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Hierarchical surface code for network quantum computing with modules of arbitrary size
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The network paradigm for quantum computing involves interconnecting many modules to form a scalable
machine. Typically it is assumed that the links between modules are prone to noise while operations within
modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a
hierarchical generalization of the surface code: a small “patch” of the code exists within each module and
constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional
subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can
exceed ∼10% even in the absence of purification. Increasing the number of qubits within each module decreases
the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly
speaking, a “fine-grained” network of small modules containing only about eight qubits is competitive in total
qubit count versus a “course” network with modules containing many hundreds of qubits.
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I. INTRODUCTION

There are two approaches to fabricating a large-scale
universal quantum computer. One is to create a single
“monolithic” architecture in which each qubit is directly and
deterministically connected to its neighbors. An alternative
is the network architecture [1–8], where a single quantum
computer is formed from numerous interlinked small devices,
modules, each having only a modest number of qubits and
correspondingly little computational power. This approach
may prove to be well suited to ion trap systems [8–11] or color
centers in diamond [12], where optical activity can be directly
harnessed to create a photonic link; modules comprised of
superconducting qubits can also be networked either via
microwave links [13] or by exploiting microwave-to-optical
converters. It is likely that the size of a module, i.e., the number
of physical qubits within it, may vary dramatically according
to the technology: whereas a color center might have at most a
dozen or so satellite nuclear spins, a superconducting module
could easily be envisaged as a grid of hundreds of qubits. It
is therefore interesting to ask what impact the module size
has on performance characteristics such as the fault tolerance
threshold and, thus, the total number of physical qubits needed
per logical qubit.

An advantage of the network architecture is its manifest
scalability. However, based on experimental results to date it
is reasonable to assume that intermodule communications will
only provide low-quality entanglement [12,14,15] compared
with intramodule quantum gates [9,10,16,17]. Whatever ap-
proach one adopts to mitigate the noise on the links, there will
inevitably be a resource cost versus an idealized monolithic
architecture where all gates are of comparable fidelity to the
intramodule operations. In other words, to implement the same
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quantum algorithm, more qubits are required in the network
architecture to overcome network noise. A goal of this paper
is to quantify this difference.

II. OUTLINE OF APPROACH

We investigate quantum computing with a network archi-
tecture involving modules containing from only two qubits
to about a thousand qubits. In our study, we exploit two
methods to negate errors: entanglement purification [1,4] and
error correction via the surface code [18,19]. Entanglement
purification is a low-level process that corrects errors on
intermodule links and is carried out individually within each
module with the help of classical communications. We use the
term broker unit for the dedicated hardware (comprising one
or more qubits) associated with entanglement purification.

For small modules with only a few qubits in total, each
module only provides one qubit participating in the surface
code, while the rest are involved in purification. This is
equivalent to architectures that have been studied in earlier
papers [20,21]. We include such small-module architectures
in this paper for context; the challenge we tackle here is to
efficiently exploit large modules with at least tens of qubits.
Our solution retains the purification but additionally introduces
a hierarchical variant of the surface code. A piece of surface
code (or “patch”) exists in every module, such that each module
can be effectively regarded as a single qubit in a higher (logical-
level) surface code. There are interesting consequences for the
localization and correction of errors, given that such errors
tend to occur at the boundaries between the modular patches.
In essence the errors live in a two-dimensional space, one
spatial and one temporal dimension, so that the relevant
threshold is equivalent to that of a two-spatial-dimension
system with perfect noise-free stabilizer measurement [19].
Thus the hierarchical surface code tolerates network errors
up to 15%, and purification techniques need only bring the
network noise within this limit.

One might expect that the performance of a network
computer will approach that of a monolithic computer as the
module size increases. To compare the resource requirements
we study the number of qubits required for encoding a single
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logical qubit. We find that the total number of physical qubits
required per logical qubit does indeed decrease with the size
of modules. For a practical level of network noise and modules
containing hundreds of qubits, the cost of encoding a logical
qubit in the network architecture is still about nine times higher
than the cost in the monolithic architecture. Meanwhile we find
that for a “fine-grained” network comprised of small modules
containing only about eight qubits, the overhead versus the
monolithic system is a factor of about 15. It is perhaps
surprising that the resource cost associated with adopting the
flexible network paradigm varies so little over a wide range of
module sizes, i.e., the network granularity does not strongly
affect the total resource cost.

III. SYSTEM

We consider a quantum computer built with networked
quantum modules as shown in Fig. 1. We focus on the case
where each module contains an array of client qubits and a
series of entanglement-purifying broker units on the perimeter
of the client array; each broker unit contains several qubits
as we presently discuss [see Fig. 1(a)]. Quantum information
is stored in client qubits, and brokers are used to generate
entanglement between neighboring modules. In each broker

Module

B
ro

ke
r

(a)

Switch
(b)

Clients

FIG. 1. A quantum computer built with optically networked
quantum modules. Black circles represent qubits. (a) Each module
contains a D × D client-qubit array as well as 4 × D broker units on
the perimeter, where D is the dimension of the module. The modules
have D = 5. Broker units achieve entanglement with one another via,
e.g., intermodule photonic couplings. Typically the raw entanglement
will be generated by a joint measurement on photons emitted from
optically active broker qubits. Inside a broker unit, there are additional
ancilla qubits which are used to purify raw entanglement to a higher
fidelity. (b) Each simple module contains only one client qubit and
one broker unit. Each such module is coupled with four neighboring
modules via a switch for rerouting the optical connection.

unit, there must be at least one qubit that is optically coupled
with another module. Raw entanglement prepared with optical
coupling is purified with the help of other qubits in broker units;
the qubits forming the surface code “patch” therefore never
“see” the raw entanglement, only the purified form. To provide
a context for assessing the performance of the hierarchical
surface code, we also consider the limit of small modules
where each module may contain only one client qubit and
one broker unit [see Fig. 1(b)], in which case the sole broker
unit services links to all connected modules by rerouting the
optical connection as required. These small modules do not
use a hierarchical surface code, instead relying on a single
surface code layer.

