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The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO),
for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum
one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to
model quantum attacks. A typical application of quantum one-way function is the quantum digital signature,
whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the
QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis
procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum
states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of
more quantum cryptographic protocols based on the quantum one-way function.
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I. INTRODUCTION

Quantum digital signature (QDS) is an important direction
of quantum cryptography, which can be used in message
transfer to prevent impersonation, tampering, and repudiation
in an information-theoretically secure way. Comparatively,
classical unconditionally secure signature schemes against
quantum computing attacks have been proposed [1,2], but the
resource assumption of secure classical channels is practically
impossible [3]. With the security verified by information-
theoretical limits and quantum mechanics, QDS schemes have
been applicable by just using existing mature quantum key dis-
tribution (QKD) equipment and an experimental transmission
distance of more than 100 km can be achieved [4,5]. In 2001,
Gottesman et al. [6] first proposed a QDS scheme, a quantum
version of the Lamport public key based signature scheme [7],
for certifying the origin and authenticity of a message. In this
QDS scheme, public keys are produced through a quantum
one-way function instead of the frequently used trapdoor one-
way function in classical cryptography. The quantum one-way
function transforms a classical bit-string into quantum states.
To ensure the validity of transmitted messages, the sender
transmits pairs of quantum signatures, consisting of classical
secret keys and quantum public keys, to several recipients.
The recipients store the signature pairs and verify the quantum
signatures by nondestructive quantum state comparison, such
as SWAP test. As we know, general nondestructive quantum
state comparison and quantum memory are two key constraints
for the development of QDS. Over 10 years later, in 2012,
Clarke et al. [8] experimentally realized a QDS scheme based
on coherent states, while the remaining challenge for QDS
to be feasible in practice is quantum memory. The critical
requirement of quantum memory was circumvented by Dunjko
et al. [9,10]. They put forward a practical QDS scheme without
quantum memory and later implemented it. Obviously, the
slow pacing of experimental realization hampered the progress
of QDS and other quantum protocols. Alternatively, we can
construct a security model which can facilitate exploration
of quantum one-way function to more scenarios and security
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analysis of related quantum cryptographic protocols, such
as quantum digital signature schemes [4,6,9] and quantum
public-key encryption schemes [11,12]. The desirable security
model needs to provide participants with outputs of a quantum
one-way function and results of quantum state comparison and,
also, give the same response to an adversary to model possible
quantum attacks. Then the security model can be instantiated
with continuously developed techniques [8,10]. In classical
cryptography, a similar efficient analysis model called random
oracle (RO) was introduced in 1993 [13].

RO has been used to design effective cryptographic pro-
tocols and give rigorous proofs of security for cryptographic
protocols over 20 years [13–16]. RO is virtually a theoretical
black box which outputs random bits in equal length when
queried by all parties including an adversary. Queries to RO
are standardly designed to model an adversary’s attack power
[17]. The rapidly evolving quantum computation equips a
quantum adversary with sufficient computational power. To
analyze classical cryptographic protocols against quantum
adversaries, Boneh et al. [18] started pioneering work on the
quantum random oracle (QRO) model, more precisely, the
quantum-accessible random oracle model, in which an adver-
sary can make quantum superposition queries. Later, Zhandry
[19,20] upgraded the quantum-accessible random oracle with
a semiconstant distribution to make it indistinguishable with
the identical uniform distribution under quantum algorithms.
In 2013, Boneh and Zhandry [21] made significant progress by
initiating the study of quantum-secure digital signatures and
quantum chosen ciphertext security. In the quantum-accessible
random oracle model, an adversary can make quantum chosen
message queries and quantum chosen ciphertext queries. Till
now, most of the quantum-accessible random oracle model
research has focused on classical cryptographic protocols
against quantum adversaries. Furthermore, can we explore
the construction of a new QRO model to effectively analyze
quantum cryptographic protocols against quantum attacks?

In this paper, we construct a QRO model to analyze the
security of QDS schemes based on quantum one-way function.
We start with the quantum random oracle modeling a collision-
free quantum one-way function. Then we will ive a general
security analysis procedure in the QRO model. For convenient
analysis, we choose the original QDS scheme [6]. It is very
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meaningful to endow new meaning and explanation to the
QRO model for quantum cryptosystems.

