in the control field,
hence dynamic decoupling sequences become increasingly
ineffective as the number of pulses grows.

In the quest for robust DD in the presence of pulse imper-
fections, it is usually assumed that errors in the control pulses
are uncorrelated [20–23]. This “white” noise assumption is
commonly used when estimating the fidelity of a gate by
applying the same gate again and again many times but in
a random manner, an approach known as “benchmarking”
[24]. In contrast to this assumption, as we show below, the
control pulses often have correlated errors leading to a colored
nonflat spectral function, which must be taken into account.
Although the bath-system approach can be used to calculate
the system-environment coupling for realistic and robust pulse
sequences [25–28], it is still not possible to get their outcome
fidelity without a unified spectral treatment taking into account
both the spectral noises in the environment and a spectral
description of the (classical) noise of the control.

In this work, we study the combined effect of coupling to
the environment and a DD control field with colored noise

on a TLS, and develop a closed-form expression to describe
it by the two corresponding spectral functions. We measure
these spectral functions with an ensemble of ultracold optically
trapped 87Rb atoms, and then use them to predict the outcome
of a generic DD scheme and its overall fidelity. Using quantum
process tomography [1,4], we show and explain the effect of
each of the spectral functions with any initial state.

II. SYSTEM SUBJECTED TO REALISTIC
DYNAMIC DECOUPLING

We consider a general TLS model with energy fluctuations
and a noisy control field, described by the effective Hamilto-
nian

Ĥ = �

2
[ω0 + δ(t)]σz + �

2
[�(t)e−iω0t σx + H.c.]. (1)

Here, ω0 is the transition frequency between the two states
and �(t)e−iω0t is a noisy (classical) external control field,
which is used for the DD. The operators σi are the Pauli
matrices, written in the two-level basis denoted by |2〉 and
|1〉. The noise in the control field enters through �(t) =
�0(t)[1 + nc(t)], where �0(t) is the desired, noiseless control.
The frequency detuning noise, δ(t), and the control noise,
nc(t), are random functions in time, with a mean value of zero.
Our analysis can be readily extended for control fields having
both multiplicative and additive noise, multiaxis pulses, and
frequency and phase noise in the control.

The short time evolution of an initial state can
be described by the reduced density matrix ρ̃ =
1
2 (ρxσx + ρyσy + ρzσz + I), to second order in the noises
(see the Appendix). In the interaction picture of H0(t) =
�σx�0(t)/2 + �σzω0/2, and under the weak coupling
assumption [14], the effective Hamiltonian, H̃int(t) =
�δ(t) σz

2 cos (
∫ t

0 dτ�0(τ )/2) + �nc(t)�0(t) σx

2 , can be consid-
ered as a perturbation. The master equation for the density
matrix operator is

˙̃ρ(t) =
〈

1

(i�)2

∫ t

0
dt2

[
H̃int(t),H̃int(t2)ρ̃(t)

] + H.c.

〉
, (2)

where 〈· · · 〉 stands for expectation value, after tracing out the
environment. The two-term interaction Hamiltonian plugged
into Eq. (2) gives rise to four terms, which are integrated over
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time T to find the short-time evolution of the density matrix. The outcome is the paper’s theoretical main result

�ρ(T ) =
∫ ∞

−∞
df

⎡
⎢⎢⎣− ρxσx + ρyσy

4
Gδ(f )Fδ(f )︸ ︷︷ ︸

coupling to the environment

− ρyσy + ρzσz

4
Gc(f )Fc(f )︸ ︷︷ ︸

noise in the control

+
(ρzσx

4
Gδc(f ) + ρxσz

4
Gcδ(f )

)
Fδc(f )︸ ︷︷ ︸

cross-correlation between environment and control

⎤
⎥⎥⎦. (3)

The three spectral overlap integrals in Eq. (3), determine
the full evolution of the density matrix. They describe the
effect of the coupling to the environment, the noise in the
control field, and cross-correlation between the environment
and the control field, respectively. The first term is similar to
the spectral overlap integral of Refs. [11,14,17].

