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Optimal quantum cloning based on the maximin principle by using a priori information
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We propose an optimal 1 → 2 quantum cloning method based on the maximin principle by making full use of
a priori information of amplitude and phase about the general cloned qubit input set, which is a simply connected
region enclosed by a “longitude-latitude grid” on the Bloch sphere. Theoretically, the fidelity of the optimal
quantum cloning machine derived from this method is the largest in terms of the maximin principle compared
with that of any other machine. The problem solving is an optimization process that involves six unknown
complex variables, six vectors in an uncertain-dimensional complex vector space, and four equality constraints.
Moreover, by restricting the structure of the quantum cloning machine, the optimization problem is simplified
as a three-real-parameter suboptimization problem with only one equality constraint. We obtain the explicit
formula for a suboptimal quantum cloning machine. Additionally, the fidelity of our suboptimal quantum cloning
machine is higher than or at least equal to that of universal quantum cloning machines and phase-covariant
quantum cloning machines. It is also underlined that the suboptimal cloning machine outperforms the “belt
quantum cloning machine” for some cases.
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I. INTRODUCTION

In contrast with classical states, quantum states drawn from
a set that contains at least two nonorthogonal states cannot
be cloned perfectly based on the no-cloning theorem [1,2].
However, we can approximately clone an arbitrary state
with proper fidelity, or perfectly clone linearly independent
quantum states with certain probabilities [3]. The development
of quantum cloning has gone on for over 30 years, and some
theoretical [4–28] and experimental progress [29–33] has been
made in this domain.

For the sake that quantum cloning could be applied to
quantum computation and quantum information [3,34], such
as the security analysis of quantum key distribution (QKD)
protocols [35] and quantum cloning attacks to QKD [36,37],
a growing number of works have appeared in this realm
recently. The universal quantum cloning machine (UQCM)
acting on the whole Bloch sphere with one input and two
identical outputs is presented by Bužek and Hillery [4],
and the optimality of the UQCM is demonstrated by Bruß
et al. [5]. Furthermore, the 1 → 2 UQCM has also been
extended to N → M cases [6–9] and some other cases
[10–12]. Brußet al. [13] presented the phase-covariant quan-
tum cloning machine (PCQCM), of which the input state is
restricted in the “equator” of the Bloch sphere, and the fidelity
of the PCQCM is higher than that of the UQCM. The more
general situations of PCQCM also have been studied [14–19].
Hu et al. [20] analyzed the problem of 1 → 2 approximate
quantum clonings for the quantum state between two latitudes
on the Bloch sphere, namely, the “belt quantum cloning
machine” (BQCM). Bartkiewicz and Miranowicz [21] found
an optimal quantum cloning machine, which clones qubits
of arbitrary symmetrical distribution around the Bloch vector
with the highest fidelity. The probabilistic quantum cloning
machine was first proposed by Duan and Guo [22]. Some
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interesting research about quantum cloning was also presented
in Refs. [25–28]. However, there are still many important and
open problems to be taken into account for quantum cloning.

The 1 → 2 quantum cloning machines acting on the Bloch
sphere are the simplest, but they are very important ones. When
the input states span the whole Bloch sphere, the UQCM [5] is
the optimal one of the 1 → 2 quantum cloning machines, and
the cloning fidelity always equals 5/6. For the input set in a
belt of the Bloch sphere, namely, in which the quantum states
are distributed between two latitudes on the Bloch sphere,
one can use the BQCM [20] to perform quantum cloning and
obtain a better cloning quality than by using the UQCM by
taking advantage of the amplitude information of the input set.
Moreover, if the input set lies on the “equator” of the Bloch
sphere, the PCQCM [13] is advisable to get higher fidelity
than the UQCM. From the BQCM and PCQCM, we find that
a priori amplitude information can be utilized to improve
the quality of quantum cloning, and these aforementioned
quantum cloning machines could not make use of a priori
phase information.

It is quite important to study the state-dependent cloning
problem when a priori information of the cloned state is known
but not exact. We would like to ask the following question:
How do we improve the cloning fidelity in terms of a priori
amplitude and phase information of the general input set? We
suggest an optimal scheme based on the maximin principle
to perform quantum cloning by making full use of a priori
information of the general input set. Our scheme may be of
great use for quantum-cloning-based feedback controls, which
are very different from both coherent feedback controls and
measurement-based feedback controls.

It is well known that the quantum coherent feedback
and quantum-measurement-based feedback approaches have
been widely studied and several works [38–41] have recently
compared these two kinds of quantum feedback controls.
However, there exists an alternative approach of quantum
feedback control [42], which can be regarded as quantum-
cloning-based feedback control. In Ref. [42] a cloning machine
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FIG. 1. The belt area on the Bloch sphere shows the set of qubits
that are studied in the BQCM, while the block regime is the qubit set
we want to clone in an optimal way.

is served to obtain the feedback signal instead of feeding back
precisely the process output.

Without loss of generality, an input set on the Bloch sphere
could be expressed as (the block regime shown in Fig. 1)

S(α1,α2; φ1,φ2) = {|ψ〉 = α|0〉 + βeiφ |1〉,
|α1 � α � α2,φ1 � φ � φ2}, (1)

where the (relative) phase factor φ ∈ [0,2π ], and the real
amplitude factors α and β satisfy α2 + β2 = 1. In addition,
they are restricted by 0 � α1 � α2 � 1 and 0 � φ1 � φ2 �
2π . In our optimal 1 → 2 quantum cloning method, a priori
amplitude and phase information (α1,α2; φ1,φ2) of the cloned
input set could be used to design the optimal quantum cloning
machine based on the maximin principle; it is reasonable to call
such an optimal cloner an “optimal maximin quantum cloning
machine” (OMQCM). We would like to point out that the
fidelity of the OMQCM is optimal for input set S(α1,α2; φ1,φ2)
among all quantum cloning machines in theory. Furthermore,
under some proper conditions on the construction of the
OMQCM, the explicit form of the suboptimal maximin
quantum cloning machine (SMQCM) is presented in detail.
By comparing, we find that the SMQCM is better than or the
same as the UQCM and the PCQCM in terms of fidelity, and
it outperforms the BQCM for some cases. In particular, we
expect that the smaller the input set, i.e., the more information
of the input set that is given, the better one can clone each of
its states [13].

