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Association rules mining (ARM) is one of the most important problems in knowledge discovery and data
mining. Given a transaction database that has a large number of transactions and items, the task of ARM is to
acquire consumption habits of customers by discovering the relationships between itemsets (sets of items). In this
paper, we address ARM in the quantum settings and propose a quantum algorithm for the key part of ARM, finding
frequent itemsets from the candidate itemsets and acquiring their supports. Specifically, for the case in which
there are M

(k)
f frequent k-itemsets in the M (k)

c candidate k-itemsets (M (k)
f � M (k)

c ), our algorithm can efficiently
mine these frequent k-itemsets and estimate their supports by using parallel amplitude estimation and amplitude

amplification with complexity O(
k

√
M

(k)
c M

(k)
f

ε
), where ε is the error for estimating the supports. Compared with the

classical counterpart, i.e., the classical sampling-based algorithm, whose complexity is O( kM
(k)
c

ε2 ), our quantum

algorithm quadratically improves the dependence on both ε and M (k)
c in the best case when M

(k)
f � M (k)

c and on

ε alone in the worst case when M
(k)
f ≈ M (k)

c .
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I. INTRODUCTION

Quantum computing provides a paradigm that makes use
of quantum mechanical principles, such as superposition and
entanglement, to perform computing tasks in quantum systems
(quantum computers) [1]. Just as classical algorithms run in
the classical computers, a quantum algorithm is a step-by-step
procedure run in the quantum computers for solving a certain
problem, which, more interestingly, is expected to outperform
the classical algorithms for the same problem. As of now,
various quantum algorithms have been put forward to solve
a number of problems faster than their classical counterparts
[2], and mainly fall into one of three classes [3]. The first
class is based on the quantum Fourier transformation [1], the
most famous representative being Shor’s algorithm [4] for
large number factoring and discrete logarithm, which offers
exponential speedup over the classical algorithms. The second
class is represented by the Grover’s quantum search [5] and
its generalized version, i.e., amplitude amplification [6], both
of which achieve quadratic speedup over the classical search
algorithm. The third class contains the algorithms for quantum
simulation [7], the original idea of which was suggested by
Feynman [8] to speed up the simulation of quantum systems
using quantum computers. In the past decade, quantum simu-
lation has made great progress in efficient sparse Hamiltonian
simulation [9].

However, it is a pity that no additional fundamental
quantum algorithms, except the above three classes of quantum
algorithms, are known. In addition to seeking new algorithms,
another important direction for quantum computing is to apply
known quantum algorithms to new problem areas, such as
machine learning [10].

In the last one and a half decades, quantum machine
learning [10] has become a booming research field and
many quantum algorithms related to various machine learning
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problems have been proposed, such as a quantum algorithm
for solving linear equations [11], quantum linear regression
[12,13], quantum principal component analysis [14], quantum
supervised learning (data classification) [15–18], quantum
unsupervised learning (data clustering analysis) [17,19],
quantum search engine ranking [20–23], quantum neural
network [24], and so on. More excitingly, these algorithms
to some degree have been shown to be faster than their
classical counterparts. For example, under the condition that
the quantum data as inputs are provided, the quantum support
vector machine for big data classification exhibits exponential
speedup over the classical support vector machine [17].
Furthermore, since machine learning is a crucial tool for
data mining, which is a computational process of extracting
valuable information from a large data set, one of the most
important applications of quantum machine learning is to
efficiently implement data mining tasks in quantum computers
[25].