The two bath spectral functions Gδ(f ) and Gc(f ) describe
the correlation at different times of the environment and the
noise of the control

Gδ(f ) ≡
∫ ∞

−∞
e−2πif τ 〈δ(t)δ(t + τ )〉dτ ,

Gc(f ) ≡
∫ ∞

−∞
e−2πif τ 〈nc(t)nc(t + τ )〉dτ .

(4)

The filter spectral functions Fδ(f ) and Fc(f ) encapsulate the
information regarding the modulation done by the control,
during the time period T , and are written explicitly for
sequences composed of πx or π−x pulses as

Fδ(f ) ≡
∣∣∣∣
∫ T

0
dt e−2πif t cos

(∫ t

0
�0(τ )dτ

)∣∣∣∣
2

,

Fc(f ) ≡
∣∣∣∣
∫ T

0
dt e−2πif t�0(t)

∣∣∣∣
2

.

(5)

Similarly, Fδc(f ), Gδc(f ), and Gcδ(f ), describing the cross-
correlations between the control noise, nc(t), and the environ-
ment noise, δ(t), are given in the Appendix, but are negligible
in our experiment.

Inverting the relation in Eq. (3), in order to find the bath
spectral functions from time evolution measurements of the
density matrix is hard, when two or more overlap integrals are
involved. However, it is possible to reduce these expressions
to a single overlap integral by choosing wisely the initial
state and DD sequence, essentially separating the problems
of finding the two spectral functions. For example, in order
to find the environment bath spectrum, Gδ(f ), we have used
a random initial state and employed envelope spectroscopy
which is insensitive to the control noise. With this choice,
the evolution of the reduced density matrix, as given in Eq. 3,
depends only on a single overlap integral [14]. By using a filter
function that consists of several discrete peaks, which samples
the environment bath spectrum at these discrete frequencies,
one can invert the spectral overlap integral by solving a set of
linear equations [10] or a single linear equation in the case of
a single peak filter function [14].

Similarly, in order to measure the control noise spectral
function, Gc(f ), it is worthwhile to eliminate the overlap
integral of the environment. This is done by applying a
π -pulse sequence starting with an ensemble initialized to the
state ρ(0) = |1〉. Since this essentially keeps the system in
states |1〉 and |2〉, which are insensitive to the pure dephas-

ing environment noise, Eq. (3) reduces to (see Appendix)
�ρ(T ) = 1

4 〈ρ2
y (T )〉σz, with

〈
ρ2

y (T )
〉 =

∫ ∞

−∞
df Gc(f )Fc(f ). (6)

By applying a π/2 pulse followed by state detection, we can
measure 〈ρ2

y (T )〉, which is sensitive to the overlap integral, as
explained.

III. MEASUREMENT OF THE CONTROL
NOISE SPECTRUM

Our experimental setup is described in [29]. In short, about
2.5 × 105 ultracold 87Rb atoms are confined in an external
optical potential created by two 1.06 μm crossed laser beams.
The temperature of the atomic ensemble is 1.7 μK, with a
peak density of 2 × 1013 cm−3. The two metastable states
|1〉 ≡ |F = 1,m = −1〉 and |2〉 ≡ |F = 2,m = +1〉 of the
52S1/2 manifold are chosen as the TLS. The energy difference
between these states is, to first order, magnetically insensitive,
at the applied magnetic field of 3.2 G [30]. The control field
is implemented using a two-photon microwave (MW) and
radio frequency (RF) transition detuned by � ≈ 110 kHz from
the intermediate |F = 2,m = 0〉 level, taking into account
all energy shifts (differential AC Stark shift, second-order
magnetic shifts, mean-field interaction and MW dressing). We
measure the state of the atoms using a fluorescence detection
scheme [4].