The main contributions of our work are as follows.
(1) A quantum random oracle model is redefined for the

security analysis of quantum cryptographic protocols based
on quantum one-way function. QRO is used to model quantum
one-way function. QRO outputs quantum states as public keys.
For security reduction, the no-cloning theorem is chosen to be
the hard problem.

(2) A quantum digital signature scheme is proved QCMA
(quantum chosen message attack)-secure in this quantum
random oracle model. To model an adversary’s attacks such
as eavesdropping and forgery attack, specific queries to QRO
are described. Provable security, namely, QCMA security, is
defined for the QDS. Then we prove that the original QDS
scheme is QCMA-secure in this QRO model, even when an
adversary has quantum access to QRO.

This paper is structured as follows. In Sec. II, we introduce
the related works, including the original QDS scheme, original
security model, and analysis procedure in the RO model.
Section III focuses on the description of our QRO model and
the definition of the QDS in the QRO model. Then we give a
detailed security analysis and comparison of different security
models in Sec. IV. Section V is our conclusion.

II. RELATED WORKS

A. Quantum digital signature scheme

We briefly recall the representative QDS scheme proposed
by Gottesman et al. [6]. The scheme assumes that all
participants will know how to implement the quantum one-way
function, and it is based on perfect devices and channels.
Notation is as follows.

b: One-bit classical message.
ki
b: L-bit classical secret key.

|fki
b
〉: n-bit public keys of quantum states that a quantum

one-way function generates.
ki
b �→ |fki

b
〉: Quantum one-way function that maps a classi-

cal bit-string ki
b to quantum states |fki

b
〉.

Initializing phase: Alice chooses a series of L-bit classical
bit-strings {ki

0,k
i
1}, 1 � i � M , as secret keys for a single

message b. k0 is used to sign the message b = 0, and k1
is used to sign the message b = 1. Note that k0 and k1 are
chosen independently and randomly for each i. M is a security
parameter and the scheme is exponentially secure in M when
other parameters are fixed.

Signing and verifying phase:
(1) Alice chooses secret keys according to b. Then she

sends public keys to at most t recipients, t < L/n. The
signed message (b,k1

b,k
2
b, . . . ,k

M
b ) are sent to recipients via

the insecure classical channel.
(2) Every recipient checks each of the revealed public keys

to verify ki
b �→ |fki

b
〉 by quantum state comparison. Then each

recipient j counts the number of incorrect keys as sj .
(3) According to sj , each recipient determines the message

b as transferable, valid, or invalid. Then all participants discard
all used and unused keys.

To prove the impossibility of forgery and repudiation, the
original security model sets security parameters. In the forging

scenario, an adversary wants to convince Bob that a faked
message b′ is valid, i.e., b′ �= b. Thus the secret keys ki

b not
received by recipients can be modified by the adversary. Some
public keys will fail and the number of incorrect keys sj will
increase. The scheme defines the rejection parameter c2 so
that when sj > c2M , the recipients reject the signature. In
Alice’s repudiation scenario, Alice wishes Bob (for instance)
to accept a message and Charlie to reject it, so she may give
completely different public keys to Bob and Charlie. To avoid
this kind of cheating, Bob and Charlie will exchange quantum
public keys to compare by SWAP test. So Alice’s goal is to
pass all SWAP tests and make her message to be intransferable.
Analysis shows that the possibility of passing the SWAP test is
exponentially small in M . In participants’ reputation scenario,
they can always deny the sender Alice’s message. Therefore,
there must be at least two honest participants.

Note that quantum states can store an arbitrary amount
of data and can be different for unequal messages, but the
measurement procedure may lead to collision-type errors, i.e.,
different classical inputs may lead to equal quantum outputs.
Gottesman et al. assumed δ-orthogonal quantum states to limit
the measurement errors of the SWAP test. Instead, to give
an effective analysis of schemes based on quantum one-way
function, we may reasonably use the QRO model to realize the
collision-free property. So we assume that the quantum states
generated by QRO are distinguishable by its measurement.

