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Implementations of the quantum phase estimation and quantum counting algorithms with qudits are proposed.
The construction of the basic building blocks of the algorithms is described in detail and the fidelity of the quantum
counting algorithm with qubits and qudits is simulated numerically. Along with the exponential increase of the
size of the target register, the simulations with qudits demonstrate significantly higher probability of finding the
number of solutions than qubits and more consistent performance for a different number of solutions.
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I. INTRODUCTION

The algorithm for the quantum search in an unstructured
database invented by Grover [1] is one of the major milestones
in the development of quantum computation. Search algo-
rithms in databases are widely used in statistical data process-
ing, e.g., in searching for the maximum or minimum element or
for an item corresponding to other distinct criteria. The Grover
search has been demonstrated in nuclear-magnetic-resonance
(NMR) experiments with two [2–6] and three [7] qubits and
in several other physical platforms with two qubits: linear
optics [8], trapped ions [9], cavity quantum electrodynamics
(QED) [10], etc. Because the physical mechanism of Grover’s
search is wave amplitude amplification, the algorithm has been
demonstrated also in individual Rydberg atoms with eight
different levels [11] and in classical Fourier optics with 32
elements [12].

Without knowing in advance the number of solutions,
Grover’s algorithm cannot be used. To this end, the exact
number of elements, satisfying the search criteria, can be found
by the quantum counting algorithm [13,14]. The latter has been
experimentally demonstrated by Jones and Mosca [15] and Lee
et al. [16] in NMR.

A key subroutine of quantum counting is the quantum
phase estimation algorithm [17,18]. The goal of the algorithm
is to find an eigenvalue of a unitary operator while the
system remains in the corresponding eigenstate. Abrams and
Lloyd [19] have shown how the eigenvalues of a unitary
operator can be found by using the quantum Fourier transform.
Travaglione and Milburn [20] have proposed a scheme for
finding eigenstates with trapped-ion qubits. Quantum phase
estimation has been demonstrated in an NMR experiment by
Lee et al. [16].

The quantum phase estimation algorithm is an essential part
of Shor’s quantum factoring algorithm [21]. Shor’s factoring
has been tested in numerous experiments. Some examples are
the factorization of the number 15 by Vandersypen et al. [22]
in NMR, and by Politi et al. [23] in linear optics. The number
21 has been factored by Peng et al. [24] in NMR and by
Martin-Lopez et al. [25] using a photonic circuit with qubit
recycling. The largest number factored experimentally by a
quantum system is 143 by Xu et al. [26] in NMR using
adiabatic quantum computation (rather than Shor’s algorithm).

Quantum algorithms are designed for qubits—two-state
quantum systems. In this paper, we propose implementations

of the quantum phase estimation and quantum counting
algorithms with qudits—quantum systems with d states [27].
We scrutinize the construction of the basic elements of
the algorithms using ideas from an earlier proposal for
quantum search with qudits [28]. In particular, we demon-
strate numerically that the qudit quantum counting sig-
nificantly outperforms the original quantum counting with
qubits.

The motivation of the present work derives from the
growing interest in qutrits—three-state quantum systems—
and qudits in general. Beyond the obvious exponential
increase of the computational Hilbert space qudits offer a
number of advantages over qubits. For example, qudits allow
one to construct new types of quantum protocols [29,30]
and entanglement [31], noise-resistant Bell inequalities [32],
larger violations of nonlocality [33], more secure quantum
communication [34,35], and optimization of the Hilbert
space dimensionality vs control complexity [36]. Moreover,
efficient recipes for construction of the most general unitary
transformations of qutrits [37,38] and qudits [39] have been
proposed.

This paper is organized as follows. In Sec. II, the quantum
phase estimation algorithm is discussed. We review the
implementation of this algorithm with qubits in Sec. II A,
and we propose the qudit implementation in Sec. II B. In
Sec. III A we review the quantum amplitude amplification
routine in qubit quantum counting, and in Sec. III C we
introduce the qudit quantum counting. In Sec. III D, we present
numerical simulations of quantum counting with qubits and
qudits. Finally, the conclusions are summarized in Sec. IV.