Intramodule controlled NOT (CNOT) gates are performed
via interactions between qubits within the module. We assume
that these CNOT gates are available for any pair of nearest-
neighboring qubits in the same module. For client qubits in
different modules, distributed CNOT gates are performed by
consuming entanglement that has been generated between
brokers. The circuit for the distributed CNOT gate [22] is shown
in Fig. 6(a).

With the geometry of modules in Fig. 1, client qubits
on the perimeters of neighboring modules are indirectly
coupled through brokers. Therefore, ultimately a square lattice
is formed by all client qubits in the network, in which
(intramodule or distributed) CNOT gates are available for any
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FIG. 2. Square lattice of qubits for implementing the surface
code, showing the layout of the lowest level, physical qubits. Data
qubits, X ancillary qubits, and Z ancillary qubits are represented
by circles, crosses, and squares, respectively. We assume that a
CNOT gate can be performed on any pair of qubits connected by
an edge. Four modules are depicted, each with D = 5: solid edges
correspond to intramodule gates; dashed edges, to gates implemented
with intermodule entanglement, i.e., distributed CNOT gates. Errors
arising from imperfectly purified remote entanglement will only
directly affect qubits on the perimeter of a module; these are shown
with thick edges. XM and ZM denote Pauli operators of module qubits.
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pair of nearest-neighboring qubits. With such a lattice, we can
implement the surface code across the entire module network.

Within the surface code lattice (Fig. 2), physical qubits
are divided into three groups: data qubits (circles) and
measurement-enabling qubits of two kinds—X ancillary
qubits (crosses) and Z ancillary qubits (squares). The subspace
for encoding information in the collective is defined by
enforcing sets of stabilizers XXXX and ZZZZ, which are
products of Pauli operators on four data qubits surrounding X
ancillaries and Z ancillaries, respectively [18,19]. Errors are
detected by repeatedly measuring stabilizers [23] with circuits
shown in Figs. 6(d) and 6(e).

IV. MODULAR SURFACE CODE AND THRESHOLDS

In our modular network, errors associated with the entan-
glement generated over network links are first reduced by
entanglement purification. After the purification, there are
still some residual errors on the intermodule entanglement
because of the limited resources of each broker unit. These
residual entanglement errors, together with errors arising from
intramodule operations, are finally corrected by the surface
code. Assuming that the entanglement is ideally in the form
(|00〉 + |11〉)/√2, we model the error-burdened entangled
state as

E = F [1] + pX[X] + pZ[Z] + pZ[Z], (1)

where F = 1 − pX − pY − pZ is the fidelity, the superop-
erator [U ]ρ = UρU †, and X, Y, Z are Pauli operators on
one of two entangled qubits. For intramodule operations,
we assume that a qubit may be initialized in the incorrect
state with probability εI; the measurement may report an
incorrect outcome with probability εM; and each single-qubit
gate and controlled-NOT (CNOT) gate may induce an error with
probability ε1 and ε2, respectively. A noisy gate is modeled
as a perfect gate followed by single-qubit depolarizing noise
for single-qubit gates and two-qubit depolarizing noise for the
CNOT gate [24]. See Appendix C for more details of the error
model.

As one might expect, we find that if we consider modules
containing a larger client array, then more residual entangle-
ment errors can be corrected with the surface code. This would
be true even if we were to simply regard all the “patches” of
surface code as part of a single surface without giving any
special status to the borders between patches. However, in
doing so we would be failing to exploit our knowledge that
errors are more common along the perimeters. To properly
exploit the potential advantage of large modules, instead of
continuously performing stabilizer measurements on the entire
surface code lattice, we introduce an intermediate encoding
based on the client array of each module.

Similar to physical qubits on the surface code lattice,
modules are also divided into three groups: Q modules, X
modules and Z modules (see Fig. 2). The client array of each Q
module itself is a piece of complete surface code lattice, hence
one informational qubit can be encoded in each Q module, and
we refer to this as a module qubit. Moreover, the X modules
and Z modules have roles similar to X ancillary qubits and
Z ancillary qubits in the basic surface code: they perform
X-stabilizer and Z-stabilizer measurements on neighboring
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FIG. 3. Protocol for module-qubit stabilizer measurements. Each
full round of module-qubit stabilizer measurements involves mea-
suring both X-stabilizers and Z-stabilizers. To measure X-stabilizers
at the module-qubit level, physical data qubits in X modules are
initialized in state |0〉 and measured in the Z basis after n rounds
of physical-qubit stabilizer measurements. Measuring Z-stabilizers
at the module-qubit level is exactly analogous. When measurements
of module-qubit X (Z) stabilizers are in progress, Z (X) modules are
not involved in physical-qubit stabilizer measurements. Between each
set of module-qubit stabilizer measurements, physical-qubit stabilizer
measurements are performed on only Q modules for n rounds.

module qubits, respectively. Therefore, a network of modules
forms a surface code on a higher level where each module
qubit now constitutes a basic unit. Thus the approach is a
hierarchical surface code: a logical qubit is realized through
a small surface code, each qubit of which is an entire module;
each module is itself a small surface code with an informational
or measurement role as described above. One might worry
that this nested approach increases the number of physical
qubits required, but the important point is that the required
surface code size at each of the two levels will be far smaller
than that which would be required in an equivalent single,
nonhierarchical code .