B. Security analysis procedure: From RO to QRO

Bellare and Rogaway [13] introduced the random oracle
model, which made it possible to give rigorous proof of
security for certain basic cryptographic protocols [22]. RO
is used to model a hash function and output total random
hash results. All parties, including legal communicators and
an adversary, should query RO for the hash value. The security
analysis procedure based on the RO model is summarized as
follows:

(1) Define a hard problem �.
(2) Redescribe a protocol for �.
(3) Define the specific security for the protocol.
(4) Prove the security of the protocol by reduction.
According to the methodology of the RO model, the QRO

model for quantum cryptographic protocols can also conform
to the above analysis procedure. Proving security in the
QRO model presents many challenges. For each step of this
analysis procedure, we can further explore the following four
problems.

(1) What is a feasible hard problem � in the QRO model?
Hard problems for reduction vary among different RO models.

In the RO model, Hwang et al. [23] put forward a new
quantum primitive called the “unbiased chosen basis” (UCB)
assumption based on the no-cloning theorem and use it as
a hard problem for an adversary to prove the security of
three-party quantum key distribution protocol. No-cloning
theorem is the foundation of quantum cryptography, which
indicates that one cannot copy a qubit if he or she does not know
the polarization basis of the qubit. This physical property of
quantum mechanics can provide an absolutely secure reduction
for the QRO model.
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In the quantum-accessible random oracle model for
postquantum cryptography, an adversary with quantum end-
user machine is allowed to issue RO quantum queries, i.e.,
an exponential number of queries in superposition states. The
difficult point for reduction lies in the fact that the reduction
algorithm must evaluate RO at all points in the superposition.
To provide an indistinguishable output under this powerful
query, Boneh et al. [18] assumed that there exists a quantum-
secure pseudorandom function (QPRF) which ensures that
RO queries are answered consistently across queries. Thus,
cryptographic protocols can be proven secure by means of
history-free reductions related to the existence of QPRF. Their
work gives an important hint about the construction of the
QRO model considering quantum queries.

Furthermore, Definitions 1 and 2 give detailed descriptions
of the related quantum query and quantum oracles [21].

Definition 1 (quantum chosen message query). The quan-
tum chosen message query is the transformation

∑

m

ψm|m〉 →
∑

m

ψm|m,S(k,m)〉,

where S(k,m) is the signature on m using signing key k.
An attacker can sample the response to such a query and

obtain one valid message-signature pair. After q such queries,
it can obtain q valid message-signature pairs.

Definition 2 (quantum-accessible oracles). An oracle O :
X → Y is implemented by a unitary transformation O, where

O|x,y,z〉 = |x,y + O(x),z〉
and + : X × X → X is some group operation on X . Suppose
there is a quantum algorithm that makes quantum queries
to oracles O1, . . . ,Oq . Let |ψ0〉 be the input state of the
algorithm, and let U0, . . . ,Uq be the unitary transformations
applied between queries. Note that the transformations Ui

are themselves possibly the products of many simpler unitary
transformations. The final state of the algorithm will be

UqOq . . . U1O1U0|ψ0〉.
We can also have an algorithm make classical queries to

Oi . In this case, the input to the oracle is measured before
applying the transformation Oi . We call a quantum oracle
algorithm efficient if the number of queries q is a polynomial
in the size of its input, and each of the transformations Ui

between queries can be written as the product of polynomially
many unitary transformations from some fixed basis set.

(2) How is a protocol for � redescribed? Redescribing a
protocol means formally defining the parameters for the pro-
tocol and the queries for modeling an adversary’s capability.
A similar description has been given in Refs. [17] and [23]. In
the RO model, an adversary interacts with players by making
various queries to RO, such as the “send query” and “hash
query” [23]. Modifications of these queries can be made for
the security proofs in the QRO model.

(3) What is the specific security for quantum cryptographic
protocols? For the security definition of signature scheme,
existential forgery under chosen message attack is always
considered [21,24]. Chosen message attack means that an
adversary cannot produce q + 1 valid message-signature pairs
with q chosen message queries.