The rest of this paper is organized as follows. In Sec. II,
we present the 1 → 2 quantum cloning method based on the
maximin principle by using a priori amplitude and phase
information of the input states. By restricting the structure
of the OMQCM, we obtain the concrete form of the SMQCM
in Sec. III. From the numerical examples in Sec. IV, one can
find that our SMQCM can outperform some former proposals,
such as the UQCM, the PCQCM, and the BQCM. At last
we conclude with Sec. V. Full details of the optimization
procedure are included in Appendices A and B.

II. OPTIMAL QUANTUM CLONING METHOD

Let us begin with a brief statement of the 1 → 2 quantum
cloning process acting on the Bloch sphere [5]. A quantum
machine can be described as a unitary operator U :

|ψ〉|0〉|X〉 → U |ψ〉|0〉|X〉,

where |ψ〉 is an arbitrary input qubit of system 1, the state of
system 2 is given by a blank qubit |0〉, and the auxiliary system
x is in the state |X〉, of which the dimension is not restricted.
We denote

|�〉 = U |ψ〉|0〉|X〉.
Then the density matrix of the whole system can be written as

ρout
12x = |�〉〈�|.

By taking a partial trace, we can obtain the reduced density
matrices for systems 1 and 2, respectively:

ρ1 = Tr2x

(
ρout

12x

)
, ρ2 = Tr1x

(
ρout

12x

)
.

Usually, with the symmetry requirement that two outputs are
identical [5], namely, ρ1 = ρ2, the unitary operator U could
be defined by

U |0〉|0〉|X〉 = a0|00〉|A0〉+ b0(|01〉+ |10〉)|B0〉+ c0|11〉|C0〉,
U |1〉|0〉|X〉 = a1|11〉|A1〉+ b1(|10〉+ |01〉)|B1〉+ c1|00〉|C1〉,

(2)

where the coefficients ai , bi , and ci are complex, and the
capital letters Ai , Bi , and Ci refer to output ancilla states,
with i = 0, 1. We do not specify the dimension of the ancilla;
for |Ai〉, |Bi〉, and |Ci〉, the only condition is that they are
normalized: 〈Ai |Ai〉 = 〈Bi |Bi〉 = 〈Ci |Ci〉 = 1.

Due to the unitarity of operator U , Eq. (2) must satisfy the
following conditions:

|a0|2 + 2|b0|2 + |c0|2 = 1,

|a1|2 + 2|b1|2 + |c1|2 = 1,

c∗
1a0〈C1|A0〉 + b∗

1b0〈B1|B0〉
+ b∗

0b1〈B0|B1〉 + a∗
1c0〈A1|C0〉 = 0, (3)

where ∗ denotes the conjugation. The cloned fidelity is denoted
as

F = 〈ψ |ρ1|ψ〉. (4)

In order to obtain the OMQCM, we need to derive the
concrete parameters ai , bi , and ci of operator U , shown as
Eq. (2). It is noted that the parameters for the OMQCM in
our method are obtained based on the maximin principle by
using a priori information about the amplitude and phase of
the input set S(α1,α2; φ1,φ2), given by Eq. (1). The concrete
implementation procedures of this method are presented as
follows:

Step 1. From an arbitrary input set S(α1,α2; φ1,φ2) in
Eq. (1), we can always obtain the minimal fidelity F0 by
searching amplitude factor α and phase factor φ spaces:

F0 = min
α;φ

(F )

such that 0 � α1 � α � α2 � 1,

0 � φ1 � φ � φ2 � 2π.

(5)

Actually, F0 is an expression on the parameters ai , bi , and ci

and ancilla states |Ai〉, |Bi〉, and |Ci〉 of the cloning machine,
with i = 0,1.
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FIG. 2. Left: The input set S{α1,1; −π,π} with 1√
2

< α1 < 1 (the

Bloch sphere hat). Right: The optimal fidelity F̂ function of α2
1 .

Step 2. By tuning the parameters and ancilla states, we can
maximize F0:

F̂ = max
ai ,...;|Ai 〉,...

(F0)

such that |a0|2 + 2|b0|2 + |c0|2 = 1,

|a1|2 + 2|b1|2 + |c1|2 = 1,

c∗
1a0〈C1|A0〉 + b∗

1b0〈B1|B0〉
+b∗

0b1〈B0|B1〉 + a∗
1c0〈A1|C0〉 = 0,

〈Ai |Ai〉 = 〈Bi |Bi〉 = 〈Ci |Ci〉 = 1. (6)

Parameters ai , bi , and ci and ancilla states |Ai〉, |Bi〉, and
|Ci〉 of the OMQCM could be designed in the optimization
process. As we can see, this optimal method makes full use of
a priori information about the amplitude and phase of input
set S(α1,α2; φ1,φ2). Theoretically, the fidelity of our OMQCM
is highest in terms of the maximin principle.

In general, we may encounter the optimal quantum cloning
problem when the cloned states are in the neighborhood of a
given quantum state. We obtain a perfect solution to it by our
optimal scheme. First of all, for input set S(α,α; −π,π ) with

1√
2

< α < 1, the optimal quantum cloning machine derived
by our method is same as the result of Ref. [31]:

U |00〉 = |00〉,
U |10〉 = 1√

2
(|01〉 + |10〉). (7)

Moreover, for input states in a spherical cap, namely,
S(α1,1; −π,π ) with 1√

2
< α1 < 1, the optimal quantum

cloning machine is still the one shown in Eq. (7). The details
of the proof are given in Appendix A. The distribution of
the input set and the fidelity function of parameter α2

1 are
depicted in Fig. 2. It is shown that the more exact information
we have on the input set (the bigger parameter α1), the better
quantum cloning quality we obtain. (It should emphasized that

the optimal fidelity of our machine is bigger than 1
2 +

√
1
8 , that

of the PCQCM.)