The protocol for performing stabilizer measurements at the
module-qubit level is shown in Fig. 3. The stabilizer XXXX

of four module qubits equals the product of all physical-qubit
stabilizers XXXX within the X module. To measure the
X-stabilizer of four module qubits, first, data qubits in the
the corresponding X module are all initialized in the state |0〉;
second, physical-qubit stabilizer measurements across the X
module and measured Q modules (see Fig. 7) are performed
for several rounds; and, finally, all data qubits in the X
module are measured in the Z basis (see Fig. 3). The module-
qubit Z-stabilizer measurement is analogous. Between each
set of module-qubit stabilizer measurements, physical-qubit
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stabilizer measurements are performed on only Q modules
for several rounds. See Appendix B for an explanation of the
protocol.

In order to perform universal quantum computing using the
surface code, one must prepare (create and distill) resources
called magic states [25]. It is therefore interesting to ask,
Does the hierarchical surface code introduced here lead
to difficulties in that process? In fact, it does not: Using
stabilizer measurements, a logical magic state can be prepared
in two stages: a module-qubit magic state can be prepared
by initializing one data qubit in the magic states and then
performing physical-qubit stabilizer measurements according
to the protocol in Ref. [26]; with the same protocol, after
performing module-qubit stabilizer measurements, the magic
state is encoded into a logical qubit. When error rates are below
error thresholds, the fidelity of logical magic states is suitable
for purification [25], and one can perform such purification at
the logical level using the protocols in the literature, as, for
example, in Ref. [27].

Commensurate with our two-tier encoding, the error cor-
rection includes two tiers. In the first tier the outcomes of
physical-qubit stabilizer measurements are used to correct
errors at the physical-qubit level. As we describe below, this
process can exploit the highly inhomogeneous nature of the
physical errors, i.e., the high error density at the border of each
module’s “patch” of surface code. Once this step is complete,
only sequences of errors (error chains) that span entire module
qubits can survive. For Q modules, such an error is a bit or
phase flip of that specific module qubit. For the X and Z
modules, whose role is to provide stabilizer measurements
on the surrounding four Q modules, the consequence of such
an error chain is that the stabilizer outcome is incorrectly
evaluated (i.e., it is the converse of the correct outcome).
Both types of errors are handled in the second tier of the
process, where one simply regards each Q module as a data
qubit, and errors on these qubits are determined by analysis
of the imperfect stabilizer measurements in the standard way
(regardless of the fact that those measurements derive from
entire X and Z modules). Please see Appendix D for more
details.

To understand how the inhomogeneity in the distribution
of errors is exploited, consider first the artificial case where
intramodule operations are perfect (i.e., εI = εM = ε1 = ε2 =
0). Then all errors are due to imperfectly purified intermodule
entanglement, and so errors occur strictly on perimeters
of client arrays (thick lines in Fig. 2). During X-stabilizer
measurements of module qubits, in a Q module bit errors and
stabilizer measurement errors occur at the rate pX + pY on
the two boundaries facing X modules (thick red lines), and in
an X module phase errors and stabilizer measurement errors
occur at the rate pZ + pY on the entire perimeter (thick black
lines). We note that in the corner of X modules, error rates are
approximately doubled. It is similar for Z-stabilizer measure-
ments of module qubits. Here, pX, pY, pZ are error rates in
the intermodule entanglement after any purification has taken
place. Errors are restricted to the one-dimensional perimeter
of modules, but the correction process involves n rounds and
therefore the syndrome matching occurs in a two-dimensional
space: one spatial and one temporal. This is in contrast to
a standard surface code approach with homogeneous errors
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FIG. 4. Fault tolerance thresholds in terms of the rate of errors,
1 − F , on the intermodule entanglement for modules with different
dimensions D. Here F is the fidelity subsequent to any purification
within broker units, so that we are seeing the corrective power of the
hierarchical surface code alone. For context, thresholds for simple
modules are shown by the open circle and square on the left vertical
axis. We have assumed that entanglement errors are unpolarized, i.e.,
pX = pY = pZ, and all intramodule operations have the same error
rate, εI = εM = ε1 = ε2 = ε. Please see Appendix C for details of
the error model. These thresholds are obtained by counting errors on
logical qubits encoded in (2L − 1) × (2L − 1) module arrays (see
Appendix E for details). Inset: Logical error rates for D = 17 and
L = 3, 5, 7, 9, 11; with an entanglement error rate lower than the
threshold (dotted vertical line), the logical error rate decreases with L

(left side of the threshold). The dashed line denotes inferred thresholds
according to the difference (which is ∼0.75%) between two solid
lines.

on gates and measurements, where we would need to match
syndrome outcomes in a three-dimensional array. There is a
very significant advantage in terms of the threshold: whereas
the three-dimensional threshold is in the region of 3%, for
the restricted two-dimensional case it is 10% [19]. Therefore,
if entanglement error rates satisfy pX + pY,pZ + pY < 10%,
we are below threshold and thus the rates of module-qubit
errors after the first step of error correction decrease with the
dimension of the modules (i.e., the size of two-dimensional
error-correction lattices). Moreover, if indeed the module-
qubit error rates decrease with the module dimension, then the
threshold for errors on the intermodule entanglement increases
with the module dimension. In the limit of large modules, the
threshold of the entanglement error rate should approach 15%
for depolarizing errors, i.e., pX = pY = pZ. If we now allow
for a small but finite rate of errors for intramodule operations
and measurements, the proceeding remarks all apply except
that occasional errors will occur within the perimeter of the
“patches,” with the consequence that the tolerance of noise in
the intermodule links will be somewhat reduced.