In this paper, we address association rules mining (ARM)
[26], one of the most important problems in big data mining, in
the quantum settings. Given a transaction database consisting
of a large number of transactions and items, the task of ARM
is to discover the association rules connecting two itemsets
(an itemset is a set of items) A and B in the conditional
implication form A ⇒ B, which implies that a customer who
buys the items in A also tends to buy the items in B. The
core of ARM is to mine the itemsets that frequently occur
in the transactions, which entails finding out the itemsets
whose supports (occurrence frequency) are not less than a
prespecified threshold, i.e., frequent itemsets, from a number
of candidate itemsets [26,27]. Herein we provide an efficient
quantum algorithm for ARM based on the oracle accessing
the database. In particular, for mining frequent k-itemsets
(a k-itemset is a set of k items) from candidate k-itemsets,
we first perform parallel amplitude estimation to estimate
the supports of all the candidate k-itemsets. In other words,
a quantum superposition state with each superposed term
encoding the support of a candidate k-itemset is generated.
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After that, by employing the amplitude amplification, we
search in the state for the candidate k-itemsets with supports
not less than the threshold. We analyze the query complexity of
our algorithm and it is shown that compared with the classical
counterpart, i.e., the sampling-based algorithm [28], our
algorithm improves the complexity at least in the dependence
on the error of estimating the supports in amplitude estimation
while keeping the other parameters invariant.

The rest of this paper is organized as follows. In Sec. II,
we review ARM in terms of its basic concepts, notations,
and classical algorithmic procedures. Section III presents the
details of our quantum algorithm and provides complexity
analysis on this algorithm. Discussions and conclusions are
given in the last section.

II. REVIEW OF ARM

In this section, we briefly review some basic concepts
and notations of ARM and classical algorithmic procedures
implementing ARM. More details can be seen in Ref. [26].

A transaction database, i.e., the objective that ARM deals
with, that contains N transactions can be denoted by the set
T = {T0,T1, . . . ,TN−1} and each transaction is a subset of the
set of M items I = {I0,I1, . . . ,IM−1}, i.e., Ti ⊆ I. It can also
be represented by a N × M binary matrix, denoted by D,
in which the element Dij = 1(0) means that the item Ij is
(not) contained in the transaction Ti . To illustrate it, a simple
example is given in Fig. 1.

A set of items is called an itemset. The support of an itemset
X is defined as the proportion of transactions in T that contains
all of the items in X, i.e., supp(X) = |{Ti |X⊆Ti }|

N
. An association

rule is of the implication form A ⇒ B, where A and B are two
disjoint itemsets. Its support is defined as supp(A ⇒ B) =

FIG. 1. An example of a transaction database that contains five
transactions T = {T0,T1,T2,T3,T4} with each one being a subset of
the set of four items I = {I0 = Bread,I1 = Cheese,I2 = Butter,I3 =
Milk} and its binary matrix representation.

FIG. 2. The whole process of the Apriori algorithm.

supp(A ∪ B) and its confidence is defined as conf(A ⇒ B) =
supp(A∪B)

supp(A) . A rule is called frequent (confident) if its support
(confidence) is not less than a prespecified threshold min supp
(min conf). The task of ARM is to find out the rules A ⇒ B

that are both frequent and confident. Implementing this task
consists of two phases [26]:

(1) find all the frequent itemsets X, defined as supp(X) �
min supp;

(2) find all the confident rules A ⇒ B such that A ∪ B = X.
Since the second phase is much less costly than the first

[26], the core work of ARM lies in the first phase. Therefore,
the task of mining association rules can be reduced to that
of mining frequent itemsets. In the classical regime, there are
various algorithms [26] for mining frequent itemsets, the most
famous one being the Apriori algorithm [26,27]. Based on the
important Apriori property stating that all nonempty subsets of
a frequent itemset must also be frequent, the Apriori algorithm
employs an iterative approach known as a level-wise search to
discover all the frequent itemsets, the whole process of which
is depicted in Fig. 2. In the kth iteration of the algorithm, two
procedures are executed:

(P1) Given the set of candidate k-itemsets C(k) which is
just I when k = 1, the supports of all the elements in C(k)

are examined by passing every transaction of the database
and the frequent elements are picked out to form the set of
all frequent k-itemsets F (k). This procedure can be seen as
performing a function fre exam that finds out frequent itemsets
from candidate itemsets, namely, F (k) = fre exam(C(k)).

(P2) Generate the set of candidate (k + 1)-itemsets C(k+1)

from F (k). This procedure generally consists of two steps,
i.e., the join step and the prune step [26], and can also be
seen as performing a function cand gen, namely, C(k+1) =
cand gen(F (k)).