The main sources for the noises δ(t) and nc(t) are well
understood in our system. The environment noise, δ(t), is
due to the differential AC Stark shift of elastically col-
liding atoms in the optical dipole trap [4]. For each of
the atoms, the environment is the atomic ensemble itself,
randomizing the atomic trajectory after every elastic colli-
sion. The noise in the control is mostly due to magnetic
fluctuations. The magnetic noise enters through the single-
photon detuning of the two-photon transition, �(t), which is
magnetically sensitive to first order. This fluctuating detuning
changes the effective Rabi frequency of the two-photon
transition,

�(t) = �1�2/2�(t), (7)

where �1 and �2, the single photon Rabi frequencies of the
MW and RF fields, are essentially noiseless in our system.
Note that, since the two states of the TLS are magnetically
insensitive, noise in the magnetic field affects only the control
field, hence the cross-correlation term in Eq. (3), is negligible.
We expect to find a dominant contribution to the noise at
50 Hz and higher harmonics, arising from the electrical grid.

Figure 1(a) presents the measured variance, 〈ρ2
y 〉, versus

the pulse rate for 40 pulses of CPMG-4 DD sequence.
The sequence CPMG-n, initially introduced by Carr, Pur-
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FIG. 1. The control noise spectrum. (a) The square (circle) data
set is the measured 〈ρ2

y 〉 after 40 pulses of CPMG-4, with (without)
a 4 mG peak-to-peak magnetic noise injected at a frequency of
50 Hz. The solid lines are calculated from Eqs. (6) and (7), with
an independent measurement of the magnetic noise. (b),(c) The
filter function Fc(f ) of a CPMG-4 sequence with pulse rates of
(b) 50 Hz and (c) 67 Hz. The arrows represent the 50 Hz component
of the noise, which have significant overlap with the peaks of the
filter function only for the sequence with a pulse rate of 67 Hz (c).
The inset shows an illustration of a CPMG-4 control field at a pulse
rate of 67 Hz. Negative pulses represent a π phase shift of the control
field. (the duration of the pulses is not to scale). Points A, B, C, and
D are defined in the text.

cell, Meiboom, and Gill [31,32], is composed of equally
spaced π pulses with a phase alternating between π and
−π after every n/2 pulses. We repeat the measurements
with and without deliberately injecting a 50 Hz mag-
netic noise (by driving a current in a nearby coil, phase
locked to the electrical grid) to further increase the control
noise.

The measured spectrum is reproduced by using our control
noise spectrum, which consists of a discrete peak at 50 Hz, a
DC component, and a small component of white noise. Notice
that since the filter function of CPMG-4 at pulse rate of 50 Hz
has no peak at this frequency, there is no special feature around
50 Hz, as illustrated in Fig. 1(b). This is in contrast to a pulse
rate of 67 Hz which overlaps a peak of the control noise, as
shown in Fig. 1(c). Using Eqs. (5)–(7) and a direct independent
measurement of the 50 Hz magnetic noise, we depict the cal-
culated control noise spectrum [in Fig. 1(a)], showing discrete
peaks at frequencies of 200/(2m − 1) Hz, with m = 1,2, . . . ,
in excellent agreement with the measured noise spectrum
without any fit parameter. The entire spectrum has a small
bias which is due to imperfections in the state detection and
uncorrelated (white) noise in the control pulses. The latter is
measured separately using a higher number of pulses (100), to
increase the sensitivity. Finally, a DC control noise of 3 × 10−5

is measured using a CPMG DD sequence (with no phase
alternation), whose filter function has a prominent component
at DC.