In Fig. 4 we show the results of a series of numerical
simulations which verify this analysis. The figure shows the
fault tolerance threshold for the rate of errors in the intermodule
entanglement, assuming that (purified) entanglement errors
are uniform over the X, Y , and Z channels. Note that this is
not a favorable assumption: if the errors were not uniform,
this would be an opportunity to enhance the threshold by
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exploiting this knowledge in the decoder. The numerical
results reveal that the threshold indeed increases with the
module dimension, which coincides with expectations from
the preceding analysis. For comparison we also find thresholds
for simple modules, i.e., each module contains only one client
qubit so we do not use the hierarchical approach.

The observed thresholds vary from 1.65% to 9.9%, de-
pending on the size of modules. When we allow for errors
induced by intramodule operations, the ability to correct errors
on the intermodule operations is reduced as expected, i.e., the
threshold rate of tolerable intermodule errors decreases with
the error rate of intramodule operations. Taking all intramodule
operations to have the same error rate, εI = εM = ε1 = ε2 =
0.1%, we find that the threshold of entanglement error rate is
reduced by 0.75%. As shown in Fig. 4, this reduction varies
only very slightly with the module dimension.

V. QUBIT COSTS

In the preceding analysis, we considered the structure of
the hierarchical surface code and its threshold in terms of the
rate of errors on intermodule entanglement; the error rate was
taken to be postpurification. Now in order to find the optimal
structure for the network architecture, we must consider the
power and cost of the brokering units and optimize the number
of qubits assigned to that role. We can then find the overall
resource cost of fault-tolerant computing given the specific
error rate in the “raw” intermodule entanglement.

In a quantum computer based on the surface code, the unit of
quantum computing is a logical qubit encoded in a (2L − 1) ×
(2L − 1) qubit (module) array, where the array distance L is
the minimum number of data qubits (Q modules) for defining

a logical Pauli operator. Given that operations are performed
with an error rate lower than the system’s threshold, the rate
of logical errors decreases with the size of the logical qubit.
The logical error rate per surface code cycle, i.e., a full round
of stabilizer measurements, scales with the distance L as [28]

εL � ε0e
−κL, (2)

where parameters ε0 and κ are determined by error rates of
operations.

In our network architecture, qubits used for entanglement
generation and purification do not participate in forming
logical qubits, i.e., these qubits assigned to the “broker units”
are an additional cost due to the modular architecture. It is
nontrivial to optimize the partitioning of qubits between broker
units and the internal client arrays, in such a way as to minimize
the total number of qubits needed to achieve a given logical
error rate. The size of logical qubits (determined by parameters
ε0 and κ) depends on the intermodule entanglement error rate
after purification, and this rate will improve as more qubits are
dedicated to purification.

By numerically obtaining parameters ε0 and κ , we can find
the cost of physical qubits per logical qubit (logical-qubit size).
We have considered error rates of intramodule operations, εI =
εM = ε1 = ε2 = 0.1%, and two possible values for the error
rate in the raw entanglement, 1 − F = 1.5% and 15%. The
logical-qubit size for achieving the logical error rate εL =
10−12 is shown in Fig. 5. The raw entanglement error rate
1 − F = 1.5% is a tenth of the theoretical threshold in the
large-module limit. For this low entanglement error rate, we
expect that the purification is not necessary for large modules.
However, the raw entanglement error rate 1 − F = 15% is
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FIG. 5. The total count of physical qubits per logical qubit required to achieve the logical error rate εL = 10−12. F is the fidelity of the
“raw” entanglement between modules; we have assumed uniform raw entanglement errors on the form of Eq. (1), i.e., pX = pY = pZ, and all
intramodule operations have the same error rate, εI = εM = ε1 = ε2 = 0.1% (please see Appendix C for details of the error model). Circles
represent qubit costs for modules with the dimension D � 5, so that a module qubit can be encoded in each Q module. For such modules, the
module size (the total number of qubits in each module) equals D2 + 4D(nD + 1), where each broker contains nD + 1 qubits, and nD is the
number of entanglement purification tiers (see Appendix G). Black squares represent qubit costs for simple modules with only one broker. In
each simple module, the qubit number is nD + 2. Gray squares correspond to simple modules with four brokers, i.e., the module size equals
4nD + 5. The red triangle on the left vertical axis in (a) represents the qubit cost on the monolithic architecture [28], i.e., when noisy network
links are not used and all gates are performed with the lower error rate of 0.1%. These qubit costs are obtained by numerically obtaining
parameters ε0 and κ in Eq. (2) (shown in Fig. 10; see Appendix F for details).
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more practical for current technologies. For such a high error
rate, we see that entanglement purification is always necessary.

