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We investigate the static and dynamical patterns of entanglement in an anisotropic XY model with an alternating
transverse magnetic field, which is equivalent to a two-component one-dimensional Fermi gas on a lattice, a
system realizable with current technology. Apart from the antiferromagnetic and paramagnetic phases, the model
possesses a dimer phase which is not present in the transverse XY model. At zero temperature, we find that the
first derivative of bipartite entanglement can detect all the three phases. We analytically show that the model has
a “factorization line” on the plane of system parameters, in which the zero-temperature state is separable. Along
with investigating the effect of temperature on entanglement in a phase plane, we also report a nonmonotonic
behavior of entanglement with respect to temperature in the antiferromagnetic and paramagnetic phases, which is
surprisingly absent in the dimer phase. Since the time dynamics of entanglement in a realizable physical system
plays an important role in quantum information processing tasks, the evolutions of entanglement at small as well as
large time are examined. Consideration of large-time behavior of entanglement helps us to prove that in this model,
entanglement is always ergodic. We observe that other quantum correlation measures can qualitatively show simi-
lar features in zero and finite temperatures. However, unlike nearest-neighbor entanglement, the nearest-neighbor
information-theoretic measures can be both ergodic as well as nonergodic, depending on the system parameters.
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I. INTRODUCTION

Quantum many-body systems have been established to be
a possible candidate for the implementation of quantum infor-
mation protocols [1,2] such as one-way quantum computation
[3] and network quantum communication [4]. Also, laboratory
realization of model Hamiltonians in various substrates, in-
cluding optical lattice [5–7], ion traps [2,8], solid-state systems
[9], and nuclear magnetic resonance (NMR) [10], have made
possible the testing of properties of several information theo-
retic measures of quantum correlations, belonging to both of
the entanglement-separability [11] and information-theoretic
[12] domains. On the other hand, tools developed in, and with
the help of, quantum information theory have been found to
be useful in the analysis of the ground and excited states of
such many-body systems [13–15]. Moreover, development of
topological quantum computation and especially topological
quantum memories indicate the importance of quantum many-
body systems in the goal of practical realization of a quantum
computer [16]. Consequently, in recent years, characterization
of quantum many-body systems from quantum information-
theoretic perspectives has become a vibrant field of research.

Although most of such studies are restricted to the “static”
properties of quantum correlations in the zero-temperature
and thermal states, the time evolution of the system is also
extremely important in quantum information processing tasks
like in one-way quantum computation [3]. In the static case,
the traditional approach to study a quantum many-body
system is to recognize appropriate order parameters defining
the phases occurring in the system, and to investigate the
response of these order parameters to external perturbations.
The ground state of such a system is usually represented
by a complex multipartite quantum state, characterized by
the classical as well as the quantum correlations present
between its constituting parts. A quantum phase transition
(QPT) [17,18], which occurs at zero temperature and solely
due to quantum fluctuations, brings about a qualitative change

in the ground state of a quantum many-body system, when
a system parameter is varied. Quantum correlations having
quantum information-theoretic origins are shown to be useful
in characterizing various phases and corresponding QPTs in
a large spectrum of quantum many-body systems [19–28]
(see also [1,12], and the references therein). Among all
these models, a prominent one is the one-dimensional (1D)
Fermi gas of spinless fermions in an optical lattice, a system
realizable in ultracold atom substrate, by using a Fermi-Bose
mixture in the strong-coupling limit [29]. In the spin language,
the model can be described by an anisotropic XY model in a
transverse magnetic field [17,18,30,31].

Manipulation of cold atoms in the laboratory has allowed
the realization of physical systems such as dilute atomic Fermi
and Bose gases, in different spatial dimensions, thereby pro-
viding excellent opportunities to apply quantum information-
theoretic concepts in these systems [32,33]. Recent experi-
mental evidences of superfluid, metallic, and Mott-insulating
phases [34,35] motivate one to investigate a Fermi gas of
spinless fermions in a 1D optical lattice, where the fermions are
of two types, distinguished by different chemical potentials.
Considering the two types of fermions to be located on two
different sublattices, one of which contains all the “even” sites
and the other one holds all the “odd” ones, the fermionic
model, via a Jordan-Wigner transformation, can be shown to
be equivalent to a 1D anisotropic XY model in the presence
of a uniform, and an alternating transverse magnetic field
that alternates its direction from +z to −z depending on
whether the lattice site is even or odd [18,36–39]. The model
offers a rich phase diagram. While only two phases, viz., a
“paramagnetic” (PM) phase and an “antiferromagnetic”
(AFM) phase, occur in the ground state of the XY model in
a uniform transverse field [17,30,31], an additional “dimer”
(DM) phase emerges due to the introduction of the lo-
cal site-dependent alternating field in the present model
[18,36–39]. Although the properties of several quantum
information-theoretic measures of quantum correlations have
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been extensively studied and reported for different phases
and corresponding QPTs in the former case [21–23] (see also
Refs. [1,12]), it is interesting to see how this phase structure,
formed due to the introduction of the alternating field, can
be characterized using quantum correlations. In this paper,
we characterize the static as well as dynamic properties of
quantum correlations in the 1D anisotropic XY model in a
uniform and an alternating field. As the measures of quantum
correlations, we focus on bipartite measures, and use logarith-
mic negativity (LN) [40] from the entanglement-separability
genre and quantum discord (QD) [42,43] from the information-
theoretic domain. We show that irrespective of the values of the
anisotropy parameter, the first derivative of bipartite entangle-
ment can detect all the three phases in this model. Moreover,
the finite-size scaling analysis of the system near the QPTs is
performed to distinguish phase boundaries between the AFM
and the PM, and between the AFM and the DM. Similar
investigations are also carried out for quantum discord, which
also faithfully indicate the quantum critical points. Like the
factorization point in the XY model [44,45], we here prove the
existence of a line in the space of the system parameters, which
we call as the “factorization line” (FL), on which the ground
state of the system is separable, having a Néel-type order.

The change of phase diagram with finite temperature has
both fundamental and experimental importance due to the
technological limitations of reaching absolute zero temper-
ature. In this scenario, we discuss the weathering of the
landscapes of quantum correlations over the phase plane of
the system parameters, chosen to be the strengths of the
uniform and the alternating transverse field, with increasing
temperature. We point out that bipartite entanglement is the
most fragile in the AFM phase, while it is robust in the
DM phase against increasing temperature. We identify the
phases in which nonmonotonicity of entanglement with the
increase of temperature is observed. Specifically, we perform
a nonmonotonicity cartography, and map, on the plane of the
chosen system parameters, the regions in which the thermal
quantum correlations exhibit nonmonotonic variation with
temperature. We show that for LN and for high values of
anisotropy parameter, most of the nonmonotonicity occurs in
the AFM region, while QD is found to be nonmonotonic in the
PM phase for low anisotropy. Interestingly, we discover that
the temperature variation of LN is found to be monotonic in
the entire DM phase, while for QD, nonmonotonicity occurs
at a very small region of the DM phase.

As already stated, the time dynamics of quantum cor-
relations in any physical system is extremely relevant for
implementation of quantum information processing tasks. In
this paper, we find both the small- and large-time quantum cor-
relation patterns of the evolved state. We observe that although
entanglement dies quickly compared to QD, it possesses larger
value than QD, which ensures the possibility of implementing
several information tasks requiring high values of entangle-
ment. The study of large-time behavior of quantum correla-
tions also helps us to settle issues like the ergodicity [46–54] of
LN and QD, quantified by the ergodicity scores. We find that,
up to our numerical accuracy, entanglement always remains
ergodic, while QD shows nonergodicity in different phases of
the model. We point out that the region of nonergodicity of
QD increases with an increase in the anisotropy in the system.

Therefore, with respect to transverse field parameter, we show
that QD undergoes a nonergodic to ergodic transition which
is absent for entanglement up to our numerical accuracy, irre-
spective of the anisotropy parameter and initial temperature.

The paper is organized as follows. In Sec. II, the Hamilto-
nian describing the anisotropic XY model in the presence of a
uniform and an alternating transverse field and its relation to a
two-component 1D Fermi gas are discussed. Brief descriptions
on the diagonalization of the model Hamiltonian and the
different phases occurring in the ground state of the model
are provided in the same section. Section III contains the
definitions of the canonical equilibrium state and the time-
evolved state of the system. The determination of the single-
site and two-site reduced density matrices from the canonical
equilibrium state and the time-evolved state of the model is also
presented in this section. The static properties of the quantum
correlations, including the different types of QPTs, finite-
size scaling analysis, determination of the factorization line,
and thermal quantum correlations are discussed in Sec. IV.
Section V reports the ergodicity of quantum correlations and
short-time dynamics of entanglement as well as QD. Section
VI contains the concluding remarks.

II. MODEL

Let us consider a family of models describing a system of
spins of magnitude 1

2 on a 1D lattice consisting of N sites.
We assume that an external transverse magnetic field of site-
dependent strength hi(t) = h1(t) + (−1)ih2(t), i being the site
index, acts on the spins at time t . The magnetic field can be
interpreted as the resultant of a uniform transverse field h1(t)
and a transverse field h2(t), which reverses its direction from
+z to −z, depending on whether the lattice site is even or odd.
The Hamiltonian describing the system is given by

Ĥ = 1

2

N∑
i=1

{
J

(
1 + γ

2
σ̂ x

i σ̂ x
i+1 + 1 − γ

2
σ̂

y

i σ̂
y

i+1

)

+ [h1(t) + (−1)ih2(t)]σ̂ z
i

}
. (1)

Here, the system parameter J represents the strength of the
exchange interaction, while γ ( �=0) is the x − y anisotropy
present in the system. We assume periodic boundary condition
(PBC), and an even number of lattice sites, such that σ̂ α

N+1 ≡
σ̂ α

1 , where α = x,y,z.