III. SUBOPTIMAL MAXIMIN QUANTUM CLONING

In order to get an intuitive understanding, it is necessary to
obtain the analytic form of our machine. While the analytic
solution for the OMQCM is difficult to acquire for general
cases, a reasonable compromise strategy is used to derive
the analytic expression of the SMQCM (a quantum cloning
machine whose construction is restricted compared with the
OMQCM). Inspired by the UQCM and PCQCM [5,13], we
restrict the construction of the SMQCM to the simplified form
below:

U |0〉|0〉|X〉 = a|00〉|A〉 + b(|01〉 + |10〉)|A⊥〉 + c|11〉|A〉,
U |1〉|0〉|X〉 = a|11〉|A⊥〉 + b(|10〉 + |01〉)|A〉 + c|00〉|A⊥〉,

(8)

where 〈A|A〉 = 〈A⊥|A⊥〉 = 1, 〈A|A⊥〉 = 0, and the real fac-
tors a, b, and c satisfy the normalization condition

a2 + 2b2 + c2 = 1. (9)

Compared with the OMQCM, the construction-restricted
conditions of the SMQCM can be presented as

a0 = a∗
0 = a1 = a∗

1 = a,

b0 = b∗
0 = b1 = b∗

1 = b,

c0 = c∗
0 = c1 = c∗

1 = c,

|A0〉 = |B1〉 = |C0〉 = |A〉,
|A1〉 = |B0〉 = |C1〉 = |A⊥〉. (10)

Then, the fidelity shown in Eq. (4) is rewritten as

F = a2 + b2 + 2α2(1 − α2)[−a2 + c2 + 2ab + 2bc cos(2φ)].

By setting η = cos(2φ), p = 2α2(1 − α2), the expression of
fidelity could be further simplified as

F = a2 + b2 + p(−a2 + c2 + 2ab + 2bcη). (11)

Naturally, Eqs. (5) and (6) would be reduced to

F0 = min
p;η

a2 + b2 + p(−a2 + c2 + 2ab + 2bcη)

such that 0 � p1 � p � p2 � 1

2
−1 � η1 � η � η2 � 1 (12)

and

F̂ = max
a,bi ,c

(F0)

such that a2 + 2b2 + c2 = 1, (13)

where

p1 = min
α1�α�α2

2α2(1 − α2), η1 = min
φ1�φ�φ2

cos(2φ),

p2 = max
α1�α�α2

2α2(1 − α2), η2 = max
φ1�φ�φ2

cos(2φ).
(14)

It should be pointed out that F̂ is the minimal fidelity of the
SMQCM for the input set S(α1,α2; φ1,φ2).

We could obtain the analytic expression for the SMQCM
by solving Eqs. (12) and (13). Moreover, the solving process
in our proposal can be interpreted as three steps:
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(1) According to the signs of the coefficients of η and
p in Eq. (12), the parameter space a2 + 2b2 + c2 = 1 is
decomposed into nine subspaces (i,j ) with i,j = 1,2,3. Then,
we derive the analytic expression F

ij

0 in each subspace (i,j ),
respectively.

(2) In subspace (i,j ), from the corresponding expression
F

ij

0 , we can solve Eq. (13) by using the Kuhn-Tucker
method [43] to obtain F̂ ij and the parameters (a,b,c).

(3) We select the biggest one from the set {F̂ij |i,j =
1,2,3} as F̂ . It is worth pointing out that parameters (a,b,c)
corresponding to the biggest F̂ij can be used to obtain the
SMQCM.

A. Expressions of Fi, j
0 in nine parameter subspaces

From Eq. (12), one can find that the expression of F0 is
related to the signs of the coefficients of p and η. First, from the
signals of the coefficient of η, the whole parameter space a2 +
2b2 + c2 = 1 would be decomposed into three subspaces 1, 2,
and 3, namely, 2bc > 0, 2bc = 0, and 2bc < 0. In addition,
we have

if 2bc > 0

F0 = min
p1�p�p2

a2 + b2 + p(−a2 + c2 + 2ab + 2bcη1),

if 2bc = 0

F0 = min
p1�p�p2

a2 + b2 + p(−a2 + c2 + 2ab),

if 2bc < 0

F0 = min
p1�p�p2

a2 + b2 + p(−a2 + c2 + 2ab + 2bcη2).

Furthermore, by discussing the sign of the coefficient of p,
each of the three parameter subspaces could be decomposed
into three smaller subspaces. Thus the total parameter space
has been decomposed into nine subspaces (i,j ) with i,j =
1,2,3. The corresponding expressions of F

ij

0 in the nine
subspaces are listed in Table I, where

g1 = a2 + 2b2 + c2 − 1, g2 = 2bc,

g3 = −a2 + c2 + 2ab + 2bcη1, g4 = −a2 + c2 + 2ab,

g5 = −a2 + c2 + 2ab + 2bcη2. (15)

B. Optimization for Fi j
0 by using the Kuhn-Tucker method

In this section, we solve Eq. (13) in each of the nine
parameter subspaces, respectively. For subspace (i,j ) with
i,j = 1,2,3, the objective function is expression of F

ij

0 , and the
constraint conditions are corresponding subspace conditions.
Moreover, we could solve them by using the Kuhn-Tucker
method. The explicit optimization procedure in subspace (1,1)
is elaborated in Appendix B. Similarly to subspace (1,1), the
results for the other eight subspaces can be obtained in the
same way. For convenience, expressions of F̂ij (i,j = 1,2,3)
are displayed in Table II.