In practice, in each iteration, (P1) dominates the time
complexity of the whole process [28]. Therefore, how to
efficiently execute (P1) of each iteration, namely, finding
frequent itemsets from candidate ones, is of great importance.
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In the following section, we provide a quantum algorithm
to implement (P1) for each iteration, which can significantly
reduce the time complexity in contrast to the classical
algorithms.

III. QUANTUM ALGORITHM FOR ARM

In this section, we design a quantum algorithm based on
the basic oracle O that can access the elements of the database
binary matrix D. In the first place, we show how to use the
basic oracle to construct oracles O(k) that can identify whether
a transaction contains a k-itemset. Then we present in detail
our algorithm that takes O(k) as the elementary subroutine.
Finally, we analyze the query complexity of our algorithm and
compare it with that of classical algorithms.

A. Constructing the oracles O (k) by using the basic oracle O

In our algorithm, the basic oracle O is precisely a unitary
operation acting on the computational basis,

O|i〉|j 〉|a〉 = |i〉|j 〉|a ⊕ Dij 〉, (1)

where i ranges in ZN and j ranges in ZM . Just as with the
standard Grover’s algorithm [1], by taking |a〉 = |0〉−|1〉√

2
, this

oracle can be employed to construct a new oracle O(1) acting
as

O(1)|i〉|j 〉 = (−1)Dij |i〉|j 〉, (2)

which flips the phase of the state |i〉|j 〉 when the transaction
Ti contains the item Ij (i.e., Dij = 1). Furthermore, O can be
applied as the primitive to construct more complex oracles O(k)

that can identify whether a transaction contains a k-itemset
X = {Ijl

|l = 1,2, . . . ,k} acting as

O(k)|i〉|j1〉|j2〉 · · · |jk〉 = (−1)τ (i,X)|i〉|j1〉|j2〉 · · · |jk〉, (3)

where τ (i,X) = ∏k
l=1 Dijl

is a Boolean value which identifies
whether the transaction Ti contains X or, equivalently, whether
X ⊆ Ti . That is, if X ⊆ Ti [i.e., τ (i,X) = 1], the phase of the
state |i〉|j1〉|j2〉 · · · |jk〉 would be flipped; otherwise, the phase
would not be affected. Construction of O(k) requires the basic
oracle O and also the generalized CNOT operation

∧
k(σx) (σx

is the Pauli matrix [1]) which uses �(k) [29] basic one-qubit
and two-qubit gates to carry out the map [30],

|x1〉|x2〉 · · · |xk〉|y〉 
→ |x1〉|x2〉 · · · |xk〉|y ⊕
k∏

i=1

xi〉. (4)

The detailed process of the construction can be illustrated by
the quantum circuit shown in Fig. 3 which, in fact, consists of
the following steps:

(1) prepare four registers in the state

|i〉(|j1〉|j2〉 · · · |jk〉)(
k︷ ︸︸ ︷

|0〉|0〉 · · · |0〉) |0〉−|1〉√
2

;
(2) perform the operation OkOk−1 · · · O1 on the state and

then obtain the state |i〉|j1〉|j2〉 · · · |jk〉|Dij1〉|Dij2〉 · · · |Dijk
〉

|0〉−|1〉√
2

, where Ol is the operation of performing the oracle
O on |i〉, |jl〉, and the lth |0〉;

FIG. 3. The left part is the quantum circuit for constructing the
oracle O (k) by using the basic oracle O and the generalized CNOT

operation
∧

k(σx), where the circuit representation of O is given in
the right part.

(3) apply the operation
∧

k(σx) to the last k + 1 qubits

and we have the state (−1)
∏k

l=1 Dij1 |i〉|j1〉|j2〉 · · · |jk〉|Dij1〉
|Dij2〉 · · · |Dijk

〉 |0〉−|1〉√
2

;
(4) reverse step (2), discard the last k + 1 qubits, and then

implement the oracle O(k) as in Eq. (3).
From the above process, it is easy to see that construction

of O(k) requires 2k basic oracles O and �(k) basic one-qubit
or two-qubit gates.