In general, the qubit cost decreases with the size of modules
(total number of qubits in each module). When the size of
modules approaches a thousand qubits, the qubit cost is only
about nine times higher than the cost given the (idealized)
monolithic architecture. We note that a factor of 2 is due
to the two-tier encoding considered in this paper. In this
encoding, approximately half of the modules, i.e., all the X
and Z modules, are ancillaries for stabilizer measurements.
Without the overhead cost due to X and Z modules, and
if physical-qubit stabilizer measurements are continuously
performed across the whole module network, isolated two-
dimensional error-correction lattices of entanglement errors
merge into a single connected lattice. The error correction on
the connected lattice, which is essentially three-dimensional,
will be harder than the error correction on isolated lattices.
However, this disadvantage may prove to be tolerable for very
large modules, in which case the overhead cost due to X and
Z modules may not be necessary. It would be interesting to
perform an analysis of this case where modules are very large,
exceeding the size required for storing logical qubits, in order
to determine whether the hierarchical code introduced in this
paper remains useful in that domain.

In our analysis and the data points shown in Fig. 5,
we contrasted the performance of a network of substantial
modules with that of a network of small modules, each
containing one data qubit of a simple surface code. In terms of
the total number of physical qubits needed to achieve a given
low error rate at the logical level, our somewhat surprising
conclusion is that simple modules are only marginally inferior
to large modules containing nearly a thousand qubits. In this
sense, our result is that the granularity of a network does not
strongly influence the resource costs. However, as a caveat we
must remark that in our study we have assumed that physical
qubits have a long memory time, so that memory errors are
negligible on the time scale required to perform entanglement
purification (see Appendix G). If this is not the case, then a
significant advantage for large modules could emerge because
fewer purification tiers are necessary. An analysis of this
scenario would open the way to a full audit of the time cost of
network quantum computing, where the time needed for the
multiple rounds of stabilization in the hierarchical picture is
contrasted with the time needed for deep purification circuits.

VI. CONCLUSIONS

In this paper, we have introduced a variant of the surface
code approach to fault-tolerant quantum information process-
ing. Our variant is intended to support the network paradigm
for quantum computing: the machine is divided into many
modules which are connected by noisy interlinks, and each
module contains a plurality of well-controlled (low-noise)
qubits. Our approach is a two-tier hierarchical surface code,
where the lower tier involves assigning a “patch” of surface
code to each physical module. Errors then occur primarily
at patch boundaries and this reduces the dimensionality of
the syndrome matching task, thus boosting the threshold. We
consider a general scenario where errors occurring in the

intermodule links are first purified by broker units and then
handled by the hierarchical code.

Both analytical reasoning and numerical results show that
larger modules have advantages: the threshold is higher and
the qubit cost is lower. However, the advantage in qubit cost
is not significant enough to conclude that large modules are
preferred platforms of quantum computing, taking into account
the difficulty of building large modules. For small modules,
we find that a size of approximately eight qubits per module is
optimal for practical entanglement noise purification, and the
total qubit cost per logical qubit is only 15 times higher than the
cost of a monolithic architecture. Broadly our conclusion is that
the granularity of a network-based quantum computer does not
strongly affect the total resource costs, with the consequence
that experimental efforts can target whatever module size is
most convenient for the particular technology.
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APPENDIX A: CIRCUITS

Circuits for performing the distributed CNOT gate, entan-
glement purifications, and stabilizer measurements are shown
in Fig. 6.

H

c
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B

t

H

H

|0〉 H H

-4

-1

-2

-3

|0〉

-8

-5

-6

-7

(a) Distributed CNOT gate (b (c) Phase-err

(d) X-stabilizer measurement (e) Z-stabilizer measurement

FIG. 6. Circuits for the distributed CNOT gate, entanglement pu-
rifications, and stabilizer measurements. (a) This circuit is equivalent
to a CNOT gate on qubit-c (control) and qubit-t (target), up to Pauli
gates Zc and Xt, depending on the measurement outcomes. (b, c)
If the ideal entangled state is in the form (|00〉 + |11〉)/√2, the
output entanglement is discarded if two measurement outcomes are
different. In the bit-error purification, the bit-error rate is reduced
from qB for the input entanglement to ∼ q2

B for the postselected output
entanglement, but the phase-error rate is increased from qP to ∼ 2qP.
It is similar for the phase-error purification. (d, e) Each full round of
stabilizer measurements involves both X-stabilizer measurements and
Z-stabilizer measurements. Labels on data qubits (see Fig. 2) indicate
the sequence of CNOT gates (CNOT gates with the same orientation are
performed in parallel).

042303-6



HIERARCHICAL SURFACE CODE FOR NETWORK QUANTUM . . . PHYSICAL REVIEW A 94, 042303 (2016)

Stabilizing module qubits

Stabilizing module qubits

M
o

d
u

le
-q

u
b

it

X
-sta

b
ilize

r m
e

a
su

re
m

e
n

ts

M
o

d
u

le
-q

u
b

it

Z
-s

ta
b

ili
ze

r 
m

e
a

su
re

m
e

n
ts

Q module X module

Z
 m

o
d

u
le

FIG. 7. Cycle of module-qubit stabilizer measurements. When
each module qubit is individually stabilized, only Q modules are
involved, and intermodule entanglement is not required. When
module-qubit stabilizers are measured, either X modules or Z modules
are used to read stabilizers of module qubits (as described in the
text). This process needs intermodule entanglement for implementing
distributed CNOT gates.

APPENDIX B: MODULE-QUBIT STABILIZER
MEASUREMENTS

The layout of module-qubit stabilizer measurements is
shown in Fig. 7.