By choosing one of the peaks in the spectrum of Fig. 1(a)
and repeatedly measuring its noise component, we were able
to reduce it by about 50% by injecting a 50 Hz component to a
nearby coil and searching for the phase and amplitude which
minimize the peak.
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FIG. 2. A two-dimensional map of the predicted logarithm of
fidelity decay rate (in units of s−1) as a function of the pulse rate
fDD and phase cycle n of the CPMG-n pulse sequence without the
injection of noise at 50 Hz. The brightness (color online) represents
the decay rate of the fidelity in logarithmic scale (black represents no
decay). Points A, B, C, and D are defined in the text. The dashed line
correspond to n = 4 (i.e., CPMG-4 sequence).

IV. DYNAMIC DECOUPLING SEQUENCE ENGINEERING

The usefulness of Eq. (3) stems from its ability to predict the
performance of any DD sequence, given that the two spectral
functions, Gδ(f ) and Gc(f ), are known. For the purpose of
optimizing the DD we quantify its success with the fidelity,
defined by F = Tr{ρ(t)ρ(0)}, as it includes both the effects of
pulse imperfection and the coupling to the environment. The
short time fidelity [neglecting the last term in Eq. (3)] can be
written (see the Appendix) as

F = 1 − ρ2
x + ρ2

y

4

∫ ∞

−∞
df Gδ(f )Fδ(f )

−ρ2
y + ρ2

z

4

∫ ∞

−∞
df Gc(f )Fc(f ). (8)

It is helpful to plot the decay rate of the fidelity as a function
of the pulse sequence parameters. In such a plot, it is easy to
graphically identify the region in parameter space where the
performance of the DD sequence is optimized. These plots
can be reproduced for any dynamic decoupling sequence and
noise spectrum, as is demonstrated here for CPMG and Uhrig
[9] sequences.

In the case of CPMG-n, the natural choice of parametriza-
tion is the pulse rate fDD and the parameter n. An example of
such a map, based on the two measured spectral bath functions
of our system, is presented in Fig. 2, calculated for the worst
case fidelity (taking an initial state of ρy = 1). The regions
with the highest fidelity are clearly visible.

Although the map exhibits some complex features, the
central ones can be qualitatively understood. At low control
pulse rates, the fidelity decay rate follows a Lorentzian,
reflecting the Poisson statistics of the cold atomic collisions
[4]. At higher pulse rates, there is a reduction in fidelity caused
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FIG. 3. The predicted logarithm of of the fidelity decay rate (in
units of s−1) as a function of the average pulse rate fDD and the phase
cycle n, for a Uhrig-n pulse sequence. The plot was calculated for a
20 π -pulse sequence, without the noise injection at 50 Hz. Using the
previously defined point A, B, C, and D for reference with the CPMG
map, we note that the high decay rate features are different.

by the white noise component of the control field and arising
from the large number of pulses. Large-n cycles are also
less successful, since their filter function has a large spectral
component at DC, sampling the slow drifts in the strength of
the control field. The control noise, originating mainly from the
50 Hz magnetic noise, produces a dominant feature appearing
as strips on the map. The points A–D correspond to the points
marked in Fig. 1.

Clearly the same procedure can be applied for any DD pulse
sequence and is not restricted to equally spaced pulses. As an
example, in Fig. 3 we present the expected decay rate of our
system for a Uhrig-n pulse sequence [9], where n is the phase
cycle and has the same meaning as in the CPMG-n sequences.
Comparing between the maps for Uhrig-n and CPMG-n, it can
be seen that the features of the 50 Hz control noise are still
present but have become “shattered.”

V. COHERENCE OF AN ARBITRARY INITIAL STATE

Process tomography [1] is a technique used to characterize
the TLS state after being manipulated by the control (referred
here by process), for any initial state. A great advantage of
the formalism presented in Eq. (3) is that it predicts the
entire three-dimensional effect of the process on the system,
which is simply visualized as a deformed sphere in the Bloch
representation.

For process tomography we repeat the process with four
initial states, ρ(0) = 1

2 (
 + 1), where 
 is one of the Pauli
matrices σz, −σz, σx , and σy . For each initial state, the final
state is measured by applying six different control pulses,
followed by a state detection. For a linear process, this
information is sufficient to construct the process matrix [1,4].