A. Relation to one-dimensional Fermi gas

The Hamiltonian in Eq. (1), via a Jordan-Wigner transfor-
mation, given by [38]

ˆσ2j
+ = b̂

†
2j exp

(
iπ

i−1∑
l=1

b̂
†
2l b̂2l + iπ

i∑
l=1

â
†
2l−1â2l−1

)
,

σ̂+
2j+1 = â

†
2j+1 exp

(
iπ

i∑
l=1

b̂
†
2l b̂2l + iπ

i−1∑
l=0

â
†
2l+1â2l+1

)
,

(2)
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can be mapped onto a two-component Fermi gas of spinless
fermions, on a 1D optical lattice consisting of two sublattices.
Here, σ̂−

α = (σ̂+
α )†, where the σ̂±

α operators are related to
the Pauli operators σ̂ x,y,z via the relations σ̂ x = (σ̂+ + σ̂−),
σ̂ y = −i(σ̂+ − σ̂−), and σ̂ z = (2σ̂+σ̂− − 1). One of the two
sublattices in the fermionic model is constituted of the “odd”
lattice sites, while the other contains the “even” ones. One of
the two components of the fermions is situated on the odd
sublattice, while the other is located on the even sublattice.
The two components are distinguished by two different
time-dependent chemical potentials μa(t) and μb(t), and the
corresponding creation operators are denoted by â† and b̂†,
respectively, following the usual fermionic anticommutation
relations {f̂i ,f̂

†
j } = δi,j and {f̂i ,f̂j } = {f̂ †

i ,f̂
†
j } = 0. Here,

f̂ = â or b̂, depending on whether i,j , the site indices, are
odd or even, respectively.

Applying the transformation in Eq. (2), the form of the
Hamiltonian representing the 1D two-component Fermi gas
of spinless fermions at every time instant t , up to an additive
constant energy Ec(t) = [μa(t) + μb(t)]N/4, can be written
as

Ĥ =
N/2∑
i=1

[
τ {Âi + B̂i + γ (Ĉi + D̂i)}

+μa(t)N̂ a
i + μb(t)N̂ b

i

]
, (3)

where the operators Âi = â
†
2i−1b̂2i + H.c., B̂i = b̂

†
2i â2i+1 +

H.c., Ĉi = â
†
2i−1b̂

†
2i + H.c., and D̂i = b̂

†
2i â

†
2i+1 + H.c. describe

the interactions between the spinless fermions belonging to
the odd and the even sublattices, with N̂ a

i = â
†
2i−1â2i−1 and

N̂ b
i = b̂

†
2i b̂2i being the corresponding number operators. Here,

τ is the fermionic tunneling strength between a pair of even and
odd sites, and N is the total number of lattice sites. Note that
the existence of the two types of magnetic field (uniform and
alternating) in the original model is reflected by the existence
of the two sublattices in the fermionic model, differentiated
by the chemical potentials and thereby leading to two types of
fermionic operators, a and b.

B. Diagonalization

For general μa,b(t), the Hamiltonian given in Eq. (3) can
be written as Ĥ =∑N/4

p=1 Ĥp, with

Ĥp = J cos φp(â†
pb̂p + a

†
−pb̂−p + b̂†pâp + b̂

†
−pâ−p)

− iJ γ sin φp(â†
pb̂

†
−p + âpb−p − â

†
−pb̂†p − â−pap)

+h+(t)(b̂†pb̂p + b̂
†
−pb̂−p) + h−(t)(â†

pâp + â
†
−pâ−p)

− 2h1(t) (4)

via the Fourier transformations given by

â
†
2j+1 =

√
2

N

N/4∑
p=−N/4

exp [i(2j + 1)φp]â†
p,

b̂
†
2j =
√

2

N

N/4∑
p=−N/4

exp [i(2j )φp]b̂†p. (5)

Here, φp = 2πp/N , h±(t) = h1(t) ± h2(t), and a
†
p (b†p) are

fermionic operators. Since [Ĥp,Ĥp′ ] = 0, the above Fourier
transformation decomposes the space upon which Ĥ acts
into noninteracting subspaces. These subspaces, each having
a dimension 16, do not allow transitions within themselves,
irrespective of the values of the system parameters J , γ , and
h±(t). The diagonalization of the Hamiltonian Ĥ is thereby
reduced to the diagonalization of Ĥp, acting on the pth
subspace, which can be achieved by a convenient choice of the
basis (see Appendix A). We note that the lowest eigenvalue of
Ĥp is given by −ω4

+(p). The ground-state energy per site E0 of

the Hamiltonian can be obtained as E0 = − 1
2π

∫ π/2
0 ω4

+(p)dp.

C. Phases

We now briefly discuss the patterns of different phases,
and the corresponding QPTs, present in the model described
by the Hamiltonian in Eq. (3). We choose the strength of
the transverse fields, uniform and alternating, as the tuning
parameters. Information about the phase boundaries can be
obtained from the second-order derivatives of the ground-
state energy E0, with respect to λ1 and λ2, where we take
λi = hi/J, i = 1,2, and h1(2)(t = 0) = h1(2). For γ �= 0, the
system undergoes two different second-order QPTs, namely, a
transition from a paramagnetic (PM) to an antiferromagnetic
(AFM) phase, and a transition from the AFM to a dimer (DM)
phase. Figures 1(a) and 1(b) depict the spectrum of Ĥp at
critical points corresponding to AFM ↔ PM (λ1 = 1, λ2 = 0),
and AFM ↔ DM (λ1 = 0, λ2 = 0.8) QPTs, respectively,
for γ = 0.8 (see Appendix A for the expressions of the
eigenvalues as functions of φp and the system parameters).
Note that the vanishing of the energy gap in the spectrum
occurs at φp = 0 for the AFM ↔ PM transition, and at φp =
±π

2 for the AFM ↔ DM transition. On the other hand, Fig. 1(c)
depicts the variation of the spectrum of Ĥp as a function of φp

for λ1 = 0.6, λ2 = 0. This point on the (λ1,λ2) plane belongs
to the factorization line, which is discussed in Sec. IV B.
One of our aims in this paper is to detect such transitions by
using quantum information quantities. The phase boundaries
corresponding to these transitions are given by the lines
λ2

1 = λ2
2 + 1 and λ2

2 = λ2
1 + γ 2, respectively. It is interesting

to note that there exists a set of duality relations, given by
{h1 ↔ h2,J ↔ −γ }, by virtue of the unitary transformation
{σ̂ α

i → (−1)i σ̂ α
i : α = x,z}, which indicates that both AFM

↔ PM and AFM ↔ DM transitions belong to the same
universality class, namely, the Ising universality class [18].
One must also note that for h2 = 0, the model reduces to the
well-known anisotropic XY model in a uniform transverse
magnetic field of magnitude h1.

III. CANONICAL-EQUILIBRIUM AND TIME-EVOLVED
STATES: LOCAL DENSITY MATRICES

In this paper, we intend to study the statistical mechanical
properties of the model in terms of bipartite quantum cor-
relations. We now briefly introduce the notions of canonical
equilibrium states and time-evolved states corresponding to
the Hamiltonian given in Eq. (1), and describe how two-spin
reduced density matrices corresponding to such states can be
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FIG. 1. Spectrum of Ĥp for γ = 0.8. (a), (b) Variation of the eigenvalues of Ĥp as a function of φp at the AFM ↔ PM (λ1 = 1, λ2 = 0)
and the AFM ↔ DM (λ1 = 0, λ2 = 0.8) transitions. (c) Patterns of the eigenvalues of Ĥp against φp at the factorization point (see Sec. IV B).
The chosen parameter values for the factorization point are λ1 = 0.6, λ2 = 0. The minimum eigenvalue in all the cases is −ω4

+(p) (given in
Appendix A). The energy gap vanishes at φp = 0 for the AFM ↔ PM and at φp = ± π

2 for the AFM ↔ DM QPT point.

obtained. For our purpose, we consider the situation where the
time-dependent magnetic fields h1(t) and h2(t) are chosen as

h1(t) =
{
h1, t � 0
0, t > 0 , h2(t) =

{
h2, t � 0
0, t > 0 . (6)

The canonical equilibrium state (CES) of the system at time
t is given by

ρ̂eq(t) = e−βĤ (t)

Z
, (7)

where Z = Tr{exp[−βĤ (t)]} is the partition function, and
Ĥ (t) is given in Eq. (1). Here, β = 1/kBT , T is the absolute
temperature, and kB is the Boltzmann constant. In all our
calculations, we set kB = 1. For the purpose of this paper,
we consider a system which is in contact with a heat bath
at temperature T for a long time up to the instant that we
call t = 0, so that a thermal equilibrium between the system
and the heat bath have developed. The equilibrium is in the
canonical sense, allowing exchange of energy between the bath
and the system with the usual average energy constraint, but
forbidding exchange of particle. To study quantum correlations
in the evolution, we choose the canonical equilibrium state
[ρ̂eq(t = 0)] as an initial state. When the magnetic fields are
switched off, the CES starts evolving in time following the
Schrödinger equation dictated by the Hamiltonian in Eq. (1).
At any time t , the time-evolved state (TES) ρ̂(t) is given by

ρ̂(t) = e−iĤ t ρ̂eq(t = 0)eiĤ t , (8)

where Ĥ represents the Hamiltonian given in Eq. (1) at t > 0.

A. Local density matrices

To investigate the behavior of bipartite quantum correlation
measures of the CES and TES, computation of the single-site
and the two-site reduced density matrices of the entire state
is necessary. Since we consider the system with periodic
boundary condition, all the nearest-neighbor bipartite states
are the same and hence their two-spin correlation functions
would be independent of the choice of the pairs of spins, while
the single-site magnetizations depend on whether the lattice
site is even or odd. A general single-site density matrix, given

by ρ̂i = [I +∑α=x,y,z mα(t)σ̂ α
i ]/2, can be obtained by tracing

out all the spins except the spin at the lattice site α, which is “o”
for the odd site and “e” for the even site. Here, I is the identity
operator in the qubit Hilbert space. For CES corresponding to
a real Hamiltonian, ρ̂i∗

eq (t) = ρ̂i
eq(t), implying m

y

i (t) = 0 with
the complex conjugation being taken in the computational
basis. Also, the Hamiltonian possesses a global phase-flip
symmetry, such that [H,iσ

z
i ] = 0, implying mx

i (t) = 0.
Hence, the single-site reduced density matrix corresponding
to the CES is given by ρ̂i

eq (t) = [I + mz
i (t)σ̂

z
i ]/2. On the other

hand, ρ̂i(t) corresponding to the evolved state is not necessarily
equal to its complex conjugation, and the existence of the
global phase-flip symmetry is a complicated issue due to the
time dependence of the Hamiltonian. However, use of the
Wick’s theorem leads to the same form of ρ̂i(t), when TES is
considered instead of the CES.