B. Algorithm

Now we use the oracle O(k) to design our ARM algorithm
to mine F (k) from C(k). Schematically, our algorithm will first
estimate the supports of all the candidate k-itemsets (elements)
in C(k) in parallel by using amplitude estimation, and then
search for candidate k-itemsets with supports not less than
min supp by employing amplitude amplification to obtain the
the set of frequent k-itemsets F (k). Here we suppose C(k) has
M (k)

c elements, C(k) = {C(k)
j |j = 1,2, . . . ,M (k)

c }, where C
(k)
j =

{I
c

(k)
j l

|l = 1,2, . . . ,k,c
(k)
j l ∈ ZM}, F (k) has M

(k)
f elements, and

F (k) ⊆ C(k). Mining frequent k-itemsets from C(k) in the first
place entails acquiring the supports of all the candidate k-
itemsets C

(k)
j in C(k). Here we denote the support of C

(k)
j by

s
(k)
j . For a particular candidate k-itemset C

(k)
j , a direct method

for estimating its support s
(k)
j in a quantum computer would be

the use of amplitude estimation [6].
Now we give a brief description of how quantum amplitude

estimation works for estimating s
(k)
j . To achieve this task, a

related oracle denoted by O
(k)
j that should act as

O
(k)
j |i〉 = (−1)τ (i,C(k)

j )|i〉 (5)

is required and its corresponding Grover operator is

G
(k)
j = (2|XN 〉〈XN | − IN )O(k)

j , (6)

where |XN 〉 :=
∑N−1

i=0 |i〉√
N

and IN is the identity matrix with di-

mension N . G
(k)
j has two eigenvalues λ± = e±2ιθ

(k)
j (ι = √−1

denotes the principal square root of −1) and corresponding
eigenvectors |φ(k)

j±〉. As a matter of fact,

s
(k)
j = sin2

(
θ

(k)
j

)
. (7)
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If we initialize two registers in the state (
∑T −1

t=0 |t〉√
T

)|XN 〉 and

take G
(k)
j as the Grover operator to perform amplitude (phase)

estimation [6] on the state, we will finally attain the state

∣∣
(k)
j

〉 = eιθ
(k)
j

√
2

∣∣∣∣ET

(
θ

(k)
j

π

)〉∣∣φ(k)
j+
〉

− e−ιθ
(k)
j

√
2

∣∣∣∣∣ET

(
1 − θ

(k)
j

π

)〉∣∣φ(k)
j−
〉
, (8)

where the global phase is ignored and |ET (ω)〉 = |T ω〉, when
T ω is an integer, and otherwise

|ET (ω)〉 =
T −1∑
y=0

e2πι(T ω−y) − 1

T
(
e

2πι(T ω−y)
T − 1

) |y〉. (9)

Then measuring |
(k)
j 〉 in the computational basis in the first

register will, with a high probability, output some ỹj or T − ỹj

such that sin2(πỹj

T
) = sin2[π(T −ỹj )

T
] ≈ s

(k)
j ; thus, sin2(πỹj

T
) or

sin2[π(T −ỹj )
T

] can be taken as the estimate for s
(k)
j .

Surprisingly, when confining to C
(k)
j and letting∣∣C(k)

j

〉
:= ⊗k

l=1

∣∣c(k)
j l

〉
, (10)

O(k) has the same function as O
(k)
j [shown in Eq. (5)] according

to Eq. (3),

O(k)|i〉∣∣C(k)
j

〉 = (−1)τ (i,C(k)
j )|i〉∣∣C(k)

j

〉
= (

O
(k)
j |i〉)∣∣C(k)

j

〉
. (11)

Therefore, based on O(k), we have a Grover-like operator,

G(k) = [(2|XN 〉〈XN | − IN ) ⊗ IMk ]O(k), (12)

in contrast with G
(k)
j [Eq. (6)], where IMk is due to the fact

that the dimension of |C(k)
j 〉 is Mk . Then, from Eqs. (5), (6),

(11), and (12), it is easy to derive that for any integer y > 0,
we have

(G(k))y
(|XN 〉∣∣C(k)

j

〉) = [(
G

(k)
j

)y |XN 〉]∣∣C(k)
j

〉
. (13)