The cycle of module-qubit stabilizer measurements shown
in the figure allows us to measure module-qubit stabilizers and
track physical-qubit errors at the same time. Taking module-
qubit X-stabilizers as an example, the important observation
is that the product of all physical-qubit X-stabilizers in the
X module equals the product of X logical Pauli operators
of four surrounding Q modules. Therefore, one can measure
the X-stabilizer of four Q modules by measuring these
physical-qubit X-stabilizers in an X module. Because data
qubits in X modules are initialized in state |0〉, values of all
Z-stabilizers of physical qubits should be +1 in the absence
of errors (assuming initially that all physical-qubit stabilizers
in Q modules are +1). Hence, bit-flip errors on data qubits
can be detected. In Q modules, because X-stabilizers of data
qubits are isolated from X modules, their values should also
be +1 in the absence of errors, thus phase-flip errors on data
qubits in Q modules can be detected.

The story is slightly more complex for X modules: because
values of X-stabilizers are stochastic due to the initial state
of surrounding data qubits, phase-flip errors on data qubits
in X modules cannot be detected for the first few rounds of
physical-qubit stabilizer measurements. However, these errors
do not affect Q modules (module qubits). The only way that
these errors can affect module qubits is that they cooperate
with measurement errors of physical-qubit X-stabilizers and

flip the value of a physical-qubit X-stabilizer throughout n

rounds of physical-qubit stabilizer measurements (see Fig. 3).
Such a chain of errors flips the outcome of the module-qubit
stabilizer measurement, which is an error on the module-qubit
level. When n is large, the probability of such an error chain
is suppressed. Finally, data qubits in X modules are measured
in the Z basis, which allows us to correct bit-flip errors for the
last few rounds of physical-qubit stabilizer measurements and
recover values of physical-qubit Z-stabilizers on the boundary
of Q modules.

APPENDIX C: ERROR MODEL

Here we describe the error model which we have used in
simulating the performance of the modular computer. Within
each module, there are finite rates of error for initialization,
measurements, single-qubit operations, and two-qubit oper-
ations. For initialization operations the state of a qubit is
initialized in the correct state |0〉 with probability εI and the
incorrect state |1〉 with probability 1 − εI. For measurement
operations, if the state of the qubit is |0〉 (|1〉), the measurement
outcome is correct [i.e., 0 (1)] with probability εM and incorrect
[i.e. 0 (1)] with probability 1 − εM.

For a single-qubit gate described by the unitary operator
U1, the operation actually performed on the qubit is E1U1,
where the superoperator U1ρ = U1ρU

†
1 . The superoperator E1

describes errors on the qubit. If errors are depolarized,

E1 = (1 − ε1)[1] + ε1

3
([X] + [Y ] + [Z]). (C1)

The total probability of errors is ε1, and three types of Pauli
errors occur with the same probability.

Similarly, for a two-qubit gate described by the unitary
operator U2, the operation actually performed on two qubits
(qubits A and B) is E2U2, where the superoperator U2ρ =
U2ρU

†
2 . The superoperator E2 describes errors on two qubits.

If errors are depolarized,

E2 = (1 − ε2)[1] + ε2

15
([XA] + [YA] + [ZA]

+ [XB] + [YB] + [ZB] + [XAXB] + [YAXB] + [ZAXB]

+ [XAYB] + [YAYB] + [ZAYB] + [XAZB]

+ [YAZB] + [ZAZB]). (C2)

The total probability of errors is ε2, and 15 types of Pauli errors
occur with the same probability.

For all cases where we have considered finite errors in this
paper, in particular, for the data in Figs. 4 and 5, we have set all
internal error sources to be simultaneously present and equal
to 0.1%, that is,

εI = εM = ε1 = ε2 = 0.1%.

This level of fidelity has been reached or exceeded for all such
operations in a certain type of ion trap [11].

Entanglement between modules is generated by jointly
detecting photons emitted from two remote optically active
broker qubits. The expression for the error-burdened “raw”
entangled state between broker qubits is given as Eq. (1),
which we reiterate here for completeness:

E = F [1] + pX[X] + pZ[Z] + pZ[Z].
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TABLE I. The number N of raw entanglement pairs required
to obtain one pair of nD-tier purified entanglement with success
probability PS. The failure to prepare a purified entangled state
results in missing the corresponding stabilizer measurement for one
round, i.e., the stabilizer measurement is not successful in that round,
which could be compensated by enlarging the logical qubit. When
PS ∼ 99.9%, we expect that missing a small portion of stabilizer
measurements increases the resource cost only slightly. We have
assumed that raw entanglement has fidelity F , entanglement errors
are unpolarized, i.e., pX = pY = pZ, and all intramodule operations
have the same error rate, εI = εM = ε1 = ε2 = 0.1%.

PS = 99% PS = 99.9%

nD N nD N

F = 98.5%
0 1 0 1
1 4 1 4
2 8 2 12
3 16 3 20
4 32 4 40
5 64 5 80
6 132 6 158
7 268 7 320
8 544 8 646

F = 85%
0 1 0 1
1 6 1 10
2 18 2 26
3 32 3 44
4 66 4 92
5 114 5 150
6 218 6 286
7 420 7 542
8 848 8 1064

The process of entanglement generation is probabilistic due
to the intrinsic nondeterministic nature of linear-optical Bell
measurements and photon loss; the state specified above is
the result of a heralded success, while failures are abandoned
and the generation procedure repeats. It is worth noting that
during the entanglement generation process, optically active
broker qubits are not entangled with any client qubits. Thus,
loss leads to detected failures and the consequent repeat of
the process does not directly harm the quantum information
in client qubits. We assume that memory errors are negligible,
i.e., the environmental decoherence time of qubits is much
longer than the time required to generate entanglement. We
report the time cost in terms of entanglement events in Table I.