II. QUANTUM PHASE ESTIMATION

In this section, the quantum phase estimation algorithm
with qubits is reviewed, and its implementation with qudits is
presented.

A. Quantum phase estimation with qubits

Consider an arbitrary unitary operator Û with an eigen-
vector |u〉 corresponding to an eigenvalue e2πiφ , where φ is
an unknown phase. The phase estimation algorithm finds this
φ [17]. In order to apply the algorithm, we need a black box,
which can calculate U 2j

, where j is an integer. For this purpose
the algorithm uses two registers: a control register A and a
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target register B. The phase φ can be expressed, with accuracy
r , by the r-bit binary fraction [40],

φ = 0.φ1φ2 . . . φr = φ1

2
+ φ2

4
+ · · · + φr

2r
. (1)

The control register A contains k qubits. Depending on
the required accuracy of estimation of φ and the required
probability of success 1 − ε (with ε being the admissible
error), k can be calculated from [17]

k � r +
⌈

log2

(
2 + 1

2ε

)⌉
, (2)

where �x� is the ceiling (round-up) of x and r is the required
number of bits (r-bit precision) to estimate φ. The initial
condition of register A is |0〉.

The target register B has n qubits with n being the number
of qubits required to store |u〉. The initial state of register B is
|u〉.

The quantum phase estimation algorithm proceeds as
follows. The first step of the algorithm is a Hadamard gate
on each of the qubits in register A in order to obtain an equal
superposition of all possible basis states [17,40]. The second
step is to apply the sequence of controlled unitary operators
U 2j

on register B, with j = 0,1,2, . . . ,k − 1. The ensuing state
of register A is [17,40]

2−k/2
( |0〉 + e2πi2k−1φ |1〉)1

( |0〉 + e2πi2k−2φ |1〉)2 · · ·

· · · ( |0〉 + e2πi20φ |1〉)
k

= 2−k/2
2k−1∑
l=0

e2πilφ |l〉. (3)

The expression (3) can be written by using binary fractions of
φ as follows:

2−k/2( |0〉 + e2πi0.φk |1〉)1( |0〉 + e2πi0.φk−1φk |1〉)2 · · ·
· · · ( |0〉 + e2πi0.φ1φ2...φk−1φk |1〉)k. (4)

The third step of the algorithm is the application of the inverse
Fourier transform to register A [17]. The outcome of it is
|φ1φ2 . . . φk〉. The fourth step is to measure the state of register
A. Register B remains in state |u〉 throughout the process
because it is an eigenstate of U .

B. Quantum phase estimation with qudits

Here we propose a recipe to build a quantum phase
estimation algorithm by using qubits in the control register A
and qudits in the target register B. Assume that the control-Û
gate has just one control qubit and one target qudit. The
control-Û gate is a unitary transformation which is applied
on the target register, depending on the state of the control
register. It acts as follows:

|0〉 |m〉 → |0〉 |m〉, (5a)

|1〉 |m〉 → |1〉Û |m〉. (5b)

Hence,
1√
2
( |0〉 + |1〉) |m〉 → 1√

2
|0〉 |m〉 + 1√

2
|1〉Û |m〉. (6)

If a qudit with dimension d > 2 is used instead of the control
qubit, the state of the target qudit will change only if the control

qudit is in state |d − 1〉,

|l〉 |m〉 → |l〉 |m〉 (l �= d − 1), (7a)

|d − 1〉 |m〉 → |d − 1〉Û |m〉. (7b)

Hence, we find (with l �= d − 1)

1√
2
( |l〉 + |d − 1〉) |m〉 → 1√

2
|l〉 |m〉 + 1√

2
|d − 1〉Û |m〉.