Consequently, if we take G(k) to perform amplitude estimation

on the three-register state (
∑T −1

t=0 |t〉√
T

)|XN 〉|C(k)
j 〉 instead of

(
∑T −1

t=0 |t〉√
T

)|XN 〉, we can finally get the state |
(k)
j 〉|C(k)

j 〉, in

contrast with |
(k)
j 〉 [Eq. (8)]. Furthermore, if we take the

superposition state
∑M

(k)
c

j=1 |C(k)
j 〉√

M
(k)
c

instead of |C(k)
j 〉 as input, we

will finally obtain the state

|
(k)〉 =
∑M

(k)
c

j=1

∣∣
(k)
j

〉∣∣C(k)
j

〉√
M

(k)
c

(14)

because of the linearity of the unitary operator. So the estimates
of all the supports s

(k)
j are stored in the first register in

parallel. We call the process in which the “big” Grover-like
operator G(k) is taken to perform amplitude estimation parallel
amplitude estimation.

After parallel amplitude estimation, we perform amplitude
amplification on the first register of |
(k)〉 to search for the
terms y such that sin2(πy

T
) � min supp or sin2[π(T −y)

T
] �

min supp, so that we obtain a superposition state encoding
the frequent k-itemsets in the third register and their supports
in the first register.

The overall process of our quantum algorithm (QARM) for
mining frequent k-itemsets is summarized by the following
five steps.

Algorithm. F (k) = QARM(C(k), G(k), k, T ).
(1) Prepare three registers in the state

|1〉 =
(∑T −1

t=0 |t〉√
T

)
|XN 〉

⎛⎝∑M
(k)
c

j=1

∣∣C(k)
j

〉√
M

(k)
c

⎞⎠. (15)

Here C(k), the set of all the candidate k-itemsets C
(k)
j , is

just I for k = 1 and is obtained by executing the classical
procedure (P2) C(k) = cand gen(F (k−1)) with input F (k−1) =
QARM(C(k−1), G(k−1), k − 1, T ) for k > 1. The superposition

state
∑M

(k)
c

j=1 |C(k)
j 〉√

M
(k)
c

can be efficiently generated for k = 1, but is

suggested to be replaced by the state
∑M

(k)
c

j=1 |j〉|C(k)
j 〉√

M
(k)
c

for efficiency

for k > 1. However, for convenience, we only consider the
former state in the following steps; see the last paragraph in
this section for a detailed explanation.

(2) Perform the unitary operation
∑T −1

y=0 |y〉〈y| ⊗ (G(k))y

on |1〉 and the resulting state is

|2〉 =
⎡⎣T −1∑

y=0

|y〉〈y| ⊗ (G(k))y

⎤⎦|1〉. (16)

(3) Perform the inverse Fourier transformation F
†
T on the

first register of |2〉 and obtain

|3〉 = (F †
T ⊗ IN ⊗ IMk )|1〉 = |
(k)〉, (17)

where FT is defined by FT |i〉 = ∑T −1
j=0

e
2πιij

T |j〉√
T

.
(4) Search in the first register of |3〉 for the terms y

satisfying sin2(πy

T
) � min supp or sin2[π(T −y)

T
] � min supp

by using amplitude amplification and then obtain the state

|4〉 ≈
∑M

(k)
c

j=1, supp(C(k)
j )�min supp

∣∣
(k)
j

〉∣∣C(k)
j

〉
√

M
(k)
f

. (18)

The state contains three registers holding the estimates of the
supports of frequent k-itemsets, the eigenstates of the Grover
operators G

(k)
j , and the frequent k-itemsets, from left to right,

respectively. |
(k)
j 〉 is seen in Eq. (8).