(4) How can the security of quantum cryptographic pro-
tocols be proved by reduction? Reduction means that if an
adversary wants to break the security of a protocol, a challenger
can take advantage of the adversary’s capability to solve the
hard problem � by controlling the RO and providing indis-
tinguishable output. Considering the superposition quantum
query for the reduction algorithm, Zhandry [19] provided a
related definition and a lemma which allows for the efficient
simulation of an exponentially large list of samples given only
a polynomial number of samples.

Definition 3 (small-range distributions). Fix sets X and
Y and a distribution D on Y . Fix an integer r. Let y =
(y1,y2, . . . ,yr ) be a list of r samples from D and let P be
a random function from X to [r]. The distributions on y
and P induce a distribution on functions H : X → Y defined
by H (x) = yP(x). This distribution is called a small-range
distribution with r samples of D.

Lemma 1. There is a universal constant C0 such that, for any
setsX andY , distribution D on Y , any integer �, and any quan-
tum algorithm F making q queries to an oracle H : X → Y ,
the following two cases are indistinguishable,except with
probability less than C0q

3/l:
(a) H (x) = yx , where y is a list of samples of D of size |X |.
(b) H is drawn from the small-range distribution with �

samples of D.

III. QUANTUM RANDOM ORACLE MODEL

Differently from the RO model and prior QRO model
(precisely, the quantum-accessible random oracle model),
our objective is to construct a QRO model for quantum
cryptographic protocols.

A. Definition of quantum random oracle

Considering the possible quantum collision problem re-
sulting from quantum measurement, we assume that there
exists a collision-free quantum one-way function and use
QRO to model it by requiring that different quantum states
produced by QRO are distinguishable by QRO measures.
Since an adversary may have access to all quantum states,
we assume that all parties, including sender Alice, recipient
Bob, and adversary A, query QRO for classical random
bits, quantum one-way function outputs, and quantum state
comparison results. For a quantum adversary, this QRO can
respond consistently to quantum superposition query like the
quantum-accessible oracle [21]. We also assume that quantum
states are transmitted without interference.

Definition 4 (quantum random oracle). A quantum random
oracle is an efficient algorithm (G,Hq,Measure) where

G: For any input of a classical bit-string m, it outputs a
random bit-string k = {0,1}k .

Hψ : For any input of a classical bit-string k = {0,1}k , it
operates

ψ : {0,1}k �→ H⊗s ,

to generate distinguishable quantum states |ψki 〉, where

H⊗s = H1 ⊗ . . . ⊗ Hs
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FIG. 1. QRO model.

is a 2s-dimensional Hilbert space made up of s products of
single-qubit spaces H2

i .
Measure: Any qubits |ψki 〉, |ψkj 〉 QRO generates are

distinguishable when QRO measures, i.e.,

|〈ψki |ψkj 〉|2 = ε,

where ε is negligible for i �= j.

We illustrate these three parts of QRO in Fig. 1.

B. Properties of quantum random oracle

Property 1. Quantum random oracle can respond consis-
tently to quantum queries

∑
m

ψm|m〉 by mapping X → Y ,

O(m,k) :
∑

m

ψm|m〉 →
∑

m

ψm|m,k〉,

where k is a random bit-string on m.
Then it samples r times from some distribution on X such

that, for every m and k, O(m,k) is uniformly distributed on Y .
Proof. Let r be some integer to be chosen later. Replace X

with small-range distributions of r samples on Y . Lemma 1
shows that an adversary can distinguish X with Y with
probability less than C0q

3/r . Thus, we use r samples of a
small-range Y to replace r samples of an exponentially large-
range X with distinguishable probability less than C0q

3/r ,
which facilitates the quantum random oracle to respond to a
quantum query with suitable r .

Quantum random oracle can accurately match classical
secret keys with corresponding quantum public keys.

Proof. A quantum one-way function transforms an input of
classical bit-string to an output of quantum states. A forgery of
signature can be made when an adversary finds out a collision
error, i.e., different quantum states pass the test of equality by
measurement. In the case of possible quantum collision error,
we use a quantum random oracle to generate collision-free
quantum states |ψki 〉 as Definition 4,

|〈ψki |ψkj 〉|2 = ε, (1)

where ε is negligible for i �= j . Equation (1) implies that
all quantum states generated by QRO vary with different
classical inputs and can be measured by QRO accurately, so
this quantum random oracle can accurately match classical
secret keys with corresponding quantum public keys.