APPENDIX D: ERROR CORRECTION

For simple modules, the error correction is directly per-
formed on a conventional surface code error correction lattice.
Even in this simple case there is scope for optimizing the
weights in the decoding algorithm, and we have done so
broadly as described in prior papers [30].

For large modules, we employ our hierarchical surface
code, for which error correction has two steps. First, physical-
qubit errors are corrected on the error correction lattice shown

FIG. 8. (a) Error correction lattice of physical-qubit errors. When
intramodule operations are ideal, measurement errors of module-
qubit X-stabilizers are all due to errors on the surface of X-module
(red) cubes, and module-qubit phase errors are all due to errors on
the surface of Q-module (purple) cubes connected with Z-module
(green) cubes. It is similar for measurement errors of module-qubit
Z-stabilizers and module-qubit bit errors. (b) Triple-size lattices. On
the triple-size lattice with an X-module cube at the center, errors
near the boundary of the X-module cube are sufficiently considered.
On the triple-size lattice with a Q-module cube at the center, errors
near the boundary of the Q-module cube are sufficiently considered.

in Fig. 8(a), which is a three-dimensional lattice formed by
cubes of size ∼(D + 1)/2 × (D + 1)/2 × n. In our numerical
simulations, we have included error correlations (the same
as simple modules) and the inhomogeneity of the error
distribution in the first-step error correction lattice. The weight
of an edge on the error correction lattice is given by

w = ln
1 − p

p
, (D1)

where p is the rate of errors corresponding to the edge. For
an edge on the boundary of a module [see Fig. 8(a)], the error
rate p is much higher than for edges within modules, i.e.,
the weight w is lower. By taking weights according to the
probability of errors, Edmonds’ minimum weight matching
algorithm takes account of the fact that edges connecting
modules are more likely to be noisy, so that the performance
of the error correction is improved compared with the case of
taking homogeneous weights.

After the first step, there are only module-qubit errors left,
which are further corrected on a conventional surface code
error correction lattice representing the array of module qubits.
In our numerical simulations, we have neglected correlations
between module-qubit errors, i.e., the error correction lattice
is a simple cubic lattice.

Using Edmonds’ algorithm in the quantum context [31]
to identify errors requires centralising stabilizer measurement
outcomes in one classical information processor: in this sense
it is a global calculation over the entire quantum computer.
However, it is worth noting that a decoder for the standard sur-
face code that requires only local information processing has
been developed [32] and in principle there is no reason that this
could not be adapted to the present hierarchical surface code.
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(a) Module dimension D = 5 (b) Module dimension D = 7 (c) Module dimension D = 9

FIG. 9. Module-qubit error rates. The rate of measurement errors of module-qubit X-stabilizers PM and the rate of module-qubit phase
errors PP are obtained with single-size lattices (individual cubes) and triple-size lattices [see Fig. 8(b)]. We have assumed that entanglement
errors are unpolarized, i.e., pX = pY = pZ, and all intramodule operations have the same error rate, εI = εM = ε1 = ε2 = 0.1%.

APPENDIX E: SIMULATION OF THRESHOLDS

Logical-qubit error rates are obtained using the Monte
Carlo method by simulating errors occurring in a logical
qubit encoded in a (2L − 1) × (2L − 1) module array during
L rounds of module-qubit stabilizer measurements. We have
used Edmonds’s minimum weight matching algorithm in the
surface code error correction. In our simulations, we have set
n = (D + 1)/2 (see Fig. 3).

When intramodule operations are ideal, i.e., ε = 0 (see
Fig. 4), errors (due to entanglement errors) only occur on

boundaries of connected cubes [see Fig. 8(a)]. These boundary
surfaces are separated, hence errors on each boundary surface
can be individually corrected and simulated. By simulating
errors on the surface of an X-module cube [black surface of the
red cube in Fig. 8(a)], we can find the rate PM of measurement
errors of module-qubit X-stabilizers (measurement errors after
physical-qubit error correction). By simulating errors on the
surface of a Q-module cube connected with a Z-module
cube [black surface of the purple cube in Fig. 8(a)], we can
find the rate PP of module-qubit phase errors during one
round of module-qubit stabilizer measurements. It is similar

(a) (b)

(c) (d)

1 3 5 7 9 11 13 15 17
Module dimension

ε 0
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Module dimension

ε 0
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FIG. 10. Parameters ε0 and κ for entanglement error rates of 1.5% (a, c) and 15% (b, d). Symbols are consistent with Fig. 5. For simple
modules, the module dimension is always D = 1, and the number of purification tiers increases form left to right.
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for measurement errors of module-qubit Z-stabilizers and
module-qubit bit errors. With error rates PM and PP, we can
simulate module-qubit errors on the conventional surface code
error correction lattice to find the rate of logical-qubit errors.