(5) Measure the first and third register for O(M (k)
f ) times

to reveal all the M
(k)
f frequent k-itemsets (i.e., F (k)) and their

supports.
The first three steps contribute to the key part of our

algorithm, parallel amplitude estimation, and the circuit for
the case that T and N are powers of 2, T = 2t and N = 2n,
which is shown in Fig. 4.
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FIG. 4. Quantum circuit of the first three steps of our algorithm

when T = 2t and N = 2n. Here, |C(k)〉 :=
∑M

(k)
c

j=1 |C(k)
j

〉√
M

(k)
c

.

It should be stressed that when k > 1, it is more advisable
to replace the superposition state,

|C(k)〉 :=
∑M

(k)
c

j=1

∣∣C(k)
j

〉√
M

(k)
c

, (19)

in step (1) of our algorithm by the two-register state,

|Ĉ(k)〉 :=
∑M

(k)
c

j=1 |j 〉∣∣C(k)
j

〉√
M

(k)
c

. (20)

When k = 1, C(k) = I, i.e., C
(k)
j = Ij−1 and M (k)

c = M , and

we can efficiently create the state |C(k)〉 =
∑M−1

j=0 |j〉√
M

in time
O[log(M)]. But for the case when k > 1, it is more desirable
to use the state |Ĉ(k)〉 instead of |C(k)〉 because in this case it is
probable to take less time to create |Ĉ(k)〉 than to create |C(k)〉.
To generate |Ĉ(k)〉, a quantum oracle (denoted by O

(k)
C ) that

performs

O
(k)
C

∑M
(k)
c

j=1 |j 〉|0〉√
M

(k)
c

=
∑M

(k)
c

j=1 |j 〉∣∣C(k)
j

〉√
M

(k)
c

(21)

is assumed to be provided in our algorithm. This oracle can be
achieved via the quantum random access memory [31] in time
O[k log(MM (k)

c )] provided by the classical data of candidate
k-itemsets C

(k)
j . However, generating the state |C(k)〉 from the

initial k M-dimensional states |0〉⊗k by using amplitude am-

plification takes time O[k log(M)
√

Mk

M
(k)
c

](creating k uniform

superposition states takes time O[k log(M)] and amplitude

amplification takes O(
√

Mk

M
(k)
c

) repetitions), which in practice is

much more time consuming than generating |Ĉ(k)〉. It should
be noted that if the state |Ĉ(k)〉 is taken in our algorithm, it is
the state of the second register of the state, i.e., the mixed state∑M

(k)
c

j=1 |C(k)
j 〉〈C(k)

j |
M

(k)
c

instead of the pure superposition state |C(k)〉
[Eq. (19)], which will be operated in step (2) and measured in
the final step.

C. Complexity analysis

In steps (1)–(3) of our algorithm, it takes T − 1 oracles O(k),

and the error for estimating s
(k)
j is �[

√
s

(k)
j (1−s

(k)
j )

T
] [6]. Therefore,

to ensure the error for estimating s
(k)
j is ε

√
s

(k)
j (1 − s

(k)
j ),

T should be taken as T = �( 1
ε
). In step (4) for amplitude

amplification, O(
√

M
(k)
c

M
(k)
f

) repetitions (iterations) are required.

The last step takes O(M (k)
f ) measurements to reveal all the

M
(k)
f frequent k-itemsets and their supports. Including all of

these quantities and noting that the construction of O(k) entails

�(k) basic oracles O, our algorithm takes O(kT

√
M

(k)
c

M
(k)
f

M
(k)
f ) =

O(
k

√
M

(k)
c M

(k)
f

ε
) basic oracles O to mine all the M

(k)
f frequent

k-itemsets (F (k)) from M (k)
c candidate k-itemsets (C(k)) and

estimate their supports.
Now we consider the classical sampling-based algorithm

for mining F (k) from C(k), where the supports s
(k)
j of all

the candidate k-itemsets in C(k) are estimated by sampling
the transactions of the database T . According to the prop-
erties of binomial distribution, to ensure the induced error

ε

√
s

(k)
j (1 − s

(k)
j ) for estimating s

(k)
j , it needs O( 1

ε2 ) samples
to estimate every support (the same number of samples is
used to estimate every support). The errors are with the
same scales as those in our quantum algorithm. Since �(k)
basic oracles O are required to identify whether a certain
sample (transaction) contains an arbitrary k-itemset X, it will

take O( kM
(k)
c

ε2 ) basic oracles O to estimate all the supports of
M (k)

c candidate k-itemsets in C(k) with precision O(ε). After
estimating the supports by sampling, one can easily find the
frequent k-itemsets and obtain their supports.