C. QDS in the QRO model

In order to prove whether a QDS scheme is resistant to
a chosen message attack, even when an adversary submits
quantum superpositions of messages, we need a suitable
definition of the QDS scheme in the QRO model.

Definition 5. A quantum digital signature scheme is a tuple
of (G,Sign,Verify) algorithm called the generator, signing
algorithm, and verifying algorithm, respectively.

Generator G: On inputting a bit-string 1k , the generator
randomly produces a classical secret key k.

Signing algorithm Sign(m,k): To sign a message m, QRO
operates |fk〉 ← Hψ (m,k) to generate a public key of quantum
state |fk〉.

Verifying algorithm Verify(k,|fk〉): To verify a sig-
nature pair (k,|fk〉), QRO takes quantum measurement
Verify(k,|fk〉) ∈ {0,1}. This must be the case for all |fk〉 ∈
Hψ (m,k), Verify(k,|fk〉) = 1.

In contrast to core algorithms of classical digital signature
schemes the QDS scheme generates a public key of quantum
states in the signing algorithm, and the verifying algorithm is
measurement rather than computation.

IV. SECURITY ANALYSIS OF A QDS SCHEME
IN THE QRO MODEL

As mentioned in Sec. II, the security analysis of quan-
tum cryptographic protocols in QRO follows the following
procedure: (1) Define a hard problem �, (2) redescribe the
quantum protocol for �, (3) define the specific security for
the quantum protocol, (4) prove the security of the quantum
protocol by reduction. Phases (1) and (3) are related to specific
quantum protocols. For example, the three-party quantum
key distribution protocol [23] chooses UCB assumption as
a hard problem for the authenticated quantum key distribution
security. Here we use the no-cloning theorem as a hard problem
for the provable security of a QDS scheme. Phases (2) and (4)
are common for all quantum cryptographic protocols, just as
in classical cryptography [13,17,21]. Formal queries need to
be defined in phase (2) to model an adversary’s capability and
proving security. Here we take the QDS scheme [6] described
in related works as an example for security analysis.

A. Hard problem in the QRO model

For quantum cryptographic protocols, we choose the
no-cloning theorem, one of the foundations of quantum
cryptography, to be the hard problem � for reduction. The
no-cloning theorem indicates that it is impossible to create an
identical copy of an arbitrary unknown quantum state. Note
that we carry out security reduction relative to a quantum
physical property instead of the existence of the collision-free
quantum one-way function. For example, consider a QDS
scheme; we prove it to be unforgeable for quantum adversaries
by a reduction to no-cloning theorem. We can claim that the
QDS scheme is unforgeable as long as violating the no-cloning
theorem is infeasible, even when an adversary has quantum
access to random oracle. This technique works well whenever
we can assure the success of the adversary A.
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B. Description of the QDS scheme

Since an adversary interacts with players by making various
queries to QRO, we formulate specific queries to describe the
QDS scheme [6]. According to Property 2, QRO can correctly
match secret keys and public keys. So the number of incorrect
keys sj is equal to 0. Then we do not need the acceptable
or transferable boundaries. Here we present the QDS scheme
with a single key pair.

(1) Message query qmessage{Alice}: All parties are allowed
to know whether or not Alice has sent a message b to QRO. If
Alice sends the message, QRO sends (b,kb) back. Otherwise it
outputs (l + 1)-bit zeros (1-bit message and l-bit secret key).
Since a classical channel cannot guarantee that the message
will not be tapped, we use this query to model the process that
A eavesdrops message and secret keys via a classical channel.
The worst case is that A fully accesses the message and secret
key, i.e., QRO directly returns b and kb.

(2) Signing query qsign{b}: Anyone can ask QRO for
the quantum digital signature for b. QRO operates quantum
one-way function to output key pairs (kb,|fkb

〉). This query
models the process that a signer (Alice) generates secret keys
of classical bits and public keys of quantum states for every
message bit b.

(3) Sending query qsend{b,kb,|fkb
〉,Bob}: To transfer a

signature to Bob, Alice sends qsend{b,kb,|fkb
〉,Bob} to QRO.