Let us now consider the two-site reduced density matrix
ρ̂ij , corresponding to the spins at the lattice sites i and j , and
obtained by tracing out all the other spins except those at the
positions i and j . In the present case, we restrict ourselves
to nearest-neighbor pairs of spins, such that j ≡ i + 1. To
keep the notations uncluttered, from now on, we shall discard
the lattice indices, and denote the nearest-neighbor two-spin
density matrix by ρ̂eo, where we assume that the lattice site i

belongs to the even sublattice without any loss of generality.
The two-party state ρ̂eo, of the CES and TES in this system,
can be written as

ρ̂eo = 1

4

⎡
⎣Ie ⊗ Io + mz

eσ̂
z
e ⊗ Io + Ie ⊗ mz

oσ̂
z
o

+
∑

α,β=x,y,z

cαβ
eo σ̂ α

e ⊗ σ̂ β
o

⎤
⎦, (9)

where c
αβ
eo = Tr[σ̂ α

e ⊗ σ̂
β
o ρ̂eo] are the two-site spin correlation

tensor. In the case of CES, by using arguments similar to
those in the case of the single-site density matrix, and by
applying the Wick’s theorem, one can show that only diagonal
elements of the correlation tensor, given by cαα

eo , α = x,y,z,
remain. On the other hand, in the case of TES, c

xy
eo and c

yx
eo
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remain nonzero in addition to the diagonal correlators. For
brevity, from now onward, we discard the site indices while
mentioning the two-spin correlators.

B. Quantum correlations between two modes of a 1D Fermi gas

We now demonstrate that the quantum correlation between
a nearest-neighbor spin pair chosen from the anisotropic XY

model in a uniform and an alternating transverse magnetic
field is the same as that present between two fermionic modes
located at the two nearest-neighbor lattice sites in the fermionic
model given in Eq. (3). Without any loss of generality, the two-
site density matrix of a nearest-neighbor pair of lattice sites, de-
noted by “eo,” can be written as ρ̂

f
eo = 1

4

∑
k,l ξkl ς̂

k
e ς̂ l

o, where
k,l = 0,1,2,3, and ς̂α = {I,(cα + c†α), − i(cα − c†α),(2c†αcα −
1)}. Here, c ≡ a(b) depending on whether α ≡ o(e). The
coefficients {ξkl} are given by ξkl = tr[ρ̂f

eo(ς̂ k
e ς̂ l

o)†]. Expanding
and applying Wick’s theorem as in Sec. III A, the TES
corresponding to a pair of fermionic modes on the “eo” site
pair for the fermionic model is given by

ρ̂f
eo = 1

4

[
I4×4 + ξ03ς̂

3
o + ξ30ς̂

3
e + ξ11ς̂

1
e ς̂1

o + ξ22ς̂
2
e ς̂2

o

+ ξ33ς̂
3
e ς̂3

o + ξ12ς̂
1
e ς̂2

o + ξ21ς̂
2
e ς̂1

o

]
. (10)

With a convenient choice of basis given by
{|0〉,â†|0〉,b̂†|0〉,b̂†â†|0〉}, where |0〉 represents the vacuum
state, the individual terms in Eq. (10) can be expressed in their
respective matrix forms. A comparison with the matrix forms
of the operators σα

e ⊗ σ
β
o implies that in matrix form, ρ̂

f
eo can

be expressed as

ρ̂f
eo = 1

4

[
Ie ⊗ Io − mz

eσ
z
e ⊗ Io − Ie ⊗ mz

oσ
z
o − cxy

eo σ x
e ⊗ σy

o

− cyx
eo σ y

e ⊗ σx
o +

∑
α=x,y,z

cαα
eo σ α

e ⊗ σβ
o

]
. (11)

Here, σα are 2 × 2 the Pauli matrices, where, e.g., σ e
z = (1 0

0 −1)

in the {|0〉,b†|0〉} basis and where, e.g., σo
y = (0 −i

i 0 ) in the

{|0〉,a†|0〉} basis. Note that ρ
f
eo is connected to the TES ρ̂eo

in the spin model via a local unitary transformation given by
ρ

f
eo = (σx ⊗ σx)ρeo(σx ⊗ σx), thereby implying no change

in the values of the chosen measure of bipartite quantum
correlation.

IV. STATIC BEHAVIOR OF QUANTUM CORRELATIONS

In this section, we discuss the behavior of bipartite
quantum correlation measures of the reduced density matrix
of the nearest-neighbor qubit pair, obtained from the zero
temperature and the thermal states of the model. Since the
model is not evolving, we call the states as static states.
For our purpose, we consider logarithmic negativity (LN),
denoted by L(ρAB), and quantum discord (QD), denoted by
D(ρAB), in the ground and thermal states of the model. The
former belongs to the entanglement separability paradigm,
while the latter is from the quantum information-theoretic
regime of quantum correlations. Short descriptions of these
measures are provided in Appendix B. While computing QD

FIG. 2. (Top horizontal panels) Variations of LN (left panel) and
QD (right panel) as functions of the transverse magnetic field λ1 and
the alternating field λ2 in the thermodynamic limit at β → ∞ and γ =
0.8. The phase boundaries λ2

1 = λ2
2 + 1 (PM ↔ AFM) and λ2

2 = λ2
1 +

γ 2 (AFM ↔ DM) are represented by the dashed and dotted-dashed
lines, respectively, while the different shades in the figures represent
different values of quantum correlations. (Bottom horizontal panels)
Variations of the first derivative of LN with respect to λ1 (left panel)
and the same quantity of LN with respect to λ2 (right panel) with
N → ∞ at β → ∞, and γ = 0.8. The value of the respective first
derivatives of LN diverges at the phase boundaries λ2

1 = λ2
2 + 1 (PM

↔ AFM) and λ2
2 = λ2

1 + γ 2 (AFM ↔ DM). Different shades in the
figures represent different values of the first derivative of LN with
respect to respective parameter. All the quantities plotted in all the
figures are dimensionless, except LN which is in ebits and QD in bits.

in the entire paper, we always perform local rank-1 projection
measurement on the “even” qubit. We choose two different
types of quantum correlation quantities since they behave
differently as demonstrated in the XY as well as the XXZ

model [21,23,24].

A. Quantum correlations at zero temperature

In the limit β → ∞, we now investigate the behavior of
LN and QD, as functions of the system parameters λ1 and λ2,
in the thermodynamic limit. For this system, me

z,m
o
z and all

the nonzero classical correlations can be obtained analytically
by diagonalizing Ĥp, following the similar prescription for the
XY model (see Appendix C) and hence the exact computation
of LN and QD is possible, as depicted in the top horizontal
panels of Fig. 2. To keep the notation uncluttered, from now
on, we denote LN by L and QD by D. In this paper, all the
analyses are carried out for γ = 0.8 unless specified otherwise.
The qualitative feature of the entire investigation remains the
same for γ �= 0. Note that the LN has a high value in the DM
and PM phases, while the value is low in the AFM phase. On
the other hand, the value of QD is moderate in the PM region.
In the AFM region, the QD has a low value except in the cases
where the values of λ1 and λ2 are comparable. Along the line
λ1 = −λ2, QD is vanishingly small. Note that the situation is
reversed if one performs measurement on the odd qubit while
determining QD. In that case, low values of QD are found
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along the λ1 = λ2 line. Hence, the asymmetry imposed into the
model due to the introduction of the alternating field is captured
from the distribution of QD values over the AFM region in the
parameter space of (λ1,λ2), but not by LN. However, in the
case of LN, there exist two zero-entanglement lines in the
AFM phase, as depicted in the left panel of the top horizontal
row of Fig. 2, which represent fully separable ground states.
These lines, which we refer to as the “factorization lines,” are
discussed in detail in the subsequent section.

One must note here that the introduction of only a local
parameter, i.e., the alternating transverse field, in the well-
known transverse-field XY Hamiltonian [30,31], gives rise to
the DM phase, which is not present in the transverse-field
XY model. It is interesting to investigate how the QPTs
occurring at the AFM ↔ DM phase boundaries can be
characterized using entanglement and information-theoretic
quantum correlation measures, and whether such characteristic
behaviors are similar to those observed in the case of the
AFM ↔ PM transition in this model as well as in the usual
transverse-field XY model [30,31]. In the thermodynamic
limit, and for the latter case, the QPT is found to be signaled by
a divergence in the first derivative of entanglement as well as in
the information-theoretic measures with respect to the system
parameters λ1 and λ2 (see the bottom panel of Fig. 2). We
find that, similar to the AFM ↔ PM QPT, other transitions
can also be detected by the first derivative of appropriate
measures of quantum correlations. As an example, in Fig. 2
(bottom horizontal panels), we plot |∂L/∂λ1| (left panel) and
|∂L/∂λ2| (right panel) as functions of λ1 and λ2 for γ = 0.8,
β → ∞, and N → ∞. From the figures, we can clearly see
that both |∂L/∂λ1| (left panel) and |∂L/∂λ2| (right panel)
diverge at the AFM ↔ DM and AFM ↔ PM boundaries. We
plot the absolute values of the first derivatives of LN for a better
representation of the divergence, as the actual first derivative
can tend to both positive as well as negative infinity, depending
on the variation of LN with respect to λ1 and λ2. Note here
that there exist two lines, one vertical (|∂L/∂λ1|) and the other
horizontal (|∂L/∂λ2|) in the variations of the first derivative of
LN, as depicted in Fig. 2, over which the value of LN remains
almost constant. This is indicated by the low value of the first
derivative of LN over those lines. Note also that there exist
several models in which bipartite entanglement cannot detect
quantum phase transitions [1,2,55]. Such example includes
the spin liquid-dimer transition in 1D J1-J2 model [56]. The
results obtained here show that this is not the case for the XY

model with uniform and alternating transverse field.