However, both of the above two algorithms are nondeter-
ministic. If we want to mine F (k) from C(k) in a deterministic
way, we can directly take the classical Apriori algorithm. In
the algorithm, every transaction of the database is scanned
to calculate the support of every candidate k-itemsets, and
thus O(kM (k)

c N ) basic oracles O are required to calculate
all the supports of M (k)

c candidate k-itemsets and no errors
are induced at all. After calculation, one can directly find the
frequent k-itemsets and obtain their supports.

The comparison of our algorithm, the classical sampling-
based algorithm, and the Apriori algorithm for mining F (k)

from C(k) is given in Table I. From the comparison, two points

TABLE I. Comparisons of our quantum algorithm, the classical
sampling-based algorithm, and the classical Apriori algorithm for
mining F (k) from C(k).

Algorithm Determinacy Query complexity

Quantum nondeterministic O(
k

√
M

(k)
c M

(k)
f

ε
)

Sampling-based nondeterministic O( kM
(k)
c

ε2 )

Apriori deterministic O(kM (k)
c N )
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are derived. First, our quantum algorithm and the classical
sampling-based algorithm are more efficient than the Apriori
algorithm when the number of transactions N is large in
most cases, but these two algorithms are nondeterministic and
induce errors. So there is a trade-off between the accuracy
and the complexity. Second, and more importantly, compared
with the query complexity of the classical sampling-based
algorithm, the query complexity of our quantum algorithm
quadratically improves the dependence on the error. Since
M

(k)
f � M (k)

c , the improvement in the dependence on the
parameter M (k)

c is also achieved, but the degree relies on
the scale of M

(k)
f relative to M (k)

c . When M
(k)
f ≈ M (k)

c , no

significant improvement is achieved. However, when M
(k)
f �

M (k)
c , quadratic improvement in the dependence on M (k)

c is
also achieved. It is conceivable that this situation probably
happens in the last iteration with setting a high minimum
support threshold because (1) the number of frequent itemsets
in the last iteration would be too small to generate candidate
itemsets for the next iteration, and (2) a higher threshold
implies a smaller number of frequent itemsets existing in
candidate itemsets.

Regarding the complexity of our algorithm, two additional
issues should also be addressed.

(i) The overall query complexity of our algorithm for mining
all the frequent itemsets.

Since our quantum algorithm together with all the classical
ARM algorithms finally output all the frequent itemsets instead
of frequent k-itemsets for one particular k, it is necessary
to analyze the overall query complexity for generating all
the frequent itemsets. Assuming k̂ iterations are performed
in the algorithm, the overall query complexity would be

O(
∑k̂

k=1 k

√
M

(k)
c M

(k)
f

ε
), while the overall complexity of the classical

sampling-based algorithm is O(
∑k̂

k=1 kM
(k)
c

ε2 ). Just as with mining
frequent k-itemsets shown above, the improvement of our
algorithm over the classical algorithm also consists of two
parts. First, the quadratic improvement on ε contributed by par-
allel amplitude estimation is conclusive. Second, however, the
improvement contributed by amplitude amplification depends
on the database itself and the threshold min supp because
these two determine the sizes of M (k)

c and M
(k)
f . To quantify

the improvement caused by amplitude amplification, we take
the value

γ :=
∑k̂

k=1 kM (k)
c∑k̂

k=1 k

√
M

(k)
c M

(k)
f

, (22)

which means our algorithm is roughly γ times faster than
the classical algorithm (regardless of the improvement caused
by parallel amplitude estimation), as a measure. To show γ

depends on the database itself and the threshold, two real-
world transaction databases, Retail and Kosarak [32], which
are usually taken to test the classical ARM algorithms, are
run using the Apriori algorithm with each one taking two
thresholds, 1% and 2%; see the Appendix for details. By simple
calculation, we derive γ = 12.75, 25.54, 19.87, and 33.74 for
the four cases: Retail 1%, Retail 2%, Kosarak 1%, and Kosarak
2%, respectively.