QRO sends a secret key kb and a public key |fkb
〉 to Bob. In

this query, a signer can choose a secret key and a public key
to a recipient, which models an adversary’s forgery attack.
Besides, A might practically intercept the key pair, measure
it, and resend the tampered keys to Bob. This scenario also
changes the key pair and can be modeled by sending a query.

(4) Verifying query qverify{kb,|fkb
〉}: Bob sends QRO the

key pair (kb,|fkb
〉) he received to verify the signature. If the

pair is validated by quantum state measurement, QRO returns
1. Otherwise it returns 0. QRO records the verifier’s identity
and verification result. This query models the verifying phase
that recipients compare the quantum states they received with
the quantum states generated according to the secret key.

(5) Accepting query qacc{Bob}: If the record value in
verifying query is 1, i.e., the signature is valid, then QRO
returns 1. Otherwise it returns 0. Through this query, Alice can
make sure whether her signature is accepted and adversary A

can figure out whether his attack is successful.
Different queries related to corresponding parts of QRO are

shown in Fig. 1. Based on these specific queries, we present
the execution of the QDS scheme [6].

(1) Alice sends a 1-bit message to QRO with qsign{b}
query and gets the corresponding secret keys and public keys
(kb,|fkb

〉).
(2) Alice sends Bob the key pairs (kb,|fkb

〉) by
qsend{b,kb,|fkb

〉,Bob}.
(3) Bob makes a query, namely, qverify{kb,|fkb

〉}, to verify
the signature he received. Then QRO records the measurement
result for the next accepting query.

C. Definition of security in the QRO model

Definition 6 (QCMA-secure). A quantum digital signature
scheme (G,Sign,Verify) is existentially unforgeable under
quantum chosen message attacks (QCMA-secure) if, for any

efficient quantum algorithm F and any polynomial q (in the
input of the quantum algorithm), F’s probability of success in
the following game is negligible:

Key generation. A challenger runs kb ← G, then operates
|fkb

〉 ← Hψ (m,kb) to generate a public key of quantum states
|fkb

〉 and gives |fkb
〉 to F .

Signing queries. An adversary makes a polynomial q cho-
sen message queries. For each query, the challenger responds
by signing each message in the query by mapping X → Y ,

O(m,k) :
∑

m

ψm|m〉 →
∑

m

ψm|m,k〉.

Forgeries. The adversary is required to produce q + 1
message-signature pairs. The challenger then measures that
all signatures are valid and all message-signature pairs are
distinct. If so, the challenger reports that the adversary wins.

D. Proof of security in the QRO model

Theorem 1. Assume that an adversary A has algorithm F

and queries QRO for the quantum state signature. A breaks
the QCMA security if A inputs an inconsistent pair of secret
key and public key that QRO cannot distinguish with non-
negligible probability. Then a challenger takes advantage of A
to clone quantum states. If quantum states cannot be cloned
perfectly, then the signature is QCMA-secure in the quantum
random oracle model.

Proof. We can use QRO to construct a signature on any
given message b and output the signature (kb,|fkb

〉). Then we
prove that this QRO can respond to a classical chosen message
attack when A is only given a polynomial number of signatures
on random messages.

If A intends to forge a signature, A queries qmessage{Alice}
to identify whether Alice has sent the message b to QRO.
Then A gets the message and secret key (b,kb). Through q

times queries of qmessage{Alice}, A gets q pairs of message
and secret key (bi,ki

b), 1 < i < q. A runs the algorithm F to
produce a message b′. A queries qsign{b′} to get q + 1 key
pairs (kb′ ,|fkb′ 〉). A sends the secret key of b and the public key
of b′ to Bob through the qsend{b′,kb′ ,|fkb

〉,Bob} query. Then
A sends the qverify{kb′ ,|fkb

〉} query to figure out whether his
attack is successful. If QRO outputs 1, A successfully makes
a forgery attack with non-negligible probability ε. Therefore,
a challenger could use kb′ to clone quantum states |fkb

〉 with
probability ε, which violates quantum physical property.