1. Finite-size scaling analysis

Advancement of experimental techniques has made the
laboratory realization of several quantum many-body systems
of finite size, such as the quantum anisotropic XY model
with a transverse alternating magnetic field, possible [8,9],
which highlights the importance of studying the behavior
of quantum correlations in the context of QPTs in system
of finite number of spins. Towards this aim, we present the
finite-size scaling analysis of the system using the bipartite
quantum correlations, and determine the scaling exponents.
More specifically, we discuss the finite-size scaling of the

system at the QPTs corresponding to (i) AFM ↔ PM and (ii)
AFM ↔ DM transitions.

(i) AFM ↔ PM transitions: At λ2 = 0, the model reduces
to the widely studied anisotropic XY model in a uniform
transverse magnetic field of strength λ1. As N → ∞ and
β → ∞, the model undergoes a QPT, between the quantum
PM phase and the AFM phase, at λc

1 = ±1. It is well known
that this QPT is signaled by a nonanalyticity in the first
derivatives of the quantum correlation measuresQwith respect
to the system parameter λ1 [21,23]. With the introduction of
the transverse alternating field λ2, the QPT point changes
according to the line λ2

1 = λ2
2 + 1, which denotes the phase

boundary between the AFM and the quantum PM phase in the
present model. As shown in Fig. 2, the AFM ↔ PM transition
is also signaled by a nonanalyticity in the first derivative of
LN or QD, with respect to λ1 (λ2), when λ2 (λ1) is kept fixed
as N → ∞. In the case of a system of finite size, the QPT
is signaled by a maximum or a minimum in the variation of
the first derivative of LN and QD with respect to λ1 (λ2),
for fixed values of λ2 (λ1) (see Fig. 3). The position of the
maximum or minimum denotes the position of the critical point
on the axes of the respective system parameter. The maximum
or minimum sharpens with increasing system size, and the
position of the QPT approaches the QPT point as N → ∞,
denoted by λc

1(2)(∞), as

λc
1(2)(N ) = λc

1(2)(∞) + α1(2)N
−ν1(2) . (12)

Here, α1(2) are dimensionless constants, and ν1(2) are the scaling
exponents.

Figure 3(a) depicts the variation of derivative of LN and
QD, as functions of λ1, as β → ∞, for fixed value of λ2

i.e., λ2 = 1.5 with γ = 0.8. The approach of the QPT points
λc

1(N ) at finite N , towards the QPT point in the thermodynamic
limit λc

1(∞), are depicted in the insets. Fitting the numerical
data with Eq. (12), one can estimate the values of α1 and ν1.
Table I(a) contains the values of α1,2 and ν1,2, in the case of
both LN and QD, when the value of λ2 (λ1) is kept fixed at
λ2 = 0 and 1.5 (λ1 = 1.5). Note that the values of α1,2 and
ν1,2 change with γ although the qualitative feature remains
invariant.

(ii) AFM ↔ DM transition: Similar to the case of AFM
↔ PM transition, in the thermodynamic limit, the AFM
↔ DM transition is signaled by a nonanalyticity in the
first derivative of LN or QD, with respect to either of λ1

and λ2. It is interesting to investigate how the position of
the QPT point, as determined by the position of the sharp
peak in the variation of the derivatives of LN and QD with
respect to either λ1 or λ2, changes with a variation in the
system size. In order to do so, one may try to determine
the canonical equilibrium state at zero temperature by using
the same methodology as in the case of the AFM ↔ PM
transition. However, due to the approximations involved in
determining the zero-temperature state, in the present case,
LN and QD, as functions of either of λ1 and λ2, exhibit
finite jumps in values at the QPT point, thereby forbidding
a finite-size analysis in a similar fashion as in the previous
case (for a discussion on the behavior of the finite jumps, and
a figure, see Appendix E). Therefore, we employ the exact
diagonalization technique in the present case, and determine
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FIG. 3. Finite-size scaling using LN and QD in (a) AFM ↔ PM and (b) AFM ↔ DM phase transitions. (a) The figure in the left (right) panel
depicts the variation of ∂L/∂λ1 (∂D/∂λ1) with λ1 across the AFM ↔ PM QPT for different values of N , with λ2 = 1.5 and γ = 0.8. (Insets)
Corresponding variations of ln |λc

1(N ) − λc
1(∞)| (both numerical data and fitted line) as a function of ln N . (b) The figure in the left (right)

panel depicts the variation of LN (QD) with λ2 across the AFM ↔ DM QPT for different values of N , with λ1 = 1.5. (Insets) Corresponding
variations of ln |λc

2(N ) − λc
2(∞)| (both numerical data and fitted line) as a function of ln N . All the quantities plotted are dimensionless, except

LN which is in ebits and QD which is in bits.

the nondegenerate ground state of the Hamiltonian given in
Eq. (1) by using Lanczos algorithm [57]. The reduced density
matrix correspponding to a nearest-neighbor even-odd spin
pair, labeled by “eo,” can be determined by tracing out all

TABLE I. Finite-size scaling exponents and fitting parameters
for the QPT corresponding to AFM ↔ PM transition. For all the
computations, γ = 0.8.

Tuning parameter: λ1

λ2 LN QD

ν1 = 1.645 ± 0.013 ν1 = 1.292 ± 0.093
0.0

ln α1 = 2.842 ± 0.070 ln α1 = 1.851 ± 0.631
ν1 = 2.278 ± 0.053 ν1 = 1.489 ± 0.027

1.5
ln α1 = 3.828 ± 0.230 ln α1 = 1.507 ± 0.175

Tuning parameter: λ2

λ1 LN QD
ν2 = 1.941 ± 0.042 ν2 = 1.507 ± 0.008

1.5
ln α2 = 3.614 ± 0.204 ln α2 = 2.380 ± 0.052

the other spin variables from the ground state. Using the
reduced density matrix, the nearest-neighbor LN and QD can
be computed. Here, for the purpose of discussions, the first
derivatives of LN and QD, with respect to λ2, by keeping
λ1 fixed at 1.5, are plotted in Fig. 3(b). We find that in
the case of the AFM ↔ DM transition also, the position of
the QPT at a finite N approaches the actual QPT point at
N → ∞ according to an equation similar to Eq. (12), where
the constants are denoted by α1,2 and ν1,2. For example, for
λ1 = 1.5, the corresponding values of these fitting parameters
are ν2 = 2.525 ± 0.084, ln α2 = 2.077 ± 0.220 (for LN), and
ν2 = 1.153 ± 0.036, ln α2 = −0.568 ± 0.092 (for QD).

B. Factorization line: Separable ground state

We now discuss the occurrence of the separable ground
state in the AFM phase of the model which can observed
by considering the variation of bipartite as well as multipartite
entanglement as functions of λ1 and λ2 (Fig. 2). The symmetry
of the Hamiltonian [Eq. (1)] under PBC motivates one to look
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for a separable eigenstate of the form

|ψ〉 =
N
2 −1∏
i=0

∣∣ψo
2i+1

〉⊗ ∣∣ψe
2i+2

〉
, (13)

having a Néel-type order, where |ψo(e)
α 〉 are the states of the

spins on the odd (even) site α. The Hamiltonian can be written
as H =∑(N/2)−1

i=0 (Hoe
2i+1,2i+2 + Heo

2i+2,2i+3), where Hoe is the
two-site Hamiltonian given by

Heo = J

{
1 + γ

4
σx

e σ x
o + 1 − γ

4
σy

e σ y
o

}
+ h+

2
σ z

e + h−
2

σ z
o ,

(14)

with h± = h1 ± h2, defined on an even-odd pair of sites,
and Hoe can be obtained from Heo straightforwardly by
interchanging the site indices. Using Eq. (13), the lowest
separable eigenenergy can be obtained as

Esep
min = min

|ψe〉,|ψo〉
〈ψ |H |ψ〉

=
N
2 −1∑
i=0

min
|ψe〉,|ψo〉

〈ψe|〈ψo|Heo
2i+1,2i+2|ψe〉|ψo〉

+
N
2 −1∑
i=0

min
|ψo〉,|ψe〉

〈ψo|〈ψe|Hoe
2i+2,2i+3|ψo〉|ψe〉

= N min
|ψe〉,|ψo〉

〈ψe|〈ψo|Heo|ψe〉|ψo〉,

where we have used the fact that Heo and Hoe are energetically
equivalent. This leads to a minimum separable energy per site
ε, given by ε = min

|ψe〉,|ψo〉
〈ψe|〈ψo|Heo|ψe〉|ψo〉. Without any

loss of generality, one can choose the states |ψe(o)〉 to be

|ψe(o)〉 = cos
θe(o)

2
|0〉 + exp iφe(o) sin

θe(o)

2
|1〉, (15)

where θe(o) and φe(o) are real parameters such that 0 � θe(o) �
π and 0 � φe(o) � 2π . The two-spin reduced density matrix
ρeo, corresponding to the odd-even pair of spins, is then
given by ρeo = ρe ⊗ ρo, where ρe(o) = |ψe(o)〉〈ψe(o)|. Since
the Hamiltonian in Eq. (1) is a real one, we expect ρeo = ρ∗

eo,
leading to

ε = min
θe,θo

1

4

{
J (1 + γ ) sin θe sin θo + h+ cos θe + h− cos θo

}
,

(16)

where the optimization over the states |ψo(e)〉 is reduced to an
optimization over the real parameter space of θo and θe. The
minimum is achieved for

θe = tan−1

{
± 1

h+

√
J 4(1 + γ )4 − h2+h2−
J 2(1 + γ )2 + h2+

}
,

θo = tan−1

{
± 1

h+

√
J 4(1 + γ )4 − h2+h2−
J 2(1 + γ )2 + h2−

}
. (17)

However, the state |ψ〉 [Eq. (13)] would be the ground
state of the Hamiltonian if ε = ε0, the ground-state energy of
the two-spin Hamiltonian Heo [44,45]. We find that the ground

state of Heo is nondegenerate, with a ground-state energy given
by ε0 = 1

2

√
J 2 + 4h2

2. Determination of ε using the values of
θo(e), and equating to ε0, leads to the following condition:

h2
1 = h2

2 + J 2(1 − γ 2), (18)

equivalently λ2
1 = λ2

2 + (1 − γ 2), which represents a line on
the (λ1,λ2) plane for fixed values of γ . The ground state of the
Hamiltonian, at every point on this line on the (λ1,λ2) plane, is
separable, represented by a line of vanishing entanglement
(Fig. 2). We call this line as factorization line. At any
point on this line, the minimum eigenvalue of Ĥp, given by
−ω4

+(p), becomes independent of φp, as demonstrated for
(λ1 = 0.6, λ2 = 0) with γ = 0.8 in Fig. 1(c). This feature is
in contrast to the φp dependence of −ω4

+(p) at the QPT points
[see Figs. 1(a) and 1(b)].