(ii) The overall time complexity of invoking the operation
of generating the states |C(k)〉 and |Ĉ(k)〉.

According to the last paragraph of the last section, we
know that in our algorithm, the states |C(k)〉 and |Ĉ(k)〉 need to
be prepared for k = 1 and k > 1, respectively, and each one
of the two states can be generated in time O[k log(MM (k)

c )]
(incorporating the case k = 1). Taking amplitude amplification
in step (4) and measurement in step (5) into consideration, the
overall time complexity of invoking the operation of generating

|C(k)〉 and |Ĉ(k)〉 would be O[log(MM (k)
c )k

√
M

(k)
c M

(k)
f ]. Com-

pared with the overall query complexity of calling the basic

oracles O, O(
k

√
M

(k)
c M

(k)
f

ε
), the overall time complexity of the

invocation of the operation of generating the states |C(k)〉 and
|Ĉ(k)〉 is less costly. This is because, in practice, log(MM (k)

c )
is much smaller than 1

ε
, especially when ε is set to be very

small (ε = 0.001, for example). That is to say, it is the time
complexity of calling the basic oracle O that dominates the
overall time complexity of our quantum algorithm.

IV. CONCLUSION

In this paper, we address ARM, one of the most important
problems in data mining, in the quantum settings. We provide
a quantum algorithm for the core procedure of implementing
ARM, mining frequent itemsets from the candidate itemsets.
Specifically, by subtly using amplitude estimation and am-
plitude amplification, our algorithm can efficiently find the
frequent k-itemsets from candidate k-itemsets and estimate
their supports. Complexity analysis shows that our algorithm
is faster than the classical counterpart, i.e., the classical
sampling-based algorithm, in the sense that the complexity
of our algorithm is at least quadratically improved in the
dependence on the error. We hope our quantum algorithm for
ARM can help in better understanding the power of quantum
computing and inspire more quantum algorithms for big data
mining tasks.

In the future, two directions of quantum ARM deserve
further investigation. First, noting that our algorithm in this
paper focuses on efficiently implementing the procedure (P1)
mentioned in Sec. II, quantum algorithms for the procedure
(P2) should be explored. Second, it is interesting to introduce
privacy protection into quantum ARM. A recent work on this
topic has been put forward in [33].
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APPENDIX: THE DETAILS OF RUNNING THE
CLASSICAL APRIORI ALGORITHM ON TWO
REAL-WORLD TRANSACTION DATABASES

We run the Apriori algorithm [27] on two real-world
transaction databases, Retail and Kosarak, which contain
88 162 transactions and 16 470 items, and 992 547 transactions
and 41,270 items, respectively. We obtain the the numbers
of candidate itemsets and frequent itemsets in each iteration,
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TABLE II. The numbers of candidate itemsets and frequent
itemsets, M (k)

c and M
(k)
f , for the database Retail. Here k labels the

kth iteration.

min supp = 1% min supp = 2%

k M (k)
c M

(k)
f M (k)

c M
(k)
f

1 16470 70 16470 20
2 2415 58 190 22
3 37 25 14 12
4 6 6 2 1

which are shown in Tables II and III, for two minimum support
thresholds, 1% and 2%. While five iterations are executed for

TABLE III. The numbers of candidate itemsets and frequent
itemsets for the database Kosarak.

min supp = 1% min supp = 2%

k M (k)
c M

(k)
f M (k)

c M
(k)
f

1 41270 54 41270 27
2 1431 140 351 45
3 194 127 45 34
4 57 52 13 13
5 11 10 2 2

Kosarak for both thresholds, four iterations are executed for
Retail for both thresholds.
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