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Correlations between outcomes of random measurements
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We recently showed that multipartite correlations between outcomes of random observables detect quantum
entanglement in all pure and some mixed states. In this followup article we further develop this approach, derive a
maximal amount of such correlations, and show that they are not monotonous under local operations and classical
communication. Nevertheless, we demonstrate their usefulness in entanglement detection with a single random
observable per party. Finally we study convex-roof extension of the correlations and provide a closed-form
necessary and sufficient condition for entanglement in rank-2 mixed states and a witness in general.
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I. INTRODUCTION

The Bell singlet state is a paradigmatic example of an
entangled state. This is usually demonstrated by noting that
the entropy of the pair of particles is smaller than the entropy
of each particle, a possibility forbidden in classical objects. At
the same time the singlet state is famous for its correlations.
Indeed, two observers measuring the same spin direction will
always find their outcomes opposite. This holds independently
of a particular measurement direction, in agreement with the
total spin being zero. Furthermore, even for spin directions that
differ quantum mechanics predicts high probability of opposite
outcomes. One might therefore ask if correlations between
randomly chosen observables reveal entanglement. We have
recently shown that such “random correlations” are indeed a
feature of entangled pure states [1]: A pure N-particle state
is entangled if and only if the squared N-partite correlation
functions averaged over uniform choices of local observables
exceed a certain bound.

In this followup paper we extend our approach in several
ways. In Sec. Il we focus on pure states in arbitrary dimensions
and derive explicitly equivalence between entanglement and
the random correlations in general. We then study maximal
amount of random correlations in a pure state and find that it is
achieved (nonuniquely) by the Greenberger-Horne-Zeilinger
(GHZ) states of an odd number of qubits. (We conjecture
that GHZ states give rise to maximal random correlations
in general.) It turns out that random correlations of the
two-dimensional (2D) cluster states scale intermediately as
expected from entanglement of resources for universal quan-
tum computing [2,3]. All this suggests that random correlations
might be a proper entanglement monotone. We show that this is
true for bipartite systems and provide explicit counterexamples
for a five-qubit system. Nevertheless, the random correlations
are helpful as entanglement witnesses which we demonstrate
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on a vivid example where entanglement is detected with one
random observable per party.

In Sec. III we move to mixed states and consider the convex
roof extension of random correlations. We prove a necessary
and sufficient condition for entanglement in rank-2 states
and present an entanglement witness for general states. The
witness is illustrated on an explicit example where it detects
all entangled states of a certain family.

II. PURE STATES

Let us briefly summarize previous results regarding random
correlations and a related notion of the length of correlations
(not to be confused with the length in physical space). We start
with two-level systems, qubits. Any N-qubit density matrix
can be represented in terms of Pauli matrices as

1
o= N Z Ty pin Oy @ -+ - Q@ Oy, (1)

Hlsees UN=

where 07,072,053 are the Pauli matrices and oy is the identity.
The real coefficients 7,, ., € [—1,1]form an extended corre-
lation tensor which is just an alternative to the density matrix
representation of a quantum state. If each party chooses to
measure their qubit along a local direction i, then expectation
of the product of their measurement outcomes, the so-called
correlation function, is given by

3
EGiy,...iy)= Y Tjjy @)j ... Gin)j. ()

Jiseesin=1

where (i1,);, is the j,th component of vector u,. We define
random correlations as the expectation value of squared
correlation functions averaged over uniform choices of settings
for each individual observer,

1 - - - -
REW/dul.../duN E*(iy, ... uy), (3

where dii, = sin6,d0,d¢, is the usual measure on the unit
sphere. To estimate R, it would seem that we have to take into
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account all local directions but in fact it is sufficient to consider
only a set of orthogonal axes for each party [1]:

1
RZS_NQ Z

where length of correlations C is defined as the sum of squared
correlations measured along a complete set of orthogonal local
axes. Note that no common reference frame is required; each
observer is allowed a different Cartesian coordinate system.
The name “length of correlations” refers to the fact that C is a
squared norm of the correlation tensor (with components hav-
ing solely correlation functions between all N qubits). It has
been shown in Refs. [1,4-6] thatC > 1if and only if the system
is in a pure entangled state. In Appendix A we present a simple
alternative proof for pure systems of two and three qubits that
follows directly from the Schmidt decomposition. This line of
reasoning does not extend to a higher number of qubits because
the restrictions brought forward by the Schmidt decomposition
do not engage a sufficient number of subsystems.

C

@

A. Higher dimensions

We now extend our criteria for entanglement to higher
dimensions, i.e., qudits of dimension d. The final result is
already presented in Ref. [1], but we would like to clarify which
quantities exactly we consider and discuss explicitly some
subtleties. The step-by-step derivation is presented below.

We replace the Pauli matrices with a complete orthogonal
basis consisting of identity and d*> — 1 traceless operators o;
such that forall j,k =1,...,d> — 1

Tr (o) =0, (&)

Tr(oj0,) =d §ji. ©6)

Various concrete realizations can be taken here, e.g., gener-

alized Gell-Mann operators (Hermitian basis) or the Weyl-

Heisenberg operators (unitary basis). For completeness we

write them in Appendix B.

An arbitrary state p of N qudits can be decomposed using
these operators in a way similar to the Bloch representation:

=

p= av Z

H1seens MN=

T#]---MN6M1 ® & Opuys (7

with oy = I being the identity and o; the operators defined
above. As before, the coefficients are

Ty = Tr(po), ® - ®0f ). ®)

However, these coefficients are in general complex valued as
o’s are not required to be Hermitian. We therefore define the
length of correlations with the help of absolute value:

da*-1

C= _ Z |Tf|---jN|2' ©

As proven in Appendix C, the length of correlations C is
invariant under the choice of local basis as long as (5)
and (6) are satisfied. Note that this is more general than
invariance under local unitary transformations. For example,
the Gell-Mann basis cannot be obtained from the Weyl-
Heisenberg basis by local unitaries because the corresponding
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operators have different eigenvalues. Nevertheless, the length
of correlations is the same in both bases provided they are
suitably normalized.

Similar to the case of qubits, the length of correlations can
also be used to identify entanglement in pure states.

Theorem 1. Pure state |\V) is entangled if and only if

C>(d—-D". (10)

Proof. The proof follows the same lines as for qubits and
is presented in Appendix D. ]

It should also be clear how to extend this theorem to cover
subsystems of different dimensions, e.g., 2 x 3.

We will now define random correlations for qudits and show
that they are proportional to C. The generalization is obtained
by requesting that random correlations are the average of
squared correlations over uniform choices of unitary matrices
U, for each observer:

1
R= —/dU, .../dUN [E(Uy, ...UM, (1D

wWN
where W is a normalization constant, i.e., f dU, =W, and
the unitary-dependent correlation function reads

N
E(Ul,...,UN)=Tr|:,0 ®UJUJU,1] (12)

n=1

Here we have chosen exemplary operator o) as an initial
observable of the averaging. In Appendix E we prove that
‘R is independent of the choice of this initial operator as long
as it is traceless and normalized. With these definitions we link
random correlations and entanglement as follows.
Theorem 2. For any pure state of N qudits,
C

R = —(d2 e (13)

Proof. Note that the length of correlations C is a sum of
(d* — 1)V squared correlation functions, each of which is equal
to R after averaging over local unitary transformations (see
Appendix E). Since C is invariant under such transformations,
overall these averages still sum up to C. Therefore C is just a
multiple of R. ]

B. Maximal random correlations

Here we examine states that maximize C (and therefore R).
We focus on multiple qubits. Let us begin by proving the upper
bound on the length of correlations.

Theorem 3. Every pure state of odd number of qubits N

satisfies
C <21 (N is odd). (14)

Proof. Let us denote by Cy the sum of squared correlations
between any k observers. In particular, for a system of N qubits
in a state |{) we have Cy = C(v/). The purity condition of |r)
implies

1+Ci+Co+Cs4--+Cy_y +Cy=2",  (15)
whereas Ref. [7] demonstrates for N odd

1-Ci+C—C3+---+Cy1 —Cy =0. (16)
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Summing up (15) and (16) we obtain
Ci+Cs+---+Cy=2N"1 (17)

The theorem follows by noting that each Cj is
non-negative. ]
The bound of (14) is tight and it is achieved, e.g., by the
GHZ state
1 ®N N
ﬂ(|0> + [1)°7). (18)
Although the theorem works only for states of odd number
of qubits N, a similar bound, of value 2V~! + 1, is observed
for GHZ states of even N. We conjecture that this is indeed
the maximum possible value of C for any even N. We have
been uniformly sampling pure states randomly over respective
spaces and so far no counterexample to the conjecture has been
found. We also note that GHZ states are not the only states with
maximal value of C. For example, for N = 4 qubits the same
value is attained by the double singlet state

g o) —110) _]01) —[10)
U w) = .
)W) 7 ® 7

IGHZ)y =

19)

C. Random correlations of cluster states

As another concrete example we calculate the length
of correlations for 2D cluster states [8,9]. Since they are
universal for quantum computing their geometric measure
of entanglement displays intermediate values in agreement
with findings that too highly entangled states are useless for
universal quantum computing [2,3]. We find the same behavior
of the length of correlations.

Consider a square lattice of size n with each node connected
to its nearest neighbors. At each node a, let there be a qubit
associated with it and an operator

K, =0 ® o, (20)
beN(a)
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FIG. 1. Length of correlations for 2D cluster states (blue dashed
line) and GHZ states (red dash-dot line). Here the length of
correlations has the same features as the geometric measure of
entanglement. However, see Sec. I D. The curve is obtained by fitting
an exponential function to numerical data.
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where the superscripts a and b show on which qubits the Pauli
matrices act. The tensor product is taken over the set A/ (a) of
nodes neighboring with a. The cluster state |C) is defined as a
common eigenstate of operators K, [8]:

K.|C)=1C), Va. 21

We compute the length of correlations for the n x n cluster
states for small n and extrapolate to larger n. As seen in Fig. 1,
random correlations of cluster states are halfway between
product states and GHZ states, so that they mimic behavior
of the geometric measure of entanglement.

D. Does C measure entanglement?

Since C and R perfectly distinguish pure entangled states
from disentangled ones, and in calculations of concrete exam-
ples they display proportionality to the geometric measure of
entanglement, we ask if they are entanglement monotones in
general. We prove that they are the monotones for bipartite
systems. However, this does not generalize to multipartite
systems as we will show on counterexamples below.

1. Random correlations may increase on average
under local operations

Consider the following state of five qubits:
_ 10)IGHZ)4 + |1)| D3)
V2 ’

where |GHZ), is the GHZ state of four qubits, defined in (18),
and | D3) is the four-qubit Dicke state,

R
NG
+10110) +]0101) + [0011)). (23)

) (22)

|D3) = —=(11100) + [1010) + [1001),

It is straightforward to verify that the length of correlations
of |W) is C(¥) = 8. If a projective measurement in the
computational basis is performed on the first qubit, the state
will collapse to either |0)|GHZ) or |1)| DZ) , both of which have
length of correlations equal to 9. Thus C increases after such
local measurement independently of the actual measurement
outcome. Thus, it is not a legitimate entanglement measure
[10]. This five-qubit example is the simplest that we were able
to find. Therefore, in principle, the random correlations could
still be entanglement monotone for systems of three and four
qubits.

2. Random correlations and LOCC conversion
between pure states

The previous section disproves a strong version of mono-
tonicity of random correlations under local operations and
classical communication (LOCC). There is still a possibility
that R is a monotone not on average, i.e., R could be a
monotone under LOCC operations that map pure states to pure
states. We show here that this weaker form of monotonicity
also does not hold for R when applied to multipartite systems.

For bipartite systems the following statement holds.

Theorem 4. For pure bipartite states, |1) can be converted
by LOCC to |¢) if and only if C(v) > C(¢).
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Proof. From Nielsen’s theorem [11], [¢) can be converted
by LOCC to |¢) if and only if the Schmidt probabilities p; ()
of [f) are majorized by p;(¢) of |¢):

k k

D i) <Y pie), (24)

j=1 j=1

foranyk = 1, ... ,d and the Schimdt probabilities are arranged

in decreasing order. From purity condition and the Schmidt de-

composition, we find C(y) =d>+ 1 —2d Zj pjz.(t/f). Since

the square function is strictly convex in R*, by Karamata’s

inequality p;(y) is majorized by p;(¢) if and only if

2 2 . .

>, PAW) <Y, pi(¢), and hence if and only if C(y) >

C(¢). ]
We give the following counterexample for multipartite

systems. Consider the pair of states:

O) Y)Y ™) + Dy )y
NG )

) = 10} ¥ )Y ™), (26)
where | F) = %GO]) = |10)) are the two Bell states. Starting

with |1) we measure the first qubit in the standard basis and,
depending on the outcome, apply suitable local unitaries on say
the second and fourth qubit to obtain |¢). However, C(y) = 8
whereas C(¢) = 9.

V) = (25)

E. Witnessing entanglement with single random
setting per party

Although random correlations do not measure entangle-
ment we argue here that they are useful for entanglement
detection. In particular, they allow us to detect quantum
entanglement with a high level of confidence even with a single
random measurement setting per party [1]. Such advantage
is relevant to experiments. For example, the small count
rates in a multiphoton experiment (e.g., Ref. [12]) make the
measurement of every next setting expensive. The strategy
presented here reduces the number of settings required to
detect entanglement to its ultimate minimum.

In principle, to determine R, an infinite number of measure-
ments has to be performed both in terms of K, the resources
needed to estimate correlation functions, and in terms of M,
the resources needed for averaging over random settings. In
Ref. [1] we introduced entanglement witness [13,14] that
takes the finiteness of K and M into account, and here we
demonstrate explicitly the effect of finite K on this witness.
For a single random setting, M = 1, the witness reads

Rk > 1/3V +68 = likely v is ent, 27)

where 1/3" is the random correlation of the product state of N
qubits and § is used to set the confidence level of entanglement
detection. Namely, if estimated correlation R g is far from what
is expected for a product state, most likely we are measuring
an entangled state. In our calculations, the confidence level is
set by requiring that random correlation of a product state is
smaller than 1/3" + § with probability 95.4%. Table I shows
the probability to detect entanglement in GHZ states (and states
that can be reached from GHZ by local unitaries) of N qubits
with both finite and infinite K. For sufficiently big K the
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TABLE 1. Probability of detecting N-qubit GHZ entanglement
with a single random measurement per party at confidence level
of 95.4%. K gives the number of trials after which the correlation
function is estimated.

N 3 4 5 6 7 8 9 10

K =1000 26% 44% 47% 57% 52% 48% 41% 34%
K—>o00o 26% 44% 48% 63% 67% T17% 80% 86%

chance of detection grows with N. For finite K the detection
probability grows for small N and then starts decaying. This
is because the random correlation of any state is exponentially
small in N, and therefore there exists critical N for which the
error 1/+/K in estimation of the average due to finite K is
comparable with the bound of Eq. (27). As illustration, Table I
shows that K = 1000 trials is essentially infinity forupto N =
5 qubits. For N = 6, the bound of the entanglement witness is
~0.01 and indeed matches random correlation of the six-qubit
GHZ state, ~0.04, reduced by the error 1/ VK ~0.03.

III. MIXED STATES

So far we have only considered the length of correlations
in pure states. Although the previous definition of C, as
given in Eq. (4), suits a mixed state p it no longer identifies
entanglement with certainty as it does for pure states. Clearly,
C can be even less than unity for mixed states. Nevertheless, a
necessary and sufficient condition can still be established for
entanglement in rank-2 states.

Our approach is to define a new quantity via convex roof
extension of the length of correlations:

E(p)= min > mC(¥), (28)
ks Xk k

where the sum is minimized over all possible pure-state
decompositions {u, Wi} of p, i.e., p =D, | Vi) (Wil. A
state p is entangled if and only if £(p) > 1. As in other convex
roof constructions, calculation of £(p) is generally a challenge.
However, for certain families of mixed states, explicit formulas
for £(p) can be found.

A. Necessary and sufficient condition for entanglement
in rank-2 states

Rank-2 states are mixed states which belong to a subspace
spanned by only two distinct pure states. They possess
properties similar to those of a single qubit that notably
simplify the minimization problem of (28). In what follows, we
shall acquire a similar technique to that presented by Osborne
[15] to evaluate the entanglement of an arbitrary mixed state
of rank 2.

Theorem 5. For a multipartite mixed state of rank 2

E(p) = C(p) + 3[1 — Tr(0>)|Wnin, (29)

where C(p) is given in Eq. (4) and wy;, is the lowest eigenvalue
of 3 x 3 matrix defined in the proof.
Proof. See Appendix F. |
The advantage of Theorem 5 lies in its computability. As a
demonstration, we prove that a nontrivial mixture of a product
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state and an entangled pure state is always entangled [16,17].
It turns out that £(p) behaves similarly to entanglement
quantifiers. Since every product state can be brought to
[00...0) using a local unitary transformation, let us write
such mixture in the most general form as

p = pl00...0)(00...0]+ (1 — p)|®}P|, (30)

where p is a probability and |®) is a general pure state.
A compact formula for £(p) could be found if we further
restrict the state | ®) to a superposition of |00. . . 0) and another
product state |«) orthogonal to |00 . . . 0). Direct application of
Theorem 5 shows

E(p) =1+ (1 = p[C(d) — 1]. 31)

If |®) is entangled, its length of correlations C(®) > 1. In
this case also £(p) > 1 and the mixture is entangled for all
nontrivial values of p.

B. Witness for general states

We extend the idea used in Theorem 5 to mixed states of
arbitrary rank. By following the same steps as in the preceding
proof, with the Pauli matrices replaced by generalized Gell-
Mann matrices, we obtain a lower bound of the following
theorem.

Theorem 6. For a multipartite mixed state of rank m,

E(p) = W(p) =C(p) + [1-Tr(p™)],  (32)

Wmin

m2
where all the quantities are defined in analogy to Theorem 5.

This is no longer a necessary and sufficient condition for
entanglement because there might not be a physical pure state
decomposition that achieves the minimum similar to Eq. (F8).

Nevertheless, this witness is of some interest as demon-
strated by the following example where it detects all the
entangled states of a certain family. Consider three qubits in
the mixed state,

p=0—=pJIWY W[+ ppn, (33)
4 -
= \Nitness value
35 = = = Separability threshold

FIG. 2. Witness (32) detects entanglement of all the entangled
states of the family given in Eq. (33).
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with
|W) = 55(/100) +[010) + |001)),
Pn = 3(|100)(100] + 010)(010| 4 ]001)(001]). (34)

It is straightforward to verify that p is always of rank 3 except
for trivial values of p = 0 or 1. Our witness reveals that the
mixed state is entangled for all p < 1; see Fig. 2.

IV. CONCLUSION

In conclusion, we showed that a multipartite pure quantum
state of any dimensions is entangled if and only if it gives rise
to higher squared correlations in random measurements. Only
correlations between all the parties are relevant. Alternatively,
the sum of all squared components of the correlation tensor
is higher in all entangled pure quantum states than in product
states. Additionally to various features discussed in the main
text, this provides understanding why certain pure entangled
states do not violate any two-setting Bell inequalities for
correlation functions [18-20]. Conditions for violation of
such inequalities involve a plane of correlation tensor defined
by the two settings. There exist states which have bounded
correlations in every plane of the correlation tensor, but when
all squared correlations are summed up the state is revealed as
entangled.
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APPENDIX A: RANDOM CORRELATIONS
AND SCHMIDT DECOMPOSITION

Theorem 7. A pure state of two and three qubits is entan-
gled iff its length of correlations is greater than 1.

Proof. We will only use Schmidt decompositions and purity
conditions. For a pure state W of two qubits, the purity
condition, Tr(p?) = 1, requires that

C(W) + (@l + b =3, (A1)
where 5,5 are the local Bloch vectors and C(W) is the length
of correlations [see Eq. (4)]. From Schmidt decomposition
one has |d|?> = |b|> < 1. Thus the length of correlations must
satisfy C(W) > 1. The only case that C(¥) = 1 is when both
lal> = |l;|2 = 1, which means W is a product state.

For three qubits in a pure state W, let us denote by p; the
reduced state of the ith subsystem and by p;; the reduced state
of the ith and jth subsystems together. Schmidt decomposition
requires that Tr(,oiz) = Tr(pjz.k) for every i # j # k. In terms
of correlations this gives

LA 41513 = 31+ 19; 17 + 5> + Cloj0)), (A2)

042302-5



TRAN, DAKIC, LASKOWSKI, AND PATEREK

where, e.g., ; are the Bloch vectors of p; and C(pjk) is the
length of correlations of the state p ;. Note that there are three
equations of the form (A2). After summing them up all the
Bloch vectors cancel out and we find

C(p12) + C(p13) + C(p23) = 3.

Let us recall the purity condition for W:
|91 2+[02f + 031 + C(W) + Clp12) + Clp13) + Clozs) = 7.
(A4)

From (A3) and (A4) together with the fact that the length of
Bloch vectors is upper bounded by unity, we have C(¥) > 1.
In addition, C(W¥) is equal to 1 if and only if all three local
Bloch vectors are normalized, i.e., W is a product state. |

(A3)

APPENDIX B: OPERATOR BASES

Two most often used operator bases that satisfy Egs. (5)
and (6) are as follows.

The generalized Gell-Mann matrices (Hermitian basis) can
be divided into three classes:

= J4m) ] + In)m), (B1)

- \/g(—i|m)(n| + iln)(m]),

1

o= e | 2o =@+ DI+ DU+ 1] ], (B2)

j=0

where 0 <m<n<d—-—1,and 0 </ <d—2 and d is the
dimension of the Hilbert space of pure states.
The Weyl-Heisenberg matrices (unitary basis) read

Wy = X"Z", mn=0,....d—1, (B3)
Z =Y expli2rk/d)lk)(kl. (B4)

k
X =Y |(k+1) mod d)k|. (B5)

k

APPENDIX C: INVARIANCE OF THE LENGTH
OF CORRELATIONS

Theorem 8. The length of correlations, Eq. (9), is invariant
under the choice of local basis satisfying Eqs. (5) and (6).

Proof. Denote by C the length of correlations calculated in
abasis {0} for each of the N qudits. Without loss of generality,
we shall prove that the same value is obtained if the local basis
of the first qudit is changed to {0;}. Since only the traceless
operators enter the definition of the length of correlations, i.e.,

j=1,... ,d?> — 1, and both bases are complete we have
d>—1
o} =) o, (&)

where o j; are complex coefficients forming unitary matrix o
because

[
> e = S Trlo}(o] )1=6;. (C2)
k

PHYSICAL REVIEW A 94, 042302 (2016)

In matrix form, aa’ = I. Denote by C’ the length of corre-
lations evaluated in the {o}} basis. Let o, denote the tensor
productof 0, ® - - - ® o, for the last N — 1 qudits. We have

C'=) 2 ITipo; @ o)l
Mo

=22

Mo

2
:ZZ ZajkaM
M|k

= ZZ Z lotjie|*| T | + Zotjkd;flTkMT[Z,,
Mo\ k

k£l

=y Daju | Tien
M  k

+ 22| 2o | Ten Ty
M ok \
=>

Mk

|Tem)* = C, (C3)

where in the second last equality we used (C2) and afa =
e ') o) =a (e = la =1. [ |

APPENDIX D: LENGTH OF CORRELATIONS
AND ENTANGLEMENT

Here we prove Theorem 1 of the main text: Pure state
o0 = |W) (V| is entangled if and only if
C>(d-D". (D)

Proof. Clearly, if |W) is a product state, i.e., |¥) = |[¥) ®
-+ @ |Wy), then the length of correlations factors and we
obtain

N
C(V) = HC(\yi) = - DV,

i=1

(D2)

For the proof in the other direction consider two copies of the
state. In general, we can write the length of correlations as
C=Tr(p® pS), where S is defined as
S=s"g...0s"W, (D3)

with §"™ = Z‘jlnz;l' 0, ® g ,and the superscript denotes pairs
of qubits S acts upon. It can be directly verified that choosing
o’s as the Gell-Mann operators (without loss of generality as
C is basis independent; see Appendix C) S"" has

(1) d eigenstates |a;) = |jj) (0 < j < d — 1) with eigen-
valued — 1,

(2) A5 eigenstates |B;) = 1ij) +1ji) O
d — 1) with eigenvalue d — 1,

(3) 45 eigenstates |y;;) =lij)—1ji) (O
with eigenvalue —d — 1.

<i<j<

Si<j<d-1)
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Since all the eigenvalues of § are +(d — 1), all the
eigenvalues of S are of the form (—1)¥(d + 1)*(d — DN+
for k =0,1,...,N. However, since —(d + 1) corresponds to
antisymmetric eigenstates, it must occur in pairs, i.e., k must
be even. This follows from the fact that S is calculated for two
identical copies of the state and therefore has no antisymmetric
component. Thus the smallest eigenvalue of S is (d — ).
It therefore follows that C > (d — 1)V. The equality is when
W) ® |W) lies in the space spanned by the eigenstates o ;) and
|Bi;). Such state is symmetric with respect to the exchange of
any qudit j and its copy j'. Let a general expansion of |¥) in
the standard basis be

V) = Z Njrojn i JN)s

Ji--Jn

(D4)

where n;, _;, are the complex coefficients. We focus on the first
two qudits and write |W) = > "7 ;,;s1/1j2J) where J stands
for a sequence j3 j4...jy for the last N — 2 qudits. The state of
the two copies of |W¥) is

Yo Y w2 D)

Jid2d g d!

V) ® V) =

(D5)

We now exchange the first qudit:

Z Z Njijald Mji gt L2 d ) ’JIJZ )

Jud2d gy’

V) ® V) =

(D6)

Comparing Egs. (D5) and (D6), we obtain relations between
the coefficients n:

Niild M 5107 = Njijald i 317 (D7)

which holds for any ji, j{, 2, j5.J,J". In particular, for J =
J',ji =1 we find

Mjiald _ Mgl

= k;, independent of j,, j;. (D3)
Mpls  Mjls
Using these relations we can rewrite the state |\W) as
W)= > wjpuliviad) (D9)
Jis2sd
=Y A\ Do misslin) |1i2d) (D10)
2. J Ji
=Y | D kimpali) |1iad) (D11)
J2:d Ji
=D kilin) > mulid) | (D12)
h

J2d

Thus |W) is a tensor product of a pure state for the first qudit
and another pure state for the last N — 1 qudits. By applying
this argument iteratively we find that |W) is fully separable.ll
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APPENDIX E: RANDOM CORRELATIONS DO NOT
DEPEND ON THE INITIAL OPERATOR IN AVERAGING

We present two lemmas before moving to the main theorem.
Lemma 1. For traceless and trace-orthogonal operators o
and o7, and arbitrary state p of two qudits,

A= /dU U @ Up Ul @Ulo/ ®ay)  (E)

—=0. (E2)

Proof. By bringing the integral inside the trace one recog-
nizes the Werner state

pw=/dUU®UpUT®UT. (E3)

All such states can be written in the form [21]
1

= I—aP), E4
pw=———(l—aP) (E4)

where o € [—1,1] and P is the swap operator
P = "lij)jil. (ES)

Since of ® o3 is traceless, we have

o L
A= mTr(Pal' ® o). (E6)

It can be directly verified that
Tr(Po! ® 03) = Tr(o, o). (E7)

The lemma follows from orthogonality of ¢’s. ]
Lemma 2. For traceless and trace-orthogonal operators o
and o3,

B= /dU U@ Ulel @ U@ U)  (ES)

=0. (E9)

Proof. We shall prove that B has all matrix elements
(mn|B|kl) = 0. First write

(mn|B|kl) = /dU Te(kl) (mn|Ut @ Uto] @ o,U @ U).

(E10)

The diagonal elements, i.e., k =m and [ = n, vanish due
to Lemma 1, because |kl)(kl| is a valid density matrix. For
off-diagonal elements, i.e., k # m or [ # n, apply Lemma 1

to states p; = S(|kl) + [mn))((kl| + (mn|) and p, = L(kl) +
i|mn))((kl| — i (mn]|) to obtain respectively
0 = (mn|B|kl) + (kI|B|mn), (E11)
0 = (mn|BIkl) — (kl|B|mn). (E12)

The sum and difference reveal that all off-diagonal elements
vanish. ]
Theorem 9. Random correlations

/dUl /dUN Tr(,o ®Umu)

n=1

2
R() =

(E13)
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do not depend on the choice of operators A, such that Tr(},) =
0 and Tr(22) = d.

Proof. Without loss of generality let us focus on the first
subsystem and denote by J the sequence of the last N — 1
qudits. We therefore write

1
R(O’])E W/de/dUl

x |Te(U] ® UD(o] @ o)(Uy @ Up)P. (El4)

The expression involving the trace can be linearized using the
second copy of the state p as follows:

ITr(p(U] @ Ul)o] @ a(U) @ U2
=Tr(p ® p)U; @U@ Ul @ U)
(0] ®o)®01®0) (U1 @ U; ® Ui @ Uy). (ELS)
J

d’—1

PHYSICAL REVIEW A 94, 042302 (2016)

Without loss of generality (see Appendix C) we will
now consider the Weyl-Heisenberg basis. Since all the
operators within this basis are related by a unitary we
have

R(o1) = R(o2) = -+ = Rloz2-1). (E16)

Take now operator A from the thesis and decompose it in this
basis:

d*—1 d*—1
L= yjo;. with > |yP=1, (E17)
j=1 j=1

where the first equation follows from Tr(%) = 0, and the second
from Tr(A?) = d. The random correlations calculated with A
as the initial operator satisfy

RO =Y yjyk*/du,/dulTr(p@apr@U}®Uf®U}o,j®o}®aj®oJU1 ®U,®U, ®UJ) (E18)

k=1

=N v f dU,Tr[,o ® ,0(/ dU Ul @ Ulol @ 0,;U, ® U1> QU @Uldl®o,U;® U,]
j.k

= Z|Vj|2/dUJTr|:P®p</dU1U1T®U1TG]T®U,'U1®U1> ®U}®U}U}®UJUJ®UJ}
J

=Y lyiPR(o;) = Ron),
J

where in the second line we isolated the first particle from the
principal system and the first particle from the copy, in the
third line we use Lemma 2, and in the last line Eq. (E16). W

APPENDIX F: THEOREM ABOUT THE CONVEX
ROOF EXTENSION

Here we prove Theorem 5 of the main text: For a
multipartite mixed state of rank 2,

E(p) = C(p) + 31 = Tr(0*) 1 Wnin. (F1)

where C(p) is given in Eq. (4) and wyy;, is the lowest eigenvalue
of the 3 x 3 matrix defined in the proof below.

Proof. By the definition of rank-2 states p can be written
as a mixture of |0) and |I), which are two N-qubit pure
states. Without loss of generality assume that they are mutually
orthogonal. The length of correlations of a pure state W can be
written as expectation value of an operator S in the two-copy
state |W)|W) (see Appendix D). Therefore, we can write £ for
a particular decomposition {uy, Wy} of p as

£=) mT(S ), (F2)

k
where we denote Ty = |Wy) (Vx| ® |Wi)(Wk|. Since all the
pure states W, are within the subspace spanned by |0),|1),
only the projection of S onto this subspace will contribute to
the trace in (F2). Let us therefore introduce 4 x 4 matrix S with

(E19)

(E20)

(E21)

(

matrix elements (i j|S|iii), where i, j,m.n = 0,1. Similarly,
by introducing 4 x 4 matrix I1; with elements (i j|I1;|m7i),
we can rewrite (F2) as

£=Y " wTr(S ). (F3)
k

We now represent operators with the tilde in terms of Pauli
matrices operating in the support of p:

3
~ 1 N N
S:Z(S0H®H+S-0’®H+]I®S~O’+Zl:wi0'i®0'i>,
(F5)

where sy = Tr(S) and & = (01,02,03) is a vector of standard
Pauli matrices chosen in such a way that S is diagonal with real
entries ordered as w; > w;, > ws. Note that the “local” parts
described by vector § are the same since S is symmetric with
respect to the exchange of the two copies. In this representation
Eq. (F3) takes the form

| .o
&= —[SO +25-p0+ Zuk(wlx,f +wayp + wazi)]’
4 k

(F6)
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where £ = (px,py,p;) is the Bloch vector representing the
state p in the subspace spanned by |0) and |1), and we have
introduced components of vectors 7, = (xi, Vi,2x). Since |Wy)
are pure states, the purity condition implies z; = 1 — x7 — y¢
for all k in the decomposition. Equation (F6) becomes

~ 1 oo
&= Z|:So+2s'p+w3+(w1 _w3)<2k:ﬂkxlg)

+(wy — w3><Z my,%)]. (F7)
k

Note that the sums on the right-hand side are quadratic
and thus convex. Therefore Y, uix? > (3, mixr)* = p? and
similarly >, px y,f > pg. Both inequalities can be saturated if
Xx = px and y; = p, for all k. We therefore have solved the

PHYSICAL REVIEW A 94, 042302 (2016)

minimization problem of the earlier convex-roof construction
E(p) = min & = 1[so+25 5+ w;
{ree, Wi}

+ i —wa)p; + (wy —w3)p].  (F8)

Taking into account that

Clp) = z[s0+25 - 5+ wip] +wapy +wsp],  (F9)

Tr(o?) = 3(1+ 07 + p; + £7), (F10)

we may simplify (F8) to
E(p) = C(p) + 31 = Tr(0*) 1 Wmin. (F11)
and the theorem follows. |
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