C. Effect of temperature on quantum correlations

Quantum correlations are known to be fragile quantities,
and are expected to decay with increasing thermal noise in
the system. Moreover, absolute zero temperature is hard to
be achieved in a real experiment. It is therefore interesting
to investigate the effect of thermal fluctuations on the bipar-
tite quantum correlations corresponding to the Hamiltonian
[Eq. (1)]. The patterns of LN and QD as functions of λ1

and λ2, for βJ = 5 [Fig. 4(a)] and βJ = 2 [Fig. 4(b)] are
plotted in Fig. 4. In the case of LN, we observe that starting
from the factorization line at β → ∞, a zero-entanglement
region grows with increasing temperature, and spans the entire
AFM phase at sufficiently high temperature. Note here that the
zero-entanglement region at βJ > 0 can also be found in the
PM phase, while it is absent in the DM phase even at high

FIG. 4. Variation of LN and QD as functions of the transverse
magnetic field h1 and the alternating field h2 in the thermodynamic
limit at (a) βJ = 5 and (b) βJ = 2, and γ = 0.8. The zero-
temperature phase boundaries λ2

1 = λ2
2 + 1 (PM ↔ AFM) and λ2

2 =
λ2

1 + γ 2 (AFM ↔ DM) are also plotted for comparison, represented
by the dashed and dotted-dashed lines, respectively. All the quantities
plotted are dimensionless, except LN and QD, which are in ebits and
bits, respectively.
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temperature. A few interesting features emerge from these
results.

(i) The rate of spreading of the vanishing entanglement
region with increasing temperature is found to be much slower
towards the PM phase compared to that inside the AFM phase.
This can be easily perceived from the fact that with the increase
of temperature from βJ = 5 to 2, the entanglement vanishes
in the entire AFM phase, but covers only a small region in
the PM phase. It implies that bipartite entanglement is more
fragile in the AFM region compared to the other phases.

(ii) Remarkably, bipartite entanglement in the DM phase
is the most robust against increasing thermal noise among the
three phases.

(iii) The effect of thermal noise on QD is less drastic
compared to that in the case of LN, as observed from Fig. 4.
With increasing temperature, the minimum value of QD
along the line λ1 = −λ2 increases. However, the qualitative
distribution of QD over the (λ1,λ2) plane remains unchanged.

Remark 1. We choose βJ = 2.0 and treat as high tem-
perature since bipartite entanglement of the AFM phase has
been destroyed at this temperature. However, if one increases
temperature beyond βJ = 2, LN in the entire region of (λ1,λ2)
plane becomes zero.

Remark 2. For the purpose of demonstration, we have kept
the anisotropy parameter constant to a fixed value γ = 0.8.
One must remember that the definition of “high” βJ depends,
along with the other system parameters, on the anisotropy
parameter also. However, the qualitative features, such as
the robustness of bipartite entanglement in the DM phase
compared to other phases, or the fragility of LN in the AFM
phase remain unchanged with a change in the value of the
anisotropy parameter.

1. Monotonicity versus nonmonotonicity

Up to now we have discussed the variation in the pattern
of entanglement and QD with the increase of temperature. We
now report the existence of nonmonotonic variation of LN and
QD as functions of temperature in this model. Such nonmono-
tonicity is known for other quantum many-body Hamiltonians,
including the transverse-field XY model [25–27]. Since the
model under consideration possesses a different phase diagram
than the XY model, nonmonotonicity of quantum correlations,
especially entanglement with temperature, may reveal some
additional feature. We will show that this is indeed the
case. For fixed choices of (λ1,λ2), typical variation profiles
exhibiting nonmonotonicity of LN and QD with temperature,
as shown in Fig 5. The importance of nonmonotonic behavior
of bipartite quantum correlation lies in the fact that even
at high temperature, which is much easier to attain in the
laboratory, a higher value of quantum correlations is obtained
compared to the state with lower temperature. This has
potential applicability in the realization of those quantum
protocols in the laboratory, which use quantum correlations
as resources.

It is therefore necessary to map the occurrence of non-
monotonic variations of bipartite quantum correlations over
the phase plane of the model, so that the useful regions at
finite temperature can be recognized. Let us consider a set
of values in the space of the system parameters, denoted by

FIG. 5. Nonmonotonic variations of LN (left panel) and QD (right
panel) with temperature. We choose λ1 = −0.9, λ2 = 0.25 for LN,
and λ1 = −0.4, λ2 = 0.7 for QD. Here, γ = 0.8. LN and QD are
measured, respectively, in ebits and bits. T/J is dimensionless,

{λ1,λ2,γ }Q, which results in a nonmonotonic variation of the
bipartite quantum correlation measure Q, with the variation
of temperature. We call such a set as the “nonmonotonicity
generator” (NG). Figure 6 exhibits the NGs for different values
of γ , especially γ = 0.2, 0.5, 0.8, and 1.0, on the (λ1,λ2) plane,
when LN and QD are considered to be the bipartite quantum
correlation measures. We observe that in the case of LN, for
low values of γ , the NGs are confined to the AFM phase and
narrow regions inside the PM phase, in the vicinity of the
AFM ↔ PM QPT line. At γ = 0.2, the factorization lines,
denoted by the solid line on the (λ1,λ2) plane, almost coincide
with the AFM ↔ PM QPT line, which is represented by the
dashed lines. With increasing value of γ , the factorization lines
get separated from the AFM ↔ PM transition lines, and the
NGs span the region confined by these lines, as can be seen in
the case of γ = 0.5 and 0.8. At γ = 1.0, which represents the
Ising model in transverse-uniform and transverse-alternating
fields, the factorization lines meet each other, and almost entire
AFM phase is filled by the NGs. Remarkably, the DM phase
remains completely free from NGs for all values of γ .

The behaviors of QD and LN, with respect to nonmono-
tonicity, are somewhat complementary to each other for low
and high values of the anisotropy parameter. At γ = 0.2, NGs
for QD span the PM phase, which is in contrast to the case
of LN, where NGs can be found in the PM phase only in the
vicinity of the AFM ↔ PM phase boundary. On the other
hand, for γ = 1.0, in the case of LN, NGs fill almost the entire
AFM phase while being absent in the PM and the DM phases,
while in the case of QD, nonmonotonicity occurs in a very
small region of the AFM and DM phases. In Fig. 7, we map,
on the (λ1(2),βJ ) plane, the regions where LN increases with
decreasing the value of β which confirms the findings in Fig. 6.
To generate the figures corresponding to the (λ1(2),βJ ) plane,
we have kept the value of λ2(1) fixed.

Note. In a system of finite number of spin- 1
2 particles,

use of the open boundary condition (OBC) instead of the
PBC changes the phase boundaries only slightly, and the
AFM region on the (λ1,λ2) plane shrinks. With an increase
in the system size, the difference between the phase portraits
corresponding to the PBC and the OBC reduces. Note here that
each of the pairs of nearest-neighbor spins in the quantum spin
model described by Eq. (1) consist of an even and an odd spin.
In the case of the PBC, there is a special type of translational
symmetry in the model, such that ρi,i+1 = ρi+2,i+1, where i is,
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FIG. 6. Map of the regions over the (λ1,λ2) plane where nonmonotonic behavior of LN (figures in top horizontal panels) and QD (figures in
bottom horizontal panels), with variation of temperature (marked by the shaded regions). The zero-temperature phase boundaries λ2

1 = λ2
2 + 1

(PM ↔ AFM), λ2
2 = λ2

1 + γ 2 (AFM ↔ DM), and the factorization line [λ2
1 = λ2

2 + (1 − γ 2)] are also plotted for comparison, λ1 and λ2 are
dimensionless while LN and QD are in ebits and bits, respectively.

say, an odd site. Hence, LN is same for all the nearest-neighbor
spin pairs, while due to this property, quantum discord is the
same only when measurement is performed on the same type
of spin (even or odd) in all nearest-neighbor spin pairs. This
implies that under PBC, investigation of the bipartite quantum
correlations belonging to any one of the nearest-neighbor spin
pairs suffice. On the other hand, for complete characterization
of the static and dynamical behavior of nearest-neighbor
bipartite quantum correlations in a system of N spins under
OBC, computation of bipartite quantum correlation measures
corresponding to N/2 [(N − 1)/2] nearest-neighbor pairs,
depending on whether N is even (odd), is necessary. However,
the broad qualitative features of the factorization line and the
phase boundaries, as reported in this paper, remain unaltered
even under OBC for finite-sized systems.