When intramodule operations are not ideal, e.g., ε = 0.1%
(see Fig. 4), errors are not restricted to boundary surfaces.
In this case, the first step in error correction (correcting
physical-qubit errors) must be performed on the entire lattice
[see Fig. 8(a)]. However, for large modules (D � 5), the entire
lattice is too large to be directly simulated. Therefore, we
individually simulate errors in each cube to approximately
calculate the rate of module-qubit errors. We note that, when
intramodule operations are not ideal, module-qubit errors also
occur when module qubits are stabilized (corresponding to
Q-module cubes without contact with X-module or Z-module
cubes), which must be taken into account. Because we are
interested in the case where intramodule operations have error
rate ε = 0.1%, which is much lower than the 1% error-rate
threshold for intramodule operations [30], the probabilities of
error chains (after physical-qubit error correction) decrease
rapidly with their lengths. Therefore, by simulating cubes
individually, only the effects of errors (induced by intramod-
ule operations) near boundary surfaces are approximately
considered. In Fig. 9, we compare module-qubit error rates
obtained with individual cubes and error rates obtained on
triple-size lattices [see Fig. 8(b)]. Each triple-size lattice
has dimension ∼3n, where the boundary effect has been
sufficiently considered. Even in the case of the smallest cube
(D = 5), neglecting the boundary effect only slightly changes
the error rates of module qubits.

To obtain each threshold point in Fig. 4, we need to generate
a logical error rate versus entanglement error rate plot similar
to the inset. In each such plot, we calculated 100 data points
(25 data points are shown in the inset), and each data point
corresponds to approximately 1 million simulations. To obtain
all the data in this paper, we used 800 high-performance cores
running for 2 weeks. In the inset in Fig. 4, the discrimination
between entanglement error rates is 0.15%, which bounds the
uncertainty of thresholds.

The computer code used to generate the results in
this paper has been made openly available online at
https://figshare.com/articles/network_FTQC/3473687

APPENDIX F: SIMULATION OF QUBIT COSTS

The qubit cost is calculated with parameters ε0 and κ . For
a given logical error rate εL, one can find the minimum L

satisfying εL � ε0e
−κL. This minimum L determines the size

of the logical qubit. The total number of qubits in each logical
qubit is (2L − 1)2 × S, where S is the number of qubits in
each module (module size).

Parameters ε0 and κ are shown in Fig. 10. For simple
modules, parameters ε0 and κ are obtained by directly fitting
logical qubit error rates for L = 3, 5, 7, 9, 11, with the function

εL = ε0e
−κL. (F1)

For large modules with D � 5, because module-qubit error
rates are very low, it is hard to directly find logical-qubit error
rates in simulations. Therefore, first, we obtain the module-
qubit error rates (PM,PP), and then we find the logical-qubit

error rates for module-qubit error rates (rPM,rPP). Here,
the ratio r is chosen so that (rPM,rPP) are large enough
for simulating logical-qubit error rates (not far below the
threshold). Then we fit logical-qubit error rates for L = 3,
5, 7, 9, 11 with the function

εL = e(α ln r+β)L+γ . (F2)

With fitting parameters α, β, and γ , we can obtain parameters
κ = β and ε0 = eγ .

Standard deviations of parameters ε0 and κ are also shown
in Fig. 10. Small variations in these fitting parameters might
change our estimations of the qubit cost in Fig. 5, but it
is unlikely that our conclusion would be changed. For the
low-fidelity network [Fig. 5(b)], the minimum cost of simple
modules will change from 22 472 qubits to 20 808 qubits
as we vary ε0 and κ by an amount equal to their deviations,
while the minimum cost of complex modules, which is 13 125
qubits, will not be changed (note that the cost is not a
continuous function of ε0 and κ).

Transfer

Transfer

(a) (b)

(c) (d)

FIG. 11. Protocol of entanglement purification. (a) First, the raw
entanglement is generated with optically coupled qubits (qubits at
the bottom), and this raw entanglement is transferred to the upper
pair of qubits via swap gates. Each swap gate is realized with three
CNOT gates in our simulations. (b) The second raw engagement is
generated with optically coupled qubits and is used to purify the
raw entanglement of the upper pair of qubits. The first-tier purified
entanglement is then transferred upward. (c) The second first-tier
purified entanglement is prepared and used to purify the previous
first-tier purified entanglement. With more qubits in each broker, by
transferring purified entanglement upward, this purification process
continues until reaching the top of the broker. (d) The finally purified
entanglement is used to perform the distributed CNOT gates on client
qubits.
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APPENDIX G: PURIFICATION AND TIME COST

In our simulations, we have considered the purification
protocol proposed in Ref. [4], in which phase errors and
bit errors are corrected alternatively, i.e., in each tier of the
purification either only phase errors or only bit errors are
corrected. Circuits for bit-error purification and phase-error
purification are shown in Figs. 6(b) and 6(c). The overall
purification protocol is shown in Fig. 11. Note that in our
simulations, for distributed CNOT gates involving an X (Z)
ancillary qubit, phase (bit) errors are corrected in the first tier.

If the time cost of generating raw intermodule entanglement
is much higher than the time cost of intramodule operations,

the time cost of one round of module-qubit stabilizer measure-
ments is 2n × N × τ , where half of the 4n rounds of physical-
qubit stabilizer measurements (see Fig. 3) need intermodule
entanglement, N is the number of raw entanglement pairs for
preparing one pair of purified entanglement (see Table I), and
τ is the time cost of preparing one pair of raw entanglement.
We have taken n = (D + 1)/2 in our simulations. For simple
modules, if each module has only one broker, the time cost
is amplified by a factor of 2. The overall time cost of the
computing, i.e., the total rounds of module-qubit stabilizer
measurements, will of course also depend on the both the
selected decoding algorithm and the high-level algorithm.
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