TABLE I. Nine subspaces (i,j ) and corresponding expressions
of F

i,j

0 .

Subspaces Subspace conditions Expressions of F
i,j

0

(1,1) g2 > 0, g3 > 0, g1 = 0 F 11
0 = a2 + b2 + p1g3

(1,2) g2 > 0, g3 = 0, g1 = 0 F 12
0 = a2 + b2

(1,3) g2 > 0, g3 < 0, g1 = 0 F 13
0 = a2 + b2 + p2g3

(2,1) g2 = 0, g4 > 0, g1 = 0 F 21
0 = a2 + b2 + p1g4

(2,2) g2 = 0, g4 = 0, g1 = 0 F 22
0 = a2 + b2

(2,3) g2 = 0, g4 < 0, g1 = 0 F 23
0 = a2 + b2 + p2g4

(3,1) g2 < 0, g5 > 0, g1 = 0 F 31
0 = a2 + b2 + p1g5

(3,2) g2 < 0, g5 = 0, g1 = 0 F 32
0 = a2 + b2

(3,3) g2 < 0, g5 < 0, g1 = 0 F 33
0 = a2 + b2 + p2g5

Parameters μ′ and μ in Table II are denoted in the Appendix,
and ε(x) is a unit step function. For more detailed discussions,
we refer to Appendix B, in which the corresponding parameters
(a,b,c) and F̂ij of the cloning machine in subspace (i,j ) are
presented in detail.

C. The ultimate solution

Following the procedure in Secs. III A and III B, the max-
imin problem has been solved in nine subspaces, and we get the
expression F̂ij in subspace (i,j ). Once the amplitude and phase
information of the input set is given by (α1,α2; φ1,φ2), the exact
values of F̂ij could be derived, and we can always choose
the biggest one, F̂ = max Fij , from the set {F̂ij |i,j = 1,2,3}.
We should emphasize that the biggest fidelity F̂ = max F̂ij

corresponds to the optimal parameters (a,b,c); then we obtain
the concrete form of the SMQCM.

IV. COMPARISONS AND DISCUSSIONS

To illustrate explicitly the SMQCM in this paper, we present
some numerical examples to demonstrate that the SMQCM is
better than or the same as the UQCM (and the PCQCM) in
terms of fidelity, and it outperforms the BQCM for some cases.

A. Comparisons between the SMQCM and the UQCM

Suppose that we know nothing about the input states on
the Bloch sphere, namely, α1 = 0, α2 = 1, φ1 = −π , and
φ2 = π ; one can make use of the UQCM to perform a

TABLE II. Expressions of F̂ij in nine subspaces (i,j ).

Subspaces Expressions of F̂i,j

(1,1) F̂11 = −μ′ε(g2)ε(g3)
(1,2) F̂12 = (a2 + b2)ε(g2)
(1,3) F̂13 = −μ′ε(g2)ε(−g3)
(2,1) F̂21 = −με(g4)
(2,2) F̂22 = 5

6
(2,3) F̂23 = −με(−g4)
(3,1) F̂31 = −μ′ε(−g2)ε(g5)
(3,2) F̂32 = (a2 + b2)ε(−g2)
(3,3) F̂33 = −μ′ε(−g2)ε(−g5)
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TABLE III. Examples for comparisons between the SMQCM and
the UQCM.

S(α1,α2; φ1,φ2) (p1,p2; η1,η2) F̂

S(0,1; −π,π ) (0, 1
2 ; −1,1) F̂22 = 5

6

S(( 2+√
3

4 )
1
2 ,1; − π

4 , π

4 ) (0, 1
8 ; 0,1) F̂23 = 11+√

11
16

cloning task with a fidelity of 5
6 . Moreover, we can arrive

at F̂ = F̂22 = 5
6 by our SMQCM, for which the parameters

(a,b,c) are given in Eq. (B11). Hence, the SMQCM is
the same as the UQCM when we do not know a priori
information about the amplitude and phase of the input set
completely. On the other hand, if the input set is smaller than
the Bloch sphere, for example, α1 = ( 2+√

3
4 )

1
2 , α2 = 1, φ1 =

−π
2 , and φ2 = π

2 , we would find that the fidelity F̂ of our

machine is equal to F̂23 = 11+√
11

16 ≈ 0.895 > 5
6 = 0.8333.

Meanwhile, the corresponding parameters can be presented

as b =
√

1
22+6

√
11

, a = (3 + √
11)

√
1

22+6
√

11
, and c = 0. From

this case, we can see that our SMQCM is better than the
UQCM [5] (see Table III).

B. Comparisons between the SMQCM and the PCQCM

In Table IV, t1
1 � t1

2 < ( 2−√
2

4 )
1
2 , t2

1 � ( 2−√
2

4 )
1
2 � t2

2 ,

( 2−√
2

4 )
1
2 < t3

1 � t3
2 , and ri

1 = min
t i1�t�t i2

2t2(1 − t2), ri
2 =

max
t i1�t�t i2

2t2(1 − t2), with i = 1,2,3.
For convenience we choose the “equator” in the x-z plane

instead of the x-y equator [13]. If the input set is the prime
meridian of the Bloch sphere, namely, α1 = 0, α2 = 1, and

φ1 = φ2 = 0, the fidelity of the PCQCM equals 1
2 +

√
1
8 . By

using our method, we can get the concrete parameters a =
1
2 +

√
1
8 , b =

√
1
8 , and c = 1

2 −
√

1
8 for the SMQCM, and

F̂ = F̂12 = 1
2 +

√
1
8 . Thus, the SMQCM is the same as the

PCQCM [13] in this case.
When the input set lies in the prime meridian of the Bloch

sphere, and its amplitude is restricted by 0 < α1 � α2 < 1, it
could be discussed in three cases:

(1) If 0 < α1 � α2 < ( 2−√
2

4 )
1
2 , one can find that p2 ∈

(0, 1
4 ), and F̂ is equal to F̂13 = 1+

√
1−4p2+8(p2)2

2 , which is bigger
than the fidelity of the PCQCM. Meanwhile, the parameters

TABLE IV. Examples for comparisons between the SMQCM and
the PCQCM.