(8)

Therefore, only two states of the qudit (for example, state
|d − 1〉 paired with any other state) could be used in the
phase estimation algorithm. Hence using qudits in the control
register A does not provide any benefit over qubits. However,
using qudits in the target register B, which is used to store the
information, gives an exponential growth of the database by a
factor (d/2)n compared to qubits.

The steps in the quantum phase estimation with qudits
are the same as those in the algorithm with qubits, the only
difference being that the control (A) and the target (B) registers
have different dimensions.

III. QUANTUM COUNTING ALGORITHM

A. Grover search and quantum counting with qubits

The Grover search is a quantum algorithm for searching in
an unstructured database [1]. The initial state of the system is
an equal superposition of all states,

|a〉 = 1√
N

N−1∑
l=0

|l〉. (9)

This state can be constructed by preparing all qubits in state
|0〉 and applying Hadamard gates to all of them.

A crucial part of the algorithm is the Grover operator Ĝ =
R̂Ô. It consists of a quantum oracle Ô = 2 |s〉〈s| − Î (which
has the ability to recognize the solution |s〉) and a Householder
reflection R̂ = Î − 2 |a〉〈a|, which performs a reflection about
the average vector |a〉 (also known as “inversion about the
mean”). Grover’s search finds a solution after Ng repeated
applications of the Grover operator Ĝ on the initial state |a〉,
i.e., ĜNg |a〉 ≈ |s〉, where the number of iterations is

Ng =
⌊

π

2θ

⌋
≈

N
M

⌊
π

4

√
N

M

⌋
, (10)

where �x� is the floor function (the integer part of x), and

θ = 2 arcsin

√
M

N
. (11)

Here M is the number of possible solutions to the search
problem. The inequality M < N/2 must be fulfilled for the
Grover’s iteration to succeed. For large ratios N/M 
 1,
Grover’s fidelity is very close to 1. Alternatively, one can
use the deterministic version of Grover’s search, which uses
complex R̂ and Ô, for which the fidelity is exactly equal to
unity [41–43], i.e., ĜNg |a〉 = |s〉.

The probability for finding the sought state |s〉 is a
sinusoidal function of the number of iterations, hence it is
essential to know the Grover’s number Ng . Therefore, it is
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required to know the exact number of solutions M satisfying
the search conditions.

The number of solutions M can be found by the quantum
counting algorithm, which uses a single application of the
quantum phase estimation algorithm. Quantum counting uses
the eigenvectors and eigenvalues of the Grover iteration
operator Ĝ. To this end, let us denote the superposition of
all N − M states (i.e., database elements) that do not meet the
search criteria by |α〉, and the superposition of all M states
that are solutions by |β〉,

|α〉 = 1√
N − M

∑
l
|l〉, |β〉 = 1√

M

∑
l
|l〉, (12)

where the first sum runs over all nonsolutions and the second
sum over all solutions to the search problem. Obviously,

|a〉 = cos
θ

2
|α〉 + sin

θ

2
|β〉. (13)

State |a〉 can be expressed also as [44]

|a〉 = 1√
2
(e−iθ/2 |+〉 + eiθ/2 |−〉), (14)

where

|±〉 = 1√
2
( |α〉 ± i |β〉). (15)

It is a matter of simple algebra to show that Ĝ |+〉 = e−iθ |+〉
and Ĝ |−〉 = eiθ |−〉. This means that |+〉 and |−〉 are
eigenvectors of Ĝ with eigenvalues e−iθ and eiθ , respectively.
Therefore the problem of finding the number of solutions M

to the search problem translates to the problem of finding the
eigenvalues of Ĝ, i.e., the value of θ , because [cf. Eq. (11)]

M = N sin2(θ/2). (16)

The angle θ can be found by using the quantum phase
estimation algorithm with Ĝ for Û and |a〉 = Ĥ⊗n |00 · · · 0〉
for |u〉, where Ĥ⊗n is the Hadamard gate applied to all qubits.
The algorithm gives as solutions the angles θ and −θ (modulo
2π ). If the register A contains k qubits and the register B
contains n qubits, θ is found with r-bits precision and the
probability of success is at least 1 − ε, if k satisfies Eq. (2).