The results of the process tomography measurements are
shown in Fig. 4, for two DD processes: CPMG-4 at 50
and 67 Hz pulse rates, corresponding to points B and C in

FIG. 4. Process tomography of CPMG-4 DD scheme in the
presence of a noisy control field. A color code representing the state
phase and a dotted line representing the zero phase states are used
to indicate the rotations around the z axis. Outer and inner spheres
represent initial and final states, respectively. Top: measured Bloch
sphere after 50 pulses at a rate of 50 Hz and with a 4 mG magnetic
noise injection. Top and side view are shown on the right and left
sides, respectively. Bottom: same measurement but with a pulse rate
of 67 Hz. The different axes suffer from different decay rates, as
expected from Eq. (3). For our πx-pulse sequence, the x axis decay
is slower.

Fig. 2. Although close in frequency, the two processes differ
significantly, in agreement with our measured bath spectral
functions. For the 50 Hz process, there is no dominant control
noise (as explained before), hence the decay is mostly due to
the coupling to the environment. The decay of the z axis is the
lowest, limited by a T1 process (not included in our model,
measured to be ≈ 5 sec). The decay of the other two axes is
similar, which is expected from Eq. (3), since the coefficients
ρx and ρy appear symmetrically in the terms describing the
coupling to the environment. In contrast, in the 67 Hz process,
the decay in the y and z axes is faster since it is also affected
by the noise in the control (involving the coefficients ρx and
ρy).

VI. CONCLUSIONS

The formalism developed here together with the one
described in [14] gives a recipe for designing a DD sequence:
First measure the spectral function defining the coupling
to environment. Then measure the spectral function that
characterizes the noise in the control field. Choose a general
DD sequence parametrized by few parameters. Use the overlap
integrals to calculate the performance map as a function of
these parameters. Choose high fidelity regions for the DD
sequences.
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Generally, any realistic control has a colored noise spectrum
with different frequency components: Microwave transitions
have frequency components related to the electricity grid,
optical transitions have mechanical frequencies of the optical
elements [33], and trapped atoms or ions have frequencies
related to their oscillation [34]. Although the the optimal pulse
is system dependent, the most efficient way to find it is general,
as we have shown here.

ACKNOWLEDGMENTS

We acknowledge the financial support of MINERVA, ISF,
and DIP.

APPENDIX

1. Equation of motion for system density operator

a. Mathematical derivation

We are interested in the short time evolution of the system
density operator determined by the Hamiltonian

Ĥ = �

2
[ω0 + δ(t)]σz + �

2
[�(t)e−iω0t σx + H.c.]. (A1)

Using the notation �(t) = �0(t)[1 + nc(t)], we separate the
desired control field, �0(t), from the noisy term, nc(t), and
define the (noiseless) action

ϑ(t) =
∫ t

0
dτ �0(τ )/2. (A2)

It is convenient to move to the interaction picture of H0(t) =
�σx�0(t)/2 + �σzω0/2. In this picture, when the change in
the system density operator during the bath correlation time is
negligible, the effective Hamiltonian, H̃int, can be considered
as a perturbation. This assumption, called the weak coupling
assumption, is naturally valid in QI since the quantum gate or
memory is not useful when the decay of coherence is not small
during its time of operation. In this case, the system’s density
operator obeys the following master equation (to second order
in the noise):

˙̃ρ(t) =
〈

1

(i�)2

∫ t

0
dt2[H̃int(t),[H̃int(t2), ρ̃(t)]]

〉
, (A3)

where 〈· · · 〉 stands for expectation value, coming from tracing
out the environment.