S(α1,α2; φ1,φ2) (p1,p2; η1,η2) F̂

S(0,1; 0,0) (0, 1
2 ; 1,1) F̂12 = 1

2 +
√

1
8

S(t1
1 ,t1

2 ; 0,0) (r1
1 ,r1

2 ; 1,1) F̂13 = 1+
√

1−4r1
2 +8(r1

2 )2

2

S(t2
1 ,t2

2 ; 0,0) (r2
1 ,r2

2 ; 1,1) F̂12 = 1
2 +

√
1
8

S(t3
1 ,t3

2 ; 0,0) (r3
1 ,r3

2 ; 1,1) F̂11 = 1+
√

1−4r3
1 +8(r3

1 )2

2

TABLE V. Example for comparisons between the SMQCM and
the BQCM.

S(α1,α2; φ1,φ2) (p1,p2; η1,η2) F̂

S(( 2
5 )

1
2 ,( 3

5 )
1
2 ; − π

3 , π

3 ) ( 12
25 , 1

2 ; 1
2 ,1) F̂11 ≈ 0.8858

of the SMQCM can be presented as

b2 = (p2 + μ
′
)2(p2 − 1 − μ

′
)2

p2
2(p2 + μ

′)2 + [2(p2 + μ
′ )2 + (p2η1)2](p2 − 1 − μ

′)2
,

a = p2

p2 − 1 − μ
′ b,

c = − p2η1

p2 + μ
′ b, (16)

where μ
′ = − 1+

√
1−4p2+8(p2)2

2 .

(2) When 0 � α1 � ( 2+√
2

4 )
1
2 � α2, F̂ = F̂12 and is equal

to 1
2 +

√
1
8 , and the SMQCM reduces to the PCQCM [13].

(3) From Table IV, we can obtain that F̂ = F̂11 =
1+

√
1−4p1+8(p1)2

2 and p1 > 1
4 . Thus, F̂ is always bigger than

1
2 +

√
1
8 . By replacing p2 with p1 in Eq. (16), we obtain the

(a,b,c) of the SMQCM.
According to the aforementioned discussions, we would

like to point out that the SMQCM is better than or the same as
the PCQCM.

C. Comparisons between the SMQCM and the BQCM

The BQCM takes full advantage of the amplitude informa-
tion of the input set and can get a higher fidelity than the
UQCM, but it could not utilize the phase information. In
our scheme, both the amplitude and the phase information
can be used to design the cloning machine; thus we can
get a better cloning machine than the BQCM. For instance,
if the input states lie in S(( 2

5 )
1
2 ,( 3

5 )
1
2 ; −π

3 , π
3 ), one can find

that F̂ = F̂11 = 0.8858, and a ≈ 0.6503, b ≈ 0.4956, and
c ≈ 0.2931. Meanwhile, we should point out that the mean
fidelity of the BQCM for this block area is smaller than
1
2 +

√
1
8 ≈ 0.8535 [20]. Hence, the SMQCM can outperform

the BQCM for some cases (see Table V).

V. CONCLUSIONS

In summary, we present an optimal 1 → 2 quantum cloning
method for states on the Bloch sphere based on the maximin
principle. This method can take full advantage of a priori
information about the amplitude and phase of the input set. To
design the parameters of the optimal maximin quantum cloning
machine, we obtain the optimal quantum cloning machine for
input states in the Bloch spherical cap, and the fidelity F̂ is

bigger than 1
2 +

√
1
8 . Moreover, by restricting the structure

of the OMQCM, we obtain the concrete form of the sub-
optimal maximin quantum cloning machine. The theoretical
analysis and numerical examples explicitly demonstrate that
the cloning machine derived from our proposal can be used to
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clone quantum qubits with higher fidelity. In contrast to the
preceding schemes [5,13,20], our proposal has the following
advantages. First, the cloned qubit input set in our method is
S(α1,α2; φ1,φ2), given in terms of four parameters, and the
input sets exploited in the UQCM, PCQCM, and BQCM can
be just considered special cases of the four-parameter input set.
Thus, our scheme has wider application than others. Second,
the proposal makes full use of a priori information about the
amplitude and phase of the input set with the aid of the maximin
principle, while the PCQCM and the BQCM only use the
amplitude information of input. In theory, the cloning quality
of the OMQCM is better than or the same as that of the PCQCM
and the BQCM for an arbitrary input set S shown in Eq. (1).
Third, it is exemplified that the SMQCM could outperform
the UQCM, PCQCM, and BQCM in terms of fidelity, even
through the SMQCM is a suboptimal cloning machine of our
optimal method. In fact, the UQCM and the PCQCM can be
regarded as special cases of the SMQCM; when the input set is
smaller, the cloning fidelity of our machine is higher than 5

6 or
1
2 +

√
1
8 . The SMQCM also outperforms the BQCM in some

cases. It will be significant to extend our proposal to N → M

quantum cloning in higher-level systems or to mixed-state
quantum cloning.
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APPENDIX A: OPTIMAL QUANTUM CLONING MACHINE
FOR STATES IN A SPHERICAL CAP

To make it easy, we first consider the input set
S(α1,1; −π,π ) with 1√

2
< α1 < 1, and denote F̂0(TU ) =

min
|ψ〉∈S

F with TU (|ψ〉〈ψ |) = Tr2,x(U |ψ0X〉〈ψ0X|U †). The

optimal quantum cloning translation is Û which satisfies
F̂0(TÛ ) = max

U
F̂0(TU ) = F̂ . The average translation of TÛ

is T̄Û ;