The size of the registers is finite, hence we obtain an
estimate of θ , rather than θ itself. Likewise, instead of the
number of solutions to the search problem M , an estimate for
M is found.

B. Quantum search with qudits

The qudit-based Grover search [28] begins with the system
initialized in the equal-weight coherent superposition |a〉 of
all basis states [cf. Eq. (9)], but with arbitrary relative phases.
The superposition |a〉 is obtained by preparing all qudits in
their state |0j 〉 (j = 1,2, . . . ,n) and applying a single-qudit
transformation F̂ on all of them. This transformation F̂

generalizes the Hadamard gate Ĥ , and only demands to drive
the single-qudit state |0j 〉 into an equal-weight superposition
state in all qubits (j = 1,2, . . . ,n),

F̂ |0j 〉 =
d−1∑
q=0

ξq |qj 〉, (17)

with |ξq | = d−1/2. Hence the first column of the matrix
representation of F̂ must contain elements of equal moduli.

An example of F̂ is the discrete Fourier transform F
(DFT). (The Hadamard gate Ĥ is the two-dimensional DFT.)
However, it is not necessary to assume that F̂ is the DFT
because the construction of DFT for d > 2 may be very

TABLE I. Results of numerical simulations of the quantum counter for the two states of register B—corresponding to θ and 2π − θ—which
have the highest probability to be obtained (third column). Register A contains from 5 to 8 qubits. Register B contains from 3 to 5 qubits or
qutrits. The number of sought elements is M = 3 in all cases. The estimate for M listed in the last column differs from this number due to the
finite size of the registers.

Qubits
Number of Number of States Total Estimate
qubits in A qubits in B in B probability of M

5 4 5 and 27 0.549 3.555
6 3 13 and 51 0.533 2.839
6 4 9 and 55 0.953 2.925
6 5 6 and 58 0.676 2.696
7 3 27 and 101 0.931 3.028
7 4 18 and 110 0.819 2.925
8 4 36 and 220 0.413 2.925

Qutrits
Number of Number of States Total Estimate
qubits in A qutrits in B in B probability of M

5 4 2 and 30 0.998 3.083
6 3 7 and 57 0.981 3.064
6 4 4 and 60 0.990 3.083
6 5 2 and 62 0.793 2.335
7 3 14 and 114 0.925 3.064
7 4 8 and 120 0.961 3.083
8 4 16 and 240 0.852 3.083
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demanding. Moreover, the DFT demands specific phase
relations between its elements, while no such relations in F̂

are required; it is only necessary to use the same F̂ in all steps.
In general, there are numerous suitable choices for F̂ [28].
There are many techniques for construction of these gates; for
example, efficient methods exist for trapped ions [45–47].

The qudit search proceeds via repeated applications of the
Grover operator Ĝ, which has the same form Ĝ = R̂Ô as for
qubits. The only difference is that in the reflection-about-the-
average operator R̂ = Ĥ⊗nÔ0Ĥ

⊗n (where Ô0 is the condi-
tional sign-flip operator of the initial state |0102 · · · 0n〉), the
Hadamard gate Ĥ is replaced by F̂ : R̂ = F̂⊗nÔ0(F̂ †)⊗n [28].

C. Quantum counting with qudits

Building upon the qudit quantum search described above
here we use a similar idea to design the qudit quantum counting
algorithm. The latter uses two registers, A and B. Register A
consists of k qubits and register B of n qudits. The initial state
of the registers is |0〉A |0〉B = |00 · · · 0〉.