The interaction Hamiltonian can be written explicitly as
H̃int(t) = �δ(t)S̃δ(t) + �nc(t)S̃c(t), with an operator related to
the interaction with the environment

S̃δ(t) = eiσx

∫ t

0 dτ�0(τ )/2 σz

2
e−iσx

∫ t

0 dτ�0(τ )/2

= σz

2
cos[ϑ(t)] + σy

2
sin[ϑ(t)], (A4)

and an operator related to the noise in the control,

S̃c(t) = eiσx

∫ t

0 dτ�0(τ )/2 �0(t)σx

2
e−iσx

∫ t

0 dτ�0(τ )/2

= �0(t)
σx

2
. (A5)

Plugging this into Eq. (A3), we get the equation for the density
operator

˙̃ρ(t) = −
∫ t

0
dt2〈δ(t)δ(t2)〉[S̃δ(t),[S̃δ(t2), ρ̃(t)]]

−
∫ t

0
dt2〈nc(t)nc(t2)〉[S̃c(t),[S̃c(t2), ρ̃(t)]]

−
∫ t

0
dt2〈nc(t)δ(t2)〉[S̃c(t),[S̃δ(t2), ρ̃(t)]]

−
∫ t

0
dt2〈δ(t)nc(t2)〉[S̃δ(t),[S̃c(t2), ρ̃(t)]].

Three mechanisms, which are responsible for the density
matrix evolution, can be identified in the four terms of the ex-
pression: The first term describes the effect of the environment,
the second describes the effect of the noise of the control field
and the last two are the result of the cross correlation between
the control noise and the environment coupling.

Fortunately, each term in Eq. (A6) can be expressed as an
overlap of two functions in the spectral domain. As all the
derivations are similar and have a similar final result as the
first two overlap integrals in the main text, we shall explicitly
derive the spectral overlap integral expression for the two last
cross-correlation terms. Starting from the fourth term, we plug
Eqs. (A4) and (A5)

−
∫ t

0
dt2〈δ(t)nc(t2)〉[S̃δ(t),[S̃c(t2)ρ̃(t)]]

=
∫ t

0
dt2〈δ(t)nc(t2)〉1

2
σx�0(t2)

×{ρy(0) sin[ϑ(t)] + ρz(0) cos[ϑ(t)]},
and integrate to get the expression for the density matrix
change due to this cross-correlation term

�ρδc(T ) =
∫ T

0
dt1

∫ t1

0
dt2�δc(t1 − t2)

×1

2
σx�0(t2)ρz(0) cos [ϑ(t1)],

where �δc(t1 − t2) = 〈δ(t1)nc(t2)〉(t1 − t2) is the time corre-
lation function, defined with the Heaviside function (t1 − t2).
Notice that in order to obtain this we ignored the sin (· · · ),
constraining ourselves to πx pulses.

We define �(t) = cos [ϑ(t)](t)(T − t), and identify a
convolution integral between the functions �δc(t) and �0(t),
to write

�ρδc(T ) = 1

2
σxρz(0)

∫ T

0
dt1�(t1)[�δc(t1) ∗ �0(t1)]. (A6)

With the Fourier transform of the correlator (defined with a
factor of 2 to compensate for the integration over half of the
real axis), Gδc(f ) = 2

∫ ∞
−∞ dτ e−2πif τ�δc(τ ) and a tilde ( ˜ ) to

represent the Fourier transform of the other functions, �ρδc(T )
can be written as

�ρδc(T ) = 1

2
σxρz(0)

∫ T

0
dt1�(t1)�δc(t1) ∗ �0(t1)

= 1

4
σxρz(0)

∫ ∞

−∞
dt1�(t1)
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×
∫ ∞

−∞
df1e

2πif1t1Gδc(f1)�̃0(f1)

= 1

4
σxρz(0)

∫ ∞

−∞
dt

∫ ∞

−∞
df2 e2πif2t �̃(f2)

×
∫ ∞

−∞
df1e

2πif1tGδc(f1)�̃0(f1)

= 1

4
σxρz(0)

∫ ∞

−∞
df �̃∗(f )�̃0(f )Gδc(f ).