Furthermore, if the adversary is armed with a quantum
computer and issues quantum chosen message queries, each
of the exponentially many messages in the query superposition
are to be signed. Therefore, using the above technique directly
would require an exponential number of random values for
the quantum one-way function. To avoid needing exponen-
tial quantum states, we use the technique of small-range
distributions and Lemma 1 to reduce the number of signed
messages required to a polynomial. Let A be a quantum
adversary breaking the QCMA security of the signature with
non-negligible probability ε. The idea of security proof is a
slight modification to Boneh’s work [21] that the contradiction
lies in violating a quantum physical property instead of the
hash collision-resistance property. The security of the scheme
is proved through a sequence of games in QRO.
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TABLE I. Comparison among different random oracle (RO) models.

Model

RO Quantum-accessible Quantum RO
Comparison item RO

Model Hash function Hash function Quantum one-way
function

Assumption PRF QPRF Collision-free
measurement

Response to quantum
query No Yes Yes

Form of signature Classical Classical Quantum
Reduction PRF, etc. Learning with errors, No-cloning theorem

QPRF, etc.

Game 0. A issues the qmessage{Alice} query and receives q

pairs of message and secret key (b,ki
b), 1 < i < q. A is allowed

to make a polynomial number of quantum chosen message
queries. For query i, the challenger runs random generator G
and responds to each message in the query superposition as
follows:

(a) Let ki
b = G(i)(b).

(b) Operate the quantum one-way function |fki
b
〉 =

Hψ (ki
b).

(c) Respond with the signature (ki
b,|fki

b
〉).

In the end, A must produce q + 1 distinct pairs (ki
b′ ,|fki

b
〉)

such that query qverify{ki
b′ ,|fki

b
〉} = 1 is verified. By definition,

A wins with probability ε, which is non-negligible. Therefore,
there is some polynomial p = p(λ) such that p(λ) > 1/ε(λ)
for infinitely-many λ. Here λ is the input of G.

Game 1. We modify the condition in which A wins by
requiring that no two pairs (ki,|fki 〉) form a collision error for
H in QRO. Then A succeeds in Game 1 with probability at
least ε − negl.

Game 2. Let � = 2C0qp, where C0 is a constant from
Lemma 1. At the beginning of the game, sample values k̂

(i)
j

for i = 1, . . . ,q and j = 1, . . . ,�, and let |f̂
k

(i)
j
〉 = Hψ (k̂(i)

b ).

Also pick q random functions Oi to map m to � according to
Property 1. Then let k(i)

m = k̂
(i)
Oi (m) and |f

k
(i)
m
〉 = |f̂

k
(i)
Oi (m)

〉. The

difference between Game 1 and Game 2 lies only in the
generation of k(i)

m and |f
k

(i)
m
〉 by q small-range distributions on �

samples. Each of the small-range distributions is only required
once, so Lemma 1 implies that the success probability is still
at least ε − negl − 1/2p.

If the adversary wins in Game 2, it produces two secret keys,
k∗
b and k∗

b′ , on the same public key |fki
b
〉. Then a challenger

could produce the same quantum states with probability
ε − negl − 1/2p. The quantum states produced by QRO are
distinguishable, which implies that this quantity is negligible,
thus ε − 1/2p is negligible. Since ε > 1/p infinitely often,
and 1/2p < negl infinitely often, there exists a contradiction.
So ε is negligible.

In this section, we formulate the message query, signing
query, sending query, and verifying query, etc. These queries
are used to model an adversary’s possible attack such as
eavesdropping, forgery attack, and intercept-resend attack.
Then we give a general definition of QCMA security for
the QDS scheme based on the quantum one-way function.

Through a series of games, we prove that the QDS scheme is
QCMA-secure even under the quantum chosen message attack
by a reliable reduction to the no-cloning theorem.

E. Discussion

In the original security model [6], the QDS scheme is
proved information-theoretically secure, which relies on a
significantly large security parameter. An adversary may use a
collision-type error to easily pass the verifying phase, while the
original security model does not provide the related analysis.
Apart from information-theoretically security, we can provide
the provable security of quantum cryptographic protocols,
especially the existential unforgeable security for a signature
scheme. In the QRO model, we prove the QCMA security
of a QDS scheme via a series of indistinguishability games,
even if an adversary has quantum access to QRO. We use
different queries to model different attack scenarios, including
the collision case. The QRO model can be used to simplify
quantum cryptographic protocols based on the quantum one-
way function and test its security at every step. When QRO
is instantiated, we can analyze special attack scenarios and
define a similar security parameter to protect its security.