T̄Û (|ψ〉〈ψ |) = 1

2π

∫ π

−π

U
†
φTÛ (Uφ|ψ〉〈ψ |U †

φ)Uφ dφ

for any pure state |ψ〉 and all unitary phase-shift operators
Uφ = exp[−i/2(σz − 1)φ], where φ ∈ [−π,π ] and σz is the
Pauli operator diag{1,−1}. Then we prove that F̂0(T̄Û ) =
F̂0(TÛ ); namely, the fidelity of the optimal quantum cloning
machine for the input set S(α1,1; −π,π ) with 1√

2
< α1 < 1 is

independent of the phase of states |ψ〉 ∈ S.
For any pure state |ψ〉, we have

Tr[|ψ〉〈ψ |T̄Û (|ψ〉〈ψ |)] = 1

2π

∫ π

−π

Tr[σUφ
TÛ (σUφ

)] dφ

� 1

2π

∫ π

−π

F0(TÛ ) = F0(TÛ ),

where σUφ
= Uφ|ψ〉〈ψ |U †

φ , hence F0(T̄Û ) � F0(TÛ ). By defi-
nition of F0(TÛ ) we also have F0(TÛ ) � F0(T̄Û ), i.e., F0(TÛ ) =
F0(T̄Û ).

This means the fidelity of the optimal quantum cloning
machine is the same for any state in the set S(α1,1; −π,π ).
By using Kraus decompositions, we find the upper merit TÛ

should have the following form:

(
(1 − τ1)|β|2 + τ1|α|2 τ2αβ∗

τ ∗
2 α∗β (1 − τ1)|α|2 + τ1|β|2

)
, (A1)

where τi is complex for i = 1,2. The proof is similar to one
in the appendix of Ref. [13], and we do not explore it in this
paper. The fidelity of the OMQCM will be

F = |α|4(|a0|2 + |b0|2) + |α|2|β|2(1 − |a1|2 − |b1|2)

+ |β|4(|a1|2 + |b1|2) + |α|2|β|2(1 − |a0|2 − |b0|2)

+ |α|2|β|2(a0b
∗
1〈B1|A0〉 + b0a

∗
1〈A1|B0〉)

+ |α|2|β|2(a∗
0b1〈A0|B1〉 + b∗

0a1〈B0|A1〉). (A2)

Comparing ρ1 and the form of TÛ in Eq. (A1), we arrive at

a0c
∗
1〈C1|A0〉 + b0b

∗
1〈B1|B0〉 = 0,

c0a
∗
1 〈A1|C0〉 + b0b

∗
1〈B1|B0〉 = 0,

a0b
∗
0〈B0|A0〉 + b0c

∗
0〈C0|B0〉 = 0,

a1b
∗
1〈B1|A1〉 + b1c

∗
1〈C1|B1〉 = 0,

b1c
∗
0〈C0|B1〉 + c1b

∗
0〈B0|C1〉 = 0. (A3)

If we want to maximize F , we must set ãb̄∗〈B̄|Ã〉 +
b̃ā∗〈Ā|B̃〉 = āb̃∗〈B̃|Ā〉 + b̄ã∗〈Ã|B̄〉 = |a||b̃| + |b||ã|, and
we have

F = |α|4(|a0|2 + |b0|2) + |α|2|β|2(1 − |a1|2 − |b1|2)

+ |β|4(|a1|2 + |b1|2) + |α|2|β|2(1 − |a0|2 − |b0|2)

+ 2|α|2|β|2(|a0||b1| + |b0||a1|). (A4)

Combining Eqs. (5) and (A3), constraints are displayed as
follows:

h1 = |a0|2 + 2|b0|2 + |c0|2 − 1 = 0,

h2 = |a1|2 + 2|b1|2 + |c1|2 − 1 = 0,

h3 = a0c
∗
1〈C1|A0〉 + b0b

∗
1〈B1|B0〉 = 0,

h4 = c0a
∗
1〈A1|C0〉 + b0b

∗
1〈B1|B0〉 = 0,

h5 = a0b
∗
0〈B0|A0〉 + b0c

∗
0〈C0|B0〉 = 0,

h6 = a1b
∗
1〈B1|A1〉 + b1c

∗
1〈C1|B1〉 = 0,

h7 = b1c
∗
0〈C0|B1〉 + c1b

∗
0〈B0|C1〉 = 0. (A5)

The independent variables are the absolute values of the
coefficients ai,bi, . . . , their phases, the absolute values of the
scalar products of the ancilla states, and their phases, which
we denote

a0 = |a0|eiδa0 ,

〈A0|B1〉 = |〈A0|B1〉|eiδA0B1 .

Using the method of Lagrange multipliers, we derive the
optimal cloning machine; namely, we should solve the system
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of equations

∂F

∂|a0| +
7∑

i=1

λi

∂h1

∂|a0| = 0,

∂F

∂|b0| +
7∑

i=1

λi

∂h1

∂|b0| = 0,

...

hi = 0, i = 1, . . . ,8,

(A6)

where hi denotes constraints, and the Lagrange multipliers are
λi .

