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Keeping a quantum system in a given instantaneous eigenstate is a control problem with numerous applications,
e.g., in quantum information processing. The problem is even more challenging in the setting of open quantum
systems, where environment-mediated transitions introduce additional decoherence channels. Adiabatic passage
is a well-established solution but requires a sufficiently slow evolution time that is dictated by the adiabatic
theorem. Here we develop a systematic projection theory formulation for the transitionless evolution of general
open quantum systems described by time-local master equations. We derive a time-convolutionless dynamical
equation for the target instantaneous eigenstate of a given time-dependent Hamiltonian. A transitionless dynamics
then arises in terms of a competition between the average Hamiltonian gap and the decoherence rate, which implies
optimal adiabaticity timescales. We show how eigenstate tracking can be accomplished via control pulses, without
explicitly incorporating counter-diabatic driving, thus offering an alternative route to accelerate adiabaticity. We
examine rectangular pulses, chaotic signals, and white noise, and find that, remarkably, the effectiveness of
eigenstate tracking hardly depends on the details of the control functions. In all cases the control protocol keeps the
system in the desired instantaneous eigenstate throughout the entire evolution, along an accelerated adiabatic path.

DOI: 10.1103/PhysRevA.94.042131

I. INTRODUCTION

Tracking of an eigenstate of a Hamiltonian, in particular the
ground state, is a protocol of great interest in quantum control
[1], with numerous applications, e.g., in quantum information
processing. The best known such tracking protocol is the
adiabatic theorem of quantum mechanics [2,3], which states
that a system that is initially prepared in an eigenstate of a time-
dependent Hamiltonian H (t) will evolve to the corresponding
instantaneous eigenstate at a later time T provided that H (t)
varies smoothly and that T is much larger than (some power of)
the relevant minimal inverse eigenenergy gap of H (t) [4–6].
Applications of eigenstate tracking have proliferated, covering
research fields such as adiabatic quantum computation and
quantum annealing [7–12], holonomic quantum computation
[13–15], adiabatic passage [16–19], adiabatic gates [20,21],
many-body state preparation [22,23], and quantum phase
transitions [24,25], to name a few. The adiabatic theorem
can be viewed as providing a passive protocol for eigenstate
tracking, where the main control knob is the total evolution
time T . More accurate tracking can be achieved within the
adiabatic framework by changing H (t) more slowly near
avoided crossings [26,27] or by imposing smooth boundary
conditions on H (t) and its derivatives [28–32], but the fact
remains that the smaller the gap, the longer the time T required
for the system to track an eigenstate. This has motivated the
investigation of methods to accelerate adiabaticity, such as
the transitionless-tracking algorithm [33–35]. In this reverse-
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engineering method, an “assistant Hamiltonian,” or “counter-
diabatic driving” term, built from the instantaneous eigenstates
of the original system Hamiltonian H (t) is introduced to
completely cancel the off-diagonal terms of H (t) written in
the adiabatic frame [36]. When the counter-diabatic term is
included, the full Hamiltonian “superadiabatically” drives the
system along the instantaneous eigenstate of the original H (t)
towards the target state, providing a shortcut to adiabaticity
[37–41], albeit at the price of highly nonlocal interactions
when applied to quantum many-body systems [42,43].

These theoretical results were developed in the context of
closed quantum systems, evolving unitarily in the absence of
an environment, or bath. Despite the fact that experiments
implementing the superadiabatic protocol have already been
reported [44,45], Hamiltonian eigenstate tracking is