The algorithms begin with the creation of an equal-weight
superposition of all basis states. Starting from the initial state
|0〉A |0〉B , we use the Hadamard gate Ĥ on register A, and the
operator F̂ on register B that transforms each qudit to an equal
superposition of its states with dimension d,

Ĥ⊗k |0〉AF̂⊗n |0〉B = 1√
2kdn

2k−1∑
j=0

|j 〉A
dn−1∑
l=0

|l〉B. (18)

The qudit quantum counting algorithm proceeds similarly
to the qubit quantum counting described above, with the
exception of the Grover operator Ĝ. As in the qudit Grover
search, the reflection-about-the-mean operator R̂ in the Grover
operator Ĝ = R̂Ô is constructed by using the operator F̂

instead of the Hadamard gate Ĥ ,

R̂ = F̂⊗nÔ0(F̂ †)⊗n, (19)

where, as before, Ô0 is the conditional sign-flip operator of
the initial state |00 · · · 0〉.

Next, qudit quantum phase estimation of the eigenvalues
of Ĝ is performed. The measurement of the state of register
A returns the values of θ and 2π − θ . Then the number of
solutions M can be calculated from Eq. (16).

D. Examples

The results of numerical simulations of quantum counting
with qubits and qutrits are shown in Table I. The control
register A contains 5 to 8 qubits, the target register B contains
3 to 5 qubits or qutrits, and the number of sought elements is 3.
It can be seen from the table that when qutrits are used instead
of qubits in register B, the probability to find the number of
solutions increases dramatically.

In order to find the solution to the quantum counting
problem, we proceed as follows. After numerical iteration of
the quantum counting algorithm with either qubits or qutrits
we arrive at a probability distribution among the 2k states of
the control register A, as the one shown in Fig. 1 for the case
when register A contains 5 qubits, register B contains 4 qubits
(top frame) or 4 qutrits (bottom frame), and the number of
sought elements is 3. Then we identify the positions of the two

FIG. 1. Simulations of quantum counting with qubits (top) and
qutrits (bottom) in register B. Plotted are the populations of the states
in the control register A. Register A contains 5 qubits (i.e., 25 = 32
states), while register B contains 4 qubits (top) or 4 qutrits (bottom).
The number of sought elements is 3. The total probability to find the
angle θ or 2π − θ is approximately 0.549 with qubits and 0.998 with
qutrits.

symmetric maxima, which give the values θ and 2π − θ . (Note
that the 2k states span the range [0,2π ], with state |00 · · · 0〉
corresponding to θ = 0 and state |11 · · · 1〉 corresponding
to θ = 2π − 2π/2k .) For example, the positions of the two
maxima in the bottom frame of Fig. 1 are 2 and 30, from
which we find the value θ = 2π × 2/25 = π/8, and hence the
number of solutions is M = 34 sin2(θ/2) ≈ 3.083, as seen in
Table I. The probability of finding the angles θ (i.e., obtaining
state |2〉) and 2π − θ (i.e., obtaining state |30〉), obtained
after numerical iteration of the quantum counting algorithm, is
about 27.4% with 4 qubits and 49.9% with 4 qutrits in register
B. The total probability (the sum of the two probabilities for θ

and 2π − θ ) for finding the number of solutions is 54.9% with
4 qubits and far greater, 99.8% with 4 qutrits—the numbers
listed in Table I. As Fig. 1 shows, for qubits the population
is distributed among several states in the control register A.
For qudits, the population is concentrated essentially in the
two states that correspond to θ and 2π − θ , hence the success
probability of the quantum counting algorithm is far greater.

Figure 2 presents a similar simulation for 6 control
qubits and 3 target qubits (top) or qutrits (bottom). Similar
enhancement of the success probability for qutrits over qubits
is observed.
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FIG. 2. Simulations of quantum counters with qubits (top) and
with qutrits (bottom). Plotted are the populations of the states in the
control register A. Register A contains 6 qubits (i.e., 26 = 64 states),
while register B contains 3 qubits (top) or 3 qutrits (bottom). The
number of sought elements is 3. The total probability to find the
angle θ or 2π − θ is approximately 0.533 with qubits and 0.981 with
qutrits.