Taking the partial derivative with respect to |c0|, one can
obtain

2λ1|c0| + λ4a
∗
1e

iδc0 〈A1|C0〉 + λ5b0e
−iδc0 〈C0|B0〉

+ λ7b1e
−iδc0 〈C0|B1〉 = 0. (A7)

From the derivatives with respect to |〈A1|C0〉|, |〈C0|B0〉|, and
|〈C0|B1〉|, we arrive at

λ4|a1||c0| = 0,

λ5|b0||c0| = 0,

λ7|b1||c0| = 0. (A8)

After multiplying Eq. (A7) by |c0|, we find

λ1|c0|2 = 0. (A9)

In the same way, we obtain

λ2|c1|2 = 0. (A10)

First of all, we assume λ1λ2 �= 0, so |c0| = |c1| = 0. Consider-
ing h3 in Eq. (A5), we get b0b

∗
1〈B1|B0〉 = 0, namely, |b0| = 0,

|b1| = 0 or 〈B1|B0〉 = 0.
If |b0| = 0, we have |a0| = 1 and

F = |α|4 + |β|4 + |β|2[(|α|2 − |β|2)|b1|2 + 2|α|2|b1|].
Since |α|2 � |β|2 and |b1| � 1√

2
, we find |b1| = 1√

2
corre-

sponds a maximum of F :

F = 1 − (
√

2 − 1)|β|4 −
(

3

2
−

√
2

)
|β|2. (A11)

If |b1| = 0, we have |a1| = 1 and

F = |α|4 + |β|4 + |α|2[(|β|2 − |α|2)|b0|2 + 2|α|2|b0|].
We find that if |β|2

|α|2−|β|2 � 1√
2
, then |b0| = 1√

2
corresponds a

maximum F = 1 − (
√

2 − 1)|α|4 − ( 3
2 − √

2)|α|2 � 1
2 +

√
2

4 ,

whereas if |β|2
|α|2−|β|2 < 1√

2
, then |b0| = |β|2

|α|2−|β|2 corresponds

to a maximum F = 1 + |α|2|β|2( |β|2
|α|2−|β|2 − 2) < 1 − (

√
2 −

1)|β|4 − ( 3
2 − √

2)|β|2.
If |b0| = |b1| = 0 and 〈B1|B0〉 = 0, we obtain F < 1 −

(
√

2 − 1)|β|4 − ( 3
2 − √

2)|β|2.
Similarly, when λ1 = λ2 = 0, we derive a contradiction.

When λ1 = |c1| = 0 (λ2 = |c0| = 0) and λ2|c0| �= 0 (λ1|c1| �=
0), we find F < 1 − (

√
2 − 1)|β|4 − ( 3

2 − √
2)|β|2.

Now we can conclude that for the input set S(α,α; −π,π )
with α > 1√

2
, the optimal quantum cloning machine is

U |00〉 = |00〉,
U |10〉 = 1√

2
(|01〉 + |10〉). (A12)

The fidelity F̂ is

F̂ = 1 − (
√

2 − 1)|β|4 −
(

3

2
−

√
2

)
|β|2.

It is easy to find that when the input set is S(α1,1; −π,π ) with
1√
2

< α1 < 1, the optimal quantum cloning machine is shown
as Eq. (A12), and when the input set is S(0,α2; −π,π ) with
0 < α2 < 1√

2
, the optimal quantum cloning machine is

U |00〉 = 1√
2

(|01〉 + |10〉),

U |10〉 = |11〉. (A13)

APPENDIX B: OPTIMIZATION FOR THE SMQCM IN
NINE SUBSPACES

Equation (13) in subspace (1,1) can be expressed as

F̂11 = max
a,b,c

a2 + b2 + p1(−a2 + c2 + 2ab + 2bcη1)

such that g1 = a2 + 2b2 + c2 − 1 = 0,

g2 = 2bc > 0,

g3 = −a2 + c2 + 2ab + 2bcη1 > 0. (B1)

By the Kuhn-Tucker method we can derive the parameters
(a,b,c) of the cloning machine in subspace (1,1). First of all,
in order to simplify the solving process, we ignore inequality
constraints and solve the system of equations

∂F̂11

∂a
+ μ1

∂g1

∂a
= 0,

∂F̂11

∂b
+ μ1

∂g1

∂b
= 0,

∂F̂11

∂c
+ μ1

∂g1

∂c
= 0,

where μ1 is the Lagrange multiplier. Moreover, the above
equations can be presented as

2a − 2p1a + 2p1b + μ12a = 0,

2b + 2p1a + 2p1cη1 + μ14b = 0,

2p1c + 2p1bη1 + μ12c = 0. (B2)

For Eq. (B1), if p1 = 1 + μ1 or p1 = −μ1, we would find
that F̂11 � 5

6 , and we can choose the UQCM to perform the
quantum cloning task in this case. Thus, we just consider the
situations p1 �= 1 + μ1 and p1 �= −μ1; meanwhile, one can
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obtain that

a = p1

p1 − 1 − μ1
b,

c = − p1η1

p1 + μ1
b. (B3)

By substituting Eq. (B3) into g1 in Eq. (B1), we can get

b2 = (p1 + μ1)2(p1 − 1 − μ1)2

(p1)2(p1 + μ1)2 + [2(p1 + μ1)2 + (p1η1)2](p1 − 1 − μ1)2
.

(B4)

With p1 �= 1 + μ1 and p1 �= −μ1, we derive b �= 0. Moreover, by inserting Eq. (B3) into the second formula in Eq. (B2), we
obtain

(1 + 2μ1)[(p1 − 1 − μ1)(p1 + μ1) + (p1)2] + (
1 − η2

1

)
(p1)2(p1 − 1 − μ1) = 0. (B5)

If we set k1 = μ1 + 1
2 , Eq. (B5) would become

(k1)3 + −1 + 4p1 − 8(p1)2 − 2
(
η2

1 − 1
)
(p1)2

4
k1 + 2

(
η2

1 − 1
)
(p1)3 − (

η2
1 − 1

)
(p1)2

4
= 0. (B6)

This is a standard cubic equation, which could be solved by using a formula of finding roots on cubic equations. Subsequently,
we could derive expressions of μ1, b, a, and c.

Furthermore, if the inequality constraints g2 > 0 and g3 > 0 are satisfied, the upper discussion is valid. By inserting expressions
of b, a, and c into Eq. (B1), we can find

F̂11 = max(−μ1) = max
(−k1 + 1

2

)
.