Defining Fδc(f ) = �̃∗(f )�̃0(f ), the change of the density
matrix is compactly expressed by

�ρδc(T ) = 1

4
σxρz(0)

∫ ∞

−∞
df Gδc(f )Fδc(f ). (A7)

Similarly, repeating this procedure with the the other cross-
correlation term in Eq. (A6), we obtain

�ρcδ(T ) = 1

4
σzρx(0)

∫ ∞

−∞
df Gcδ(f )Fδc(f ), (A8)

with Gcδ(f ) defined the same as Gδc(f ) up to exchanging
the functions δ(t) and nc(t). The other two terms are written
explicitly in the main text (the environment overlap integral is
derived in details in several previous works; see Ref. [14] for
example).

This formalism can be generalized further to include fre-
quency noise of the control, multiple axes control sequences,
and other models of the control noise. In what follows,
we give an outline for this possible expansion. Frequency
(and phase) noise of the control are treated the same as the
energy fluctuations δ(t). To see this, one has to change to
the interaction picture which rotates with the frequency of
the control local oscillator, including its classical frequency
noise. In this interaction picture, the noise in the control is an
additional σz noise (up to a minus sign) added to δ(t).

Multiple axes control sequences (πx combined with πy)
should be considered carefully. Although changing the pulse
axis is equivalent to a phase shift, it cannot be regarded
as energy fluctuations like in the case of frequency noise
of the control. Doing so is wrong since the phase shift
cannot be considered sufficiently small to keep the weak
coupling assumption valid. Instead, one should carry out a
similar derivation to the one shown above. Applying this
procedure, the commutators in Eq. (A6) become somewhat
more complicated to calculate since there are no closed-form
expressions for S̃δ(t) and S̃c(t) (σx and σy are noncommuting).
Nevertheless, S̃δ(t) and S̃c(t) can be calculated directly, by
evaluating the effect of the pulses, sequentially. Since the
evolution between the pulses can be calculated analytically,
the resulting filter function can always be expressed as a split
function, making it possible to calculate the overlap integrals
for finite number of pulses. In the case of a continues control,
the sine term we disregarded in the treatment should be taken
into account like it was done in [14].

The model for the noise in the control, modeled by
�(t) = �0(t)[1 + nc(t)], can be considered as general first-
order treatment of the noise. In this model the noise is gated
(multiplied) by the function �0(t). However, one can consider
also the case of additive noise which is not gated by this

function:

�(t) = �0(t)[1 + nc(t)] + b(t). (A9)

This is the case if the control is derived from an oscillator
which is controlled by a noisy analog gate. However, the effect
of this noise, b(t), has the same effect as nc(t), but gated with a
function which is constant during the entire experiment time,
T . To regard this in our treatment the filter function must be
replaced by

Fc(f ) =
∣∣∣∣
∫ T

0
dt e−2πif t

∣∣∣∣
2

, (A10)

which is just the original filter function plugging �0 = 1. For
the case in which the two kind of noises appear simultaneously,
one should add an additional overlap integral [or two additional
overlap integrals in case that the noises b(t) and nc(t) are
correlated].

2. Shot-to-shot fluctuations and the system density operator

The evolution of the density matrix, described by our
framework, can be related directly to shot-to-shot fluctuations
of the experimental results. For example, a strong noise in
the control field can completely randomize the final state of
the system. Consequently, the parameters ρx , ρy , and ρz,
which parametrize the density operator, must be zero, for
this randomized state. Similarly, measuring the shot-to-shot
fluctuations, one can calculate the average parameters: ρx , ρy ,
and ρz. It is important to note that unlike the σz noise, the
random effect of the control noise does not average out on the
ensemble since all atoms are subjected to the same noise in a
single realization. Therefore, the experiment must be repeated
more than once in order to obtain the parameters ρx , ρy , and
ρz.