Figure 3 presents numerical simulations of the quantum
counting success probability for various numbers of qubits in
register A and qubits or qutrits in register B versus the number
of solutions M . For the small number of qubits in the control
register A [frame (a)], the quantum counting algorithm behaves
erratically, due to the large step in θ (and hence in the number of
solutions M). Indeed, for k = 5 qubits in register A and n = 4
qubits or qutrits in register B, the step in θ is 2π/2k = π/16,
and the step in M of Eq. (16) is too large to identify the
value of M with certainty. As the number of control qubits
increases, the step in θ decreases and the quantum counting
algorithm becomes more consistent in finding the number of
solutions. The qutrit implementation delivers more consistent
results, with higher probability than the qubit implementation.
The latter works relatively well only for a small number of
solutions M , while the qutrit implementation remains reliable
for much larger M .

In general, the quantum counting algorithm performs well if
the number of states in register A, i.e., 2k , is significantly larger
than the number of states in register B, i.e., dn, so that the step
in the value of M is sufficiently small (	M � 1). At the same
time, the sizes of the registers A and B should be sufficiently
large in order to find the phase θ with good accuracy. Therefore,

FIG. 3. Numerically simulated efficiency of quantum counters
with different number of qubits in the control register A and qudits—
qubits (dark blue bars) or qutrits (light yellow bars)—in the target
register B, vs the number of solutions M . (a) 5 qubits in A, 4 qudits
in B; (b) 6 qubits in A, 3 qudits in B; (c) 6 qubits in A, 4 qudits in B;
(d) 7 qubits in A, 3 qudits in B; (e) 7 qubits in A, 4 qudits in B; (f) 8
qubits in A, 4 qudits in B.

the conditions for the qudit quantum counting algorithm are

2k 
 dn, k 
 1, n 
 1. (20)

FIG. 4. Simulations of quantum counting with 5 qubits (dark blue
bars) or 3 qutrits (light yellow bars) in register B vs the number
of solutions M to the quantum counting problem. Plotted are the
populations of the states in the control register A with the highest
probability for each value of M (i.e., the solutions to the quantum
counting problem). Register A contains 6 qubits. Despite the similar
number of elements in register B (25 = 32 for qubits vs 33 = 27
for qutrits) the qutrit implementation outperforms the one with
qubits.
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These conditions are fulfilled sufficiently well only in frames
(b), (d), (e), and (f) in Fig. 3, which is clearly reflected in the
observed quantum counting efficiencies. Moreover, because
the size of the control register A is present in the sine function
in Eq. (16), which has slow variation for small values of its
argument and fast variation for larger values, the quantum
counting algorithm performs best for small values of θ , i.e.,
for a small number of solutions M .

We note that the qudit quantum counter performs signif-
icantly better than a qubit quantum counter with a similar
register size. For example, the quantum counter with 6 qubits
in A and 3 qutrits in B (meaning 33 = 27 elements in B)
considerably outperforms the quantum counter with 6 qubits
in A and 5 qubits in B (meaning 25 = 32 elements in B), as
seen in Fig. 4.

IV. CONCLUSION

In this paper, we proposed implementations of the quantum
phase estimation and quantum counting algorithms with
qudits. Qudits are used in the target register, while the control
register still uses qubits because only two states are needed
for the conditional operations. We described the construction
of the basic building blocks of the algorithms, following ideas
from an earlier proposal for the Grover search with qudits [28].
Numerical simulations with qubits replaced by qutrits in
the target register demonstrate an increase of the quantum
counting efficiency and a higher probability of finding the
number of solutions. Besides the exponential increase of the
size of the target register qudits offer further advantages over
qubits in terms of more consistent performance.
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