Furthermore, in contrast to the classical RO model, QRO
is used to model quantum one-way function to analyze the
provable security of the QDS scheme. Considering the vaguely
defined and not yet implemented quantum hash [25], we select
a broader concept, namely, quantum one-way function, to be
the modeling object. In the QRO model, the collision-free
measurement assumption replaces the computational hardness
assumption of the pseudorandom function (PRF) in the RO
model. A new function is added to QRO such that it can not
only respond to quantum state queries, but output signatures of
quantum states. Unlike the prior quantum-accessible random
oracle model [18], which relies on classical hard problems
such as the learning with errors problem and the assumption
of QPRF against quantum adversaries, we use the no-cloning
theorem as a hard problem for reduction. In addition, we use
queries to QRO to model an adversary’s capability. The com-
parison among different RO models is summarized in Table I.

V. CONCLUSION

To analyze the provable security of quantum cryptographic
protocols based on the quantum one-way function, we have
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provided a QRO model and the framework of a security
analysis procedure. A QDS scheme is proved QCMA-secure
through a sufficiently reliable reduction to the no-cloning
theorem. Of course, queries to the QRO model still need to be
standardized and extended for more quantum cryptographic
protocols.

ACKNOWLEDGMENTS

This project was supported by the National Natural Science
Foundation of China (No. 61571024 and No. 61272501)
and the National Basic Research Program of China (No.
2012CB315905).

[1] C. M. Swanson and D. R. Stinson, in International Conference
on Information Theoretic Security (Springer, Berlin, 2011),
p. 100.

[2] R. Amiri and E. Andersson, Entropy 17, 5635 (2015).
[3] J. M. Arrazola, P. Wallden, and E. Andersson, Quantum Inf.

Comput. 6, 0435 (2016).
[4] H.-L. Yin, Y. Fu, and Z.-B. Chen, Phys. Rev. A 93, 032316

(2016).
[5] H.-L. Yin, Y. Fu, H. Liu, Q.-J. Tang, J. Wang, L.-X. You, W.-J.

Zhang, S.-J. Chen, Z. Wang, Q. Zhang et al., arXiv:1608.01086.
[6] D. Gottesman and I. Chuang, arXiv:quant-ph/0105032.
[7] L. Lamport, Constructing digital signatures from a one-way

function (Technical Report CSL-98 (SRI International, Palo
Alto, CA, 1979).

[8] P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers,
and G. S. Buller, Nat. Commun. 3, 1174 (2012).

[9] V. Dunjko, P. Wallden, and E. Andersson, Phys. Rev. Lett. 112,
040502 (2014).

[10] R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J.
Clarke, E. Andersson, J. Jeffers, and G. S. Buller, Phys. Rev.
Lett. 113, 040502 (2014).

[11] G. M. Nikolopoulos, Phys. Rev. A 77, 032348 (2008).
[12] U. Seyfarth, G. M. Nikolopoulos, and G. Alber, Phys. Rev. A

85, 022342 (2012).
[13] M. Bellare and P. Rogaway, in Proceedings of the 1st ACM

Conference on Computer and Communications Security (ACM,
Fairfax, VA, 1993), p. 62.

[14] M. Bellare and P. Rogaway, in Advances in Cryptology—
Eurocrypt’96 (Springer, Saragossa, Spain, 1996), p. 399.

[15] D. Pointcheval and J. Stern, in Advances in Cryptology-
EUROCRYPT’96 (Springer, Saragossa, Spain, 1996), p. 387.

[16] R. Canetti, S. Halevi, and J. Katz, in Advances in Cryptology-
Eurocrypt 2004 (Springer, Interlaken, Switzerland, 2004),
p. 207.

[17] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater,
in Proceedings of the 8th ACM Conference on Computer
and Communications Security (ACM, Philadelphia, PA, 2001),
p. 255.
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