The fluctuations of the density operator, are related to
the average change in the density operator. This relation is
captured by a geometrical interpretation of summing random
vectors: The sum of random vectors, pointing at random
directions, has a smaller magnitude than the sum of all vector
lengths. Describing the density operator by a vector and
applying this argument, one can derive the relation between
its mean value and fluctuations. However, here we derive it
similarly to the previous section, starting from the evolution
of the density operator. The master equation for the density
operator up to the first-order in the control noise is

˙̃ρc(t) = 1

i�

[
H̃int(t), ρ̃(t)

]
. (A11)

Plugging the interaction Hamiltonian, integrating over the
short time T , and taking the trace to find the y-component
of the vector, we obtain

�ρy(T ) = Tr{�ρc(T )σy}

= Tr

{
1

i�

∫ T

0
dt nc(t)[Sc(t),ρ(t)]σy

}

=
∫ T

0
dt nc(t)ρz�0(t). (A12)

Taking the expectation value of �ρy(T ) yields zero as the
noise nc(t) averages to zero. However, the fluctuations in this
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component are readily calculated by

〈(�ρy(T ))2〉

=
〈∫ T

0
dt1 nc(t1)ρz�0(t1)

∫ T

0
dt2 nc(t2)ρz�0(t2)

〉
,

which in the frequency domain is written as

〈(�ρy(T ))2〉 = ρ2
z

∫ ∞

−∞
df Gc(f )Fc(f ), (A13)

where the density operator change, �ρy(T ), can be replaced
by the component ρy(T ) itself in this expression, since the
initial density operator is not fluctuating.

3. Short-times fidelity

The fidelity F = Tr{ρ(t)ρ(0)} is derived for short times for
an initial pure state. For pure dephasing, it is written by

F = Tr{ρ(t)ρ(0)} = Tr{[ρ(0) + �ρ(T )]ρ(0)}.
Since ρ(0) is a pure state, the trace of ρ2(0) is 1, and therefore

F = 1 + Tr
{
�ρ(T )ρ(0)

}
= 1 + Tr

{(
−ρxσx + ρyσy

2

T

2T

∫ ∞

−∞
df Gδ(f )Fδ(f )

)

×1

2

(
ρxσx + ρyσy + ρzσz + 1

)}

= 1 − 1

4
Tr{σ 2

x }ρ2
x

T

2T

∫ ∞

−∞
df Gδ(f )Fδ(f )

−1

4
Tr{σ 2

y }ρ2
y

T

2T

∫ ∞

−∞
df Gδ(f )Fδ(f )

= 1 − ρ2
x

4

∫ ∞

−∞
df Gδ(f )Fδ(f ) − ρ2

y

4

∫ ∞

−∞
df Gδ(f )Fδ(f ).

(A14)

Using the same arithmetic with the noise in the control, one
gets the fidelity of the system subjected to the two noises. It is
written as

F = 1 − ρ2
x + ρ2

y

2
T Rδ(T ) − ρ2

y + ρ2
z

2
T Rc(T ), (A15)

with the definitions for the decay rate functions

Rδ(T ) = 1

2T

∫ ∞

−∞
df Gδ(f )Fδ(f ), (A16)

and

Rc(T ) = 1

2T

∫ ∞

−∞
df Gc(f )Fc(f ). (A17)

The definitions of Rδ(T ) and Rc(T ) are useful since the
functions are almost time independent for periodic pulses.
This is due to the scaling of the filter function canceling the
1/T dependence. Hence the fidelity decays in a constant rate.
It also helpful to note that the integral of the filter function
Fδ(f ) is just T and theretofore does not depend on the pulse
frequency, but only on the total experiment time. However, the
filter function Fc(f ) scales linearly with the pulse rate. Hence,
the decay rate of the fidelity is large for spectral features at
higher frequencies which is consistent with the experimental
results.
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