If the inequality constraints g2 > 0 and g3 > 0 are not satisfied, the upper discussion is invalid, and we denote

F̂11 = 0,

namely,

F̂11 = −μ1
′ε(g2)ε(g3), (B7)

where −μ1
′ = max(−μ1) = 1

2 + min
{i|ki

1=(ki
1)∗}

ki
1 (i = 1,2,3), ki

1 is the root of the cubic equation in Eq. (B6), and ε(x) is unit step

function. According to the aforementioned analysis, this process is displayed as follows:

(k1)3 + −1 + 4p1 − 8(p1)2 − 2
(
η2

1 − 1
)
p2

1

4
k1 + 2

(
η2

1 − 1
)
(p1)3 − (

η2
1 − 1

)
(p1)2

4
= 0

k
′
1 = min

{i|ki
1=(ki

1)∗}
ki

1 (i = 1,2,3)

μ
′
1 = k

′
1 − 1

2

b2 = (p1 + μ
′
1)2(p1 − 1 − μ

′
1)2

(p1)2(p1 + μ
′
1)2 + [2(p1 + μ

′
1)2 + (p1η1)2](p1 − 1 − μ

′
1)2

a = p1

p1 − 1 − μ
′
1

b

c = − p1η1

p1 + μ
′
1

b

F̂11 = −μ1
′ε(g2)ε(g3), (B8)

where ki
1 (i = 1,2,3) are roots of the cubic equation in Eq. (B6).

Solving these equations in Eq. (B8) successively, we obtain
the solution for the optimization problem in subspace (1,1). It
should be noted that the parameters (a,b,c) correspond to the
quantum cloning machine in subspace (1,1).

The optimization process in the other eight subspaces is
similar to the case in subspace (1,1). According to the quantity
and form of equality constraints in subspaces (i,j ) shown in
Table I, the discussions in nine subspaces could be summed
up in four situations {(1,1),(1,3),(3,1),(3,3)}, {(2,1),(2,3)},
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{(2,2)}, and {(1,2),(3,2)}, and we can display the summarized
results as follows.

(1) Results in subspaces (i,j ) (i = 1,3; j = 1,3):

k3 + −1 + 4p − 8p2 − 2(η2 − 1)p2

4
k

+ 2(η2 − 1)p3 − (η2 − 1)p2

4
= 0

k′ = min
{i|ki=(ki )∗}

ki

μ′ = k′ − 1
2

b2 = (p + μ′)2(p − 1 − μ′)2

p2(p + μ′)2 + [2(p + μ′)2 + p2η2](p − 1 − μ′)2

a = p

p − 1 − μ′ b

c = − pη

p + μ′ b, (B9)

where ki (i = 1,2,3) are roots of the cubic equation in the first
formula of Eq. (B9), and k′ is the minimal real root.

(2) Results in subspaces (i,j ) (i = 2; j = 1,3):

μ = 2p − 3 −
√

12p2 − 4p + 1

4

b2 = p2

(1 + 2μ)2 + 2p2

a = −(1 + 2μ)

p
b

c = 0. (B10)

We need to underline the fact that the fidelity of the quantum
cloning machine in this form is independent of the value of the
phase φ.

(3) Results in subspaces (i,j ) (i = 2; j = 2):

a =
√

2

3

b =
√

1

6

c = 0. (B11)

In this case, corresponding quantum cloning machine is same
as the UQCM.

TABLE VI. Results in nine subspaces (i,j ), where “\′′ means the
result has nothing to do with the corresponding values of p or η, and
gi (i = 1,2,3,4,5) are given in Eq. (15).

Subspaces (p,η) Eq. (Bn) Expressions of F̂ (ij )

(1,1) (p1,η1) (B9) F̂11 = −μ′ε(g2)ε(g3)
(1,2) (\,η1) (B12) F̂12 = (a2 + b2)ε(g2)
(1,3) (p2,η1) (B9) F̂13 = −μ′ε(g2)ε(−g3)
(2,1) (p1,\) (B10) F̂21 = −με(g4)
(2,2) (\,\) (B9) F̂22 = 5/6
(2,3) (p2,\) (B11) F̂23 = −με(−g4)
(3,1) (p1,η2) (B9) F̂31 = −μ′ε(−g2)ε(g5)
(3,2) (\,η2) (B12) F̂32 = (a2 + b2)ε(−g2)
(3,3) (p2,η2) (B9) F̂33 = −μ′ε(−g2)ε(−g5)

(4) Results in subspaces (i,j ) (i = 1,3; j = 2). For cases
in subspaces (1,2) and (3,2), we set a = sin(ϕ1) sin(θ1), b =
cos(ϕ1)√

2
, and c = sin(ϕ1) cos(θ1), with −π � ϕ1,θ1 � π , and get

cos2(2θ1)

cos2(2θ1) − 2[sin(θ1) + cos(θ1)η]2

= − sin(2θ1)[sin(θ1) + cos(θ1)η]

cos(2θ1)[cos(θ1) − sin(θ1)η]

tan(ϕ1) = −√
2[sin(θ1) + cos(θ1)η]

cos(2θ1)

a = sin(ϕ1) sin(θ1)

b = cos(ϕ1)√
2

c = sin(ϕ1) cos(θ1). (B12)

Once (α1,α2; φ1,φ2) of the input set is given, values of
(p1,p2; η1,η2) could be figured out from Eq. (14). For sub-
spaces (i,j ), we substitute values of p or η into corresponding
the Eq. (Bn) presented in Table VI, with n = 9,10,11,12.
Parameters (a,b,c) of the cloning machine in subspaces
(i,j ) are derived by solving the corresponding Eq. (Bn)
successively, and F̂ij are also shown in Table VI. So far, we
finish the optimization process and obtain optimal quantum
cloning machines in nine subspaces (i,j ).
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