V. DYNAMICS OF QUANTUM CORRELATIONS

So far, we have considered the static characteristics of
quantum correlations in different phases of the 1D anisotropic
XY model in uniform and alternating transverse field. In
this section, we aim to study the behavior of quantum
correlations and their statistical mechanical properties under
time evolution. In order to compute nearest-neighbor LN
and QD of TES, the two-spin reduced density matrix has
to be determined, which, in turn, requires the evaluation
of single-site magnetizations and two-site spin correlation
functions. This can be done by utilizing the fact that the
evolutions of the subspaces in the momentum space (see Sec. II
and Appendix A) are independent of each other. This leads
to ρ̂p(t) = e−iĤpt ρ̂p(0)eiĤpt , where Ĥp is the Hamiltonian in
the pth momentum subspace at t > 0, and ρ̂p(0) = ρ̂

p
eq(0).

The time-evolved single-site magnetizations and two-site spin

correlation functions are given by

mz
o(e)(t) = 2

N

N/4∑
p=1

Tr
[
m̂z,o(e)

p ρ̂p(t)
]
/Tr[ρ̂p(t)],

cαβ(t) = 2

N

N/4∑
p=1

Tr
[
ĉαβ
p ρ̂p(t)

]
/Tr[ρ̂p(t)]. (19)

Note here that Eq. (19) addresses systems of finite size
N . In the thermodynamic limit, the relevant quantities are
obtained by replacing the sum with an proper integral, as
discussed in Sec. IV. Note also that unlike the CES, cxy(t)
and cyx(t) corresponding to TES do not vanish, which leads to
a contribution in the czz, given by

czz(t) = mz
o(t)mz

e(t) − cxx(t)cyy(t) + cxy(t)cyx(t). (20)

A. Ergodicity and ergodicity score

Let us now discuss the statistical mechanical properties,
specifically the ergodicity of bipartite quantum correlations,
in the case of the Hamiltonian given in Eq. (1). We start
with a brief description and quantification of ergodicity of
a generic quantum correlation measure Q. A physical quantity
is said to be ergodic if the time average of the quantity is
the same as its ensemble average. In the present scenario, the
bipartite quantum correlation Q is said to be ergodic if there
exists a temperature T at which the “large-time” time-averaged
value of Q in the TES, given by Q∞(T ,λ1,λ2), coincides with
Qeq(T ′,λ∞

1 ,λ∞
2 ), the value ofQ in the CES at temperature T ′ at

t → ∞. Here, λ1(2)(t → ∞) = λ∞
1(2). We shall shortly discuss

what we mean by “large” time. Using the above definitions,
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FIG. 7. Map of the regions on the (λ1(2),βJ ) plane, where LN
decreases with an increasing βJ , with the value of λ2(1) being fixed
at (a), (d) λ2(1) = 0.4, (b), (e) λ2(1) = 1.2, and (c), (f) λ2(1) = 2.0. All
the other lines are same as Fig. 6. Here, λ1 and λ2 are dimensionless
while βJ has the dimension of energy with kB = 1.

one can define an “ergodicity score” as [52,53]

ηQ
S = max

[
0,Q∞(T ,λ1,λ2) − max

T ′
Qeq

(
T ′,λ∞

1 ,λ∞
2

)]
,

(21)

where S is the set of all system parameters {λ1,λ2,γ }, and
the maximization inside the parentheses is over the physically
relevant range of T ′, which is up to an order of magnitude of
T . Note that the value of the ergodicity score depends on all
the relevant system parameters, viz., λ1, λ2, and γ , which is
indicated by the subscript S. As evident from the definition, a
nonzero value of ηQ

S implies the nonergodicity of Q, while the
vanishing ηQ

S indicates that the quantity is ergodic.
In the case of bipartite quantum correlations, we consider

the time average of the quantity at “large” time tL. The
definitions of large time may vary depending on the situation
in hand. In general, we call a time instant tL to be “large” if
any one of the following scenarios occur.

(a) Q saturates to Qc for t � tL, and remains constant at
Q = Qc for t � tL.

FIG. 8. Ergodicity of LN and QD for three specific cases. Case
I: (h1 = 0.0, h2 = 0.15). Here, both LN and QD are ergodic. Case
II: (λ1 = 1.0, λ2 = 2.0). Here, LN is ergodic, but QD is nonergodic.
Case III: (λ1 = 0.15, λ2 = 0.0). Here, QD is clearly ergodic, while
the status of LN is inconclusive, and depends on the numerical
accuracy. For all the cases, initial temperature at t = 0 is taken to be
βJ = 100 at γ = 0.8. LN and QD are in ebits and bits, respectively,
while βJ is dimensionless.

(b) Q oscillates for t � tL, such that δQ � δ. Here, δQ is
the amplitude of fluctuation in the values ofQ for t � tL, and δ

is a small quantity whose value provides the required precision
in determining Q.

(c) For t � tL, δQ has a finite value, which remains constant
in time.
Evidently, the time-average is not required in the case of (a)
and (b).

To determine ergodicity of the bipartite quantum correla-
tions, as measured by LN and QD, we compute the value of
ηL
S and ηD

S , corresponding to LN and QD, respectively, for the
points on the (λ1,λ2) plane, with different values of γ . The
initial CES at t = 0 is chosen to be the one with βJ = 100.
The values of both LN and QD tend to show the behavior
described in (c) for J t → J tL, which we found to be ∼100π .
To determine the time-averaged values of LN and QD, which
depend on the choice of the values of the system parameters,
we consider an interval of 20π , starting from J t = 100π .
We analyze the ergodicity properties of LN and QD via three
specific cases, as follows.

In the first case (Case I), we take λ1 = 0.0, λ2 = 0.15,
which is a point in the AFM region. In the left panel of Fig. 8,
the time-averaged value of LN at large time, starting from a
CES with βJ = 100 at J t = 0, is represented by a dashed line,
which is intersected by the graph of LN varying with β (solid
line). This, according to Eq. (21), implies that LN is ergodic
in this case. Similar conclusion about QD can be drawn, as
depicted from the right panel of Fig. 8. However, QD does not
always remain ergodic, as can be seen from Case II. Here, we
take a point in the DM phase, given by λ1 = 1, λ2 = 2, and
see that the time-averaged value of LN at large time is zero
(left panel, Fig. 8), leading to ergodicity of LN. In contrast, the
time-averaged QD at large time, depicted by the double-dotted
line in the right panel of Fig. 8, does not coincide with QD of
any CES for all βJ (solid line). Hence, QD is nonergodic in
this case.

The above examples naturally lead to the question as to
whether bipartite entanglement in the present model is always
ergodic. To verify this, we perform extensive numerical search
in the parameter space of (λ1,λ2). We find that that bipartite
entanglement remains ergodic over the entire (λ1,λ2) plane,
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FIG. 9. Ergodicity score ηD
S , corresponding to QD, as a function

of λ1 and λ2 for γ = 0.5 and 0.8. The phase boundaries are the same
as in Fig. 6. Here, λ1,λ2 are dimensionless, and ηD

S is in bits.

up to our numerical accuracy (accurate up to the third decimal
place). However, there are very small sets of values of λ1

and λ2 for which the status of ergodicity of LN remains
inconclusive. One such instance is presented by a third case,
Case III. Here, λ1 = 0.15 and λ2 = 0.0, representing a point
in the AFM phase. The corresponding time-averaged value of
LN is shown by dotted-dashed line in the left panel of Fig. 8.
We find that ηL

S , corresponding to LN, is zero up to the third
decimal place, the point to which we claim our data to be
accurate. However, there is a possibility of obtaining nonzero
values of ηL

S with increased accuracy, which would imply that
LN is nonergodic at (λ1 = 0.15, λ2 = 0.0). Our numerical
search suggests that the area of such regions on the (λ1,λ2)
plane is negligibly small (cf. [52]). From exclusive numerical
simulations we possibly conclude that except for λ1,λ2 ≈ 0,
bipartite entanglement is always ergodic irrespective of γ and
low values of β of the initial state up to the numerical accuracy.
In contrast, QD exhibits nonergodicity in the Case III. To
investigate the ergodicity of QD over the (λ1,λ2) plane, we
compute ηD

S , corresponding to QD, as a function of λ1 and
λ2. We find that the region of nonergodicity is small for small
γ , and grows over the (λ1,λ2) plane, when the value of γ is
increased. This can be understood from Fig. 9, where the plots
of the values of ηD

S as function of λ1 and λ2 for different values
of γ are depicted. We have also plotted the zero-temperature
QPT lines and the separable lines for comparison. Note that
even for fairly high values of γ , QD in almost the entire AFM
phase remains ergodic, while the nonergodicity in QD is most
prominent in the DM phase near the AFM ↔ DM QPT line.

We conclude the discussion on ergodicity with a description
of the variation of time-averaged LN and QD at large time
(J t � J tL). Figure 10 depicts the landscape of time-averaged
values of LN and QD over the (λ1,λ2) plane, where we have

FIG. 10. Plot of the time-averaged LN (left panel) and QD
(right panel) at large time as a function of λ1 and λ2, which are
dimensionless. The phase boundaries are same as Fig. 6. LN and QD
are measured, respectively, in ebits and bits.

chosen γ = 0.8 for discussion, and the initial state of the time
evolution to be the CES at βJ = 100. It is clear from the figure
that at J t � J tL, LN persists only in the AFM region, while
it vanishes completely in the entire PM and DM phases. One
must note here that the definition of ergodicity score in Eq. (21)
and the fact that entanglement may decrease with an increasing
βJ imply that probability of finding a set of parameters, for
which LN becomes nonergodic, is higher in the AFM phase
where the time-averaged LN at large t has a nonzero value.
This is in agreement with the Case III reported above since
the parameter values (λ1 = 0.15, λ2 = 0.0) are in the region
of the (λ1,λ2) plane, where time-averaged value of LN at large
time is high.

B. Dynamics at small time

The question of ergodicity of a physical quantity is
important from the point of view of statistical mechanics. On
the other hand, the information-theoretic aspects demands the
study of quantum correlation in the dynamics with small time.
We fix the range to 0 � J t � 4π , which is 25% of the value
of J tL. Figures 11 and 12 depict the bird’s-eye view of the
landscapes of LN and QD over the (λ1(2),J t) plane, where λ2(1)

is constant and t is in the range of small time. For typical fixed

FIG. 11. Field-time landscape of LN (left panels) and QD (right
panels), where λ1 is chosen to be the varying field. Three different
values of λ2 have been chosen, viz., (a) λ2 = 0, (b) λ2 = 0.8, and (c)
λ2 = 1.6 with γ = 0.8. For comparison, we mark the different phases
and the factorization line on the λ1 axes (at β → ∞), indicated by
the horizontal lines, same as Fig. 6. J t , λ1, and λ2 are dimensionless.
LN and QD are, respectively, in ebits and bits.
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FIG. 12. Field-time landscape of LN (left panels) and QD (right
panels). (a) λ1 = 0, (b) λ1 = 0.8, and (c) λ1 = 1.6. All other
parameters and lines are same as Fig. 11.

values of the set of system parameters given by (λ1,λ2), both
LN and QD are found to collapse and revive nonperiodically.
It is clear from the Figs. 11 and 12 that the collapse of LN is
more frequent than the collapse of QD at short time, although
LN possesses much higher value.

VI. DISCUSSIONS

To summarize, we have considered a one-dimensional
anisotropic XY chain of spin- 1

2 spins, in the presence of a
uniform and an alternating transverse field whose direction
depends on whether the lattice site is even or odd. The
model, via a Jordan-Wigner transformation, can be mapped
onto one-dimensional two-component Fermi gas defined on
an optical lattice, constituted of two sublattices consisting
of the even and the odd sites. Although the analytical
treatment of the model is similar to the well-known XY

model, the system possesses a dimer phase apart from the
paramagnetic and antiferromagnetic phases. We determine
the singe-site magnetizations and two-site spin correlation
functions corresponding to a nearest-neighbor spin pair in
canonical equilibrium state and the time-evolved state of the
model, and determine the nearest-neighbor density matrix.
We study the static and dynamical characteristics of nearest-
neighbor entanglement quantified by LN and by investigating
their variations with relevant system parameters, temperature,
and time. We determine the finite-size scaling exponents

for the entanglement in the vicinity of the QPTs at zero
temperature of the model. At finite temperature, we show
that against increasing temperature, the bipartite entanglement
is most fragile in the AFM phase, while being the most
robust in the DM phase. We also demonstrate the occurrence
of nonmonotonic variation of bipartite entanglement with
temperature. We map the regions in different phases of the
model on the plane of the chosen system parameter for which
nonmonotonic variations of entanglement are found. The trend
of QD which is different from entanglement in the AFM phase,
the region of nonmonotonicity grows with anisotropy, and
covers almost the entire AFM phase when anisotropy is high.
However, the dimer phase remains completely free of such
region for LN in the case of both high and low values of
the anisotropy parameter has also been investigated and the
measure found to be a tool for identifying phases present in
this model. We find that when anisotropy in the system is low,
nonmonotonicity for QD occurs mostly in the paramagnetic
phase, while at high anisotropy, such regions shrink drastically.

We also consider the dynamics of the bipartite quantum
correlations, as measured by LN and QD. We address the
question of ergodicity of the bipartite correlations by looking
into the ergodicity score corresponding to the chosen quantum
correlation measure. We show that if the canonical equilibrium
state at a very low temperature is chosen to be an initial state
of the evolution, up to our numerical accuracy, entanglement
remains ergodic over the entire phase plane of the system.
On the other hand, QD can be both ergodic as well as
nonergodic, suggesting an “ergodic to nonergodic” transition
in the space of system parameters. Benchmarking the time at
which the dynamics of the quantum correlations equilibrates,
we also define a range of short time, and discuss the short-time
dynamics of LN and QD for the model in focus.
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APPENDIX A: DIAGONALIZATION
OF THE pth SUBSPACE

The Hamiltonian Ĥp that acts on the pth subspace of
dimension 16 can be block-diagonalized by a choice of basis
{|ψi〉 : 1, . . . ,16}, given by

|ψ1〉 = a†
pb†p|0〉, |ψ2〉 = a

†
−pb

†
−p|0〉, (A1)

|ψ3〉 = a†
p|0〉, |ψ4〉 = b†p|0〉,

(A2)
|ψ5〉 = a†

pa
†
−pb†p|0〉, |ψ6〉 = a†

pb†pb
†
−p|0〉,

|ψ7〉 = a
†
−p|0〉, |ψ8〉 = b

†
−p|0〉,

(A3)
|ψ9〉 = a†

pa
†
−pb

†
−p|0〉, |ψ10〉 = a

†
−pb†pb

†
−p|0〉,

|ψ11〉 = a†
pb

†
−p|0〉, |ψ12〉 = a

†
−pb†p|0〉, |ψ13〉 = a†

pa
†
−p|0〉,

|ψ14〉 = b†pb
†
−p|0〉, |ψ15〉 = a†

pa
†
−pb†pb

†
−p|0〉, |ψ16〉 = |0〉,

(A4)
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where |0〉 denotes the vacuum state. Note that the above sets of basis block-diagonalize Ĥp into four blocks of dimensions 2, 4, 4,
and 6, such that Ĥp =⊕4

k=1 Ĥ k
p , which explains the above distribution of the basis vectors into four groups, given by (A1)–(A4).

Using the form of Ĥp [Eq. (4)] and Eqs. (A1)–(A4), Ĥ 1
p is found to be a null matrix of dimension 2, while Ĥ 2

p = Ĥ 3
p , with

Ĥ 2
p =

⎡
⎢⎣

−h1 − h2 J cos φp −iJ γ sin φp 0
J cos φp −h1 + h2 0 −iJ γ sin φp

iJγ sin φp 0 h1 − h2 −J cos φp

0 iJ γ sin φp −J cos φp h1 + h2

⎤
⎥⎦ (A5)

and

Ĥ 4
p =

⎡
⎢⎢⎢⎢⎢⎣

−2h1 iJ γ sin φp −iJ γ sin φp 0 0 0
−iJ γ sin φp 0 0 J cos φp J cos φp −iJ γ sin φp

iJγ sin φp 0 0 −J cos φp −J cos φp iJγ sin φp

0 J cos φp −J cos φp −2h2 0 0
0 J cos φp −J cos φp 0 2h2 0
0 iJ γ sin φp −iJ γ sin φp 0 0 2h1

⎤
⎥⎥⎥⎥⎥⎦. (A6)

Hence, diagonalization of the pth subspace of dimension
16 reduces to the diagonalization of the irreducible op-
erators {Ĥ k

p , k = 1,2,3,4}. Note that Ĥ 2
p and Ĥ 3

p provide
four distinct eigenvalues in the spectrum of Hp, each
of which is twofold degenerate. These four eigenvalues
are given by ±ω±

2 (p) where ω±
2 (p) =

√
x(p) ± 2

√
y(p).

Here, x(p) = λ2
1 + λ2

2 + cos2 φp + γ 2 sin2 φp and y(p) =
λ2

1(λ2
2 + cos2 φp) + γ 2λ2

2 sin2 φp, where λ1(2) = h1(2)/J . Two
of the six eigenvalues of Ĥ 4

p are zero, while the other
four eigenvalues are given by ±ω±

4 (p), where ω±
4 (p) =

4
√

x(p) ±
√

x(p)2 − 4y(p). Clearly, −ω+
2 (p) and −ω+

4 (p)
are the minimum eigenvalues of Ĥ 2

p and Ĥ 4
p , respectively.

It can also be checked that −ω+
4 (p) � −ω+

2 (p) irrespective of
the value of p. The ground-state energy per site is obtained by
E0 = − 1

2π

∫ π/2
0 ω+

4 (p)dp.

APPENDIX B: MEASURES
OF QUANTUM CORRELATIONS

We now briefly discuss two specific measures, namely,
logarithmic negativity and quantum discord, belonging to
entanglement-separability and quantum information-theoretic
paradigms, respectively.

Negativity and logarithmic negativity. The negativity [40]
N (ρAB), for a bipartite state ρAB , is the absolute value of the
sum of all the negative eigenvalues of ρ

TA

AB , and is given by

N (ρAB) =
∥∥ρTA

AB

∥∥
1 − 1

2
, (B1)

where ρ
TA

AB is obtained from ρAB by performing the partial
transposition with respect to the subsystem A [41]. Here,
‖ρ‖1 ≡ tr

√
ρ†ρ is the trace norm of the matrix ρ. The

logarithmic negativity (LN) [40], L(ρAB), defined in terms
of negativity, is given by

L(ρAB) = log2[2N (ρAB) + 1]. (B2)

Quantum discord. Quantum discord [43] of a bipartite
quantum state ρAB is defined as the difference between
the total correlation [42], quantified by the quantum mutual
information, and the classical correlation present in the system.

The quantum mutual information is given by

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (B3)

where ρA(B) are the local density matrices of ρAB , obtained
as ρA(B) = trB(A)[ρAB], and S(�) = −tr(� log2 �) is the von
Neumann entropy. The classical correlation of the state ρAB is
defined as

J (ρAB) = S(ρB) − S(ρB|A), (B4)

where S(ρB|A), the conditional entropy, is given by

S(ρB|A) = min
{Pi }

∑
i

piS(ρB|i). (B5)

Here, S(ρB|A) is conditioned over the measurements performed
on A via a rank-one projective measurements {Pi}, which pro-
duces the states ρB|i = 1

pi
trA[(Pi ⊗ IB)ρAB(Pi ⊗ IB)], with

probabilities pi = tr[(Pi ⊗ IB)ρAB(Pi ⊗ IB)], and IB is the
identity operator in the Hilbert space of B. From Eqs. (B3)
and (B4), quantum discord can be obtained as

D(ρAB) = I(ρAB) − J (ρAB). (B6)

APPENDIX C: TWO-SITE SPIN CORRELATORS

Similar to the Hamiltonian Ĥp, the two-site spin correlator
operator ĉαα , α = x,y, can be obtained as ĉαα = 2

N

∑N/4
p=1 ĉαα

p ,
where in the pth subspace, ĉαα

p is block-diagonalizable in
the same basis as given in Appendix A. For example, one
can obtain ĉxx = 2

N

∑N/2
i=1 σx

2iσ
x
2i+1 corresponding to an “even-

odd” pair of spins in the momentum space, such that

ĉxx
p = eiφp (b−p

†a−p − ap
†b†−p + ap

†bp + a−pbp)

+e−iφp (bp
†ap − a−p

†b†p + a−p
†b−p + apb−p).

(C1)

In the basis given in Appendix A, one can write ĉαα
p =⊕4

k=1 ĉxx,k
p , where ĉxx,1

p is a null matrix of dimension 2, and
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ĉxx,2
p , ĉxx,3

p , and ĉxx,4
p are given by

ĉxx,2
p =

⎡
⎢⎢⎣

0 eiφp −eiφp 0
e−iφp 0 0 e−iφp

−e−iφp 0 0 −e−iφp

0 eiφp −eiφp 0

⎤
⎥⎥⎦, ĉxx,3

p =

⎡
⎢⎢⎣

0 e−iφp e−iφp 0
eiφp 0 0 −eiφp

eiφp 0 0 −eiφp

0 −e−iφp −e−iφp 0

⎤
⎥⎥⎦,

ĉxx,4
p =

⎡
⎢⎢⎢⎢⎢⎣

0 −e−iφp −eiφp 0 0 0
−eiφp 0 0 eiφp eiφp −eiφp

−e−iφp 0 0 −e−iφp −e−iφp −e−iφp

0 e−iφp −eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 −e−iφp −eiφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (C2)

Similar calculation for ĉyy leads to ĉ
yy,1
p = cxx,1

p , and

ĉyy,2 =

⎡
⎢⎢⎣

0 eiφp eiφp 0
e−iφp 0 0 −e−iφp

e−iφp 0 0 −e−iφp

0 −eiφp −eiφp 0

⎤
⎥⎥⎦, ĉyy,3

p =

⎡
⎢⎢⎣

0 e−iφp −e−iφp 0
eiφp 0 0 eiφp

−eiφp 0 0 −eiφp

0 e−iφp −e−iφp 0

⎤
⎥⎥⎦,

ĉyy,4
p =

⎡
⎢⎢⎢⎢⎢⎣

0 e−iφp eiφp 0 0 0
eiφp 0 0 eiφp eiφp −eiφp

e−iφp 0 0 −e−iφp −e−iφp e−iφp

0 e−iφp −eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 e−iφp eiφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (C3)

Moreover, in the case of time evolution, the operators ĉxy and ĉyx are given by

ĉxy,2 = −i

⎡
⎢⎢⎣

0 e−iφp −e−iφp 0
−eiφp 0 0 eiφp

eiφp 0 0 −eiφp

0 −e−iφp e−iφp 0

⎤
⎥⎥⎦, ĉxy,3

p = −i

⎡
⎢⎢⎣

0 e−iφp −e−iφp 0
eiφp 0 0 eiφp

−eiφp 0 0 −eiφp

0 e−iφp −e−iφp 0

⎤
⎥⎥⎦,

ĉxy,4
p = −i

⎡
⎢⎢⎢⎢⎢⎣

0 e−iφp eiφp 0 0 0
−eiφp 0 0 −eiφp eiφp eiφp

−e−iφp 0 0 e−iφp −e−iφp e−iφp

0 e−iφp −eiφp 0 0 0
0 −e−iφp eiφp 0 0 0
0 −e−iφp −eiφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (C4)

and

ĉyx,2 = −i

⎡
⎢⎢⎣

0 −e−iφp −e−iφp 0
eiφp 0 0 eiφp

eiφp 0 0 eiφp

0 −e−iφp −e−iφp 0

⎤
⎥⎥⎦, ĉyx,3

p = −i

⎡
⎢⎢⎣

0 −eiφp eiφp 0
e−iφp 0 0 −e−iφp

−e−iφp 0 0 e−iφp

0 eiφp −eiφp 0

⎤
⎥⎥⎦,

ĉyx,4
p = −i

⎡
⎢⎢⎢⎢⎢⎣

0 e−iφp eiφp 0 0 0
−eiφp 0 0 eiφp −eiφp eiφp

−e−iφp 0 0 −e−iφp e−iφp e−iφp

0 −e−iφp eiφp 0 0 0
0 e−iφp −eiφp 0 0 0
0 −e−iφp −eiφp 0 0 0

⎤
⎥⎥⎥⎥⎥⎦, (C5)

with ĉxy,1 and ĉyx,1 being 2 × 2 null matrices.

APPENDIX D: MAGNETIZATION AND CORRELATION
FUNCTIONS IN CES

For the nearest-neighbor reduced density matrix at t = 0,
one needs to determine the single-site magnetizations mz

e

and mz
o and the diagonal elements of the correlation tensor

cαα of ρeq(t = 0). In order to do so, we exploit the fact
that the Hilbert space of the Hamiltonian [Eq. (1)] can be
decomposed into noninteracting subspaces in the momentum
space. In the pth such subspace of the momentum space, the
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FIG. 13. The figure in the left (right) panel depicts the variation of L (D) with λ2 across the AFM ↔ DM QPT for different values of N ,
with λ1 = 1.5. At the QPT point, the quantum correlations exhibit a finite jump in magnitude, given by �N . (Insets) Corresponding variations
of ln |�N | (both numerical data and fitted line) as a function of ln N . All the quantities plotted are dimensionless, except LN which is in ebits
and QD which is in bits.

CES can be written as ρ
p
eq = exp[−βĤp(t = 0)]/Zp, where

Zp = Tr{exp[−βĤp(t = 0)]} is the partition function in that
momentum subspace. Using the form of ρ

p
eq , equilibrium

expectation value of an operator Ôp can be obtained as

〈Ô〉 = 2

N

N/4∑
p=1

Tr
[
Ôpρp

eq

]/
Tr
[
ρp

eq

]
. (D1)

From the transformation scheme described in Sec. II, the
transverse magnetization operator in momentum space for an
odd (even) site can be calculated as m̂z

p = 2(c†pcp + c
†
−pc−p −

1), where c ≡ a (odd site) or c ≡ b (even site). We find
that, similar to Ĥp, the two-site correlator operators ĉαα ,
α = x,y, can be written as ĉαα = 2

N

∑N/4
p=1 ĉαα

p , where ĉαα
p can

be expanded in the same basis as described in Appendix A. The
forms of the operators ĉαα

p , in the momentum space, are given
in Appendix C. Unlike ĉxx and ĉyy , ĉzz can not be obtained
directly due to the presence of the four-fermionic terms in its
expansion, but its expectation value czz can be obtained from
the relation

czz = mz
om

z
e − cxxcyy (D2)

for the thermal state including the zero-temperature state.
Here, we denote the expectation values of the respective
operators by the same symbol without the hat. Note that in the
thermodynamic limit N → ∞, the sum in Eq. (D1) is replaced
by an integral with proper limit in the reduced Brillouin zone,
such that Eq. (D1) reads as

〈Ô〉 = 1

π

∫ π
2

0
Tr
[
Ôpρp

eq

]/
Tr
[
ρp

eq

]
dφp. (D3)

APPENDIX E: AFM TO DM TRANSITION

While investigating the AFM ↔ DM QPT, one may try
to determine the zero-temperature canonical equilibrium state
ρeo corresponding to a nearest-neighbor even-odd spin pair, by
using the methodology discussed in Sec. II B. However, due to
the approximations in the calculation, the variations of LN and

QD exhibit finite jumps at the QPT point for fixed finite values
of the system size N . This imposes a restriction in analyzing
the finite-size scaling behavior using the usual procedure as
discussed in the case of the AFM ↔ DM. To understand this
feature of the approximations properly, let us denote the value
of the quantum correlation measure (which, in the present
case, is either LN or QD) by Q−δ , when λ1(2) = λc

1(2) − δ with
arbitrarily small δ(→ 0), while the same for λ1(2) = λc

1(2) + δ

is given by Q+δ . We find the trends of absolute value of the
difference between Q±δ for a fixed value of N , denoted by �N

and it approaches zero with increasing N as

|�N | = α̃1(2)N
−ν̃1(2) , (E1)

where α̃1(2) is a dimensionless constant. Note that the subscript
“1(2)” indicates the choice of λ1(λ2) as the tuning parameter.
Insets of Fig. 13 depict the variations of ln |�N | as a function
of ln N . Values of α̃1(2) and ν̃1(2) can be estimated by fitting the
numerical data with Eq. (E1). The values of α̃ and ν̃ for LN and

TABLE II. The fitting parameters corresponding to the finite
jumps of LN and QD at the AFM ↔ DM transition point, arising out
of the approximations used in the analysis. For all the computations,
γ = 0.8.

Tuning parameter: λ2

λ1 LN QD

ν̃2 = 0.992 ± 0.010 ν̃2 = 0.893 ± 0.018
0.0

ln α̃2 = 1.357 ± 0.065 ln α̃2 = −1.453 ± 0.132
ν̃2 = 0.926 ± 0.010 ν̃2 = 0.972 ± 0.015

1.5
ln α̃2 = 0.559 ± 0.063 ln α̃2 = −0.443 ± 0.092

Tuning parameter: λ1

λ2 LN QD
ν̃1 = 0.942 ± 0.009 ν̃1 = 0.988 ± 0.013

1.5
ln α̃1 = 0.721 ± 0.054 ln α̃1 = −0.286 ± 0.082
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QD are given in Table II, where the values of λ2 (λ1) are kept
fixed at λ1 = 0 and 1.5 (λ2 = 1.5). This analysis indicates that
the approximations are too drastic to investigate the intricacies

of the AFM ↔ DM transitions in the model. However, as
expected, the effect of the approximations tends to disappear
with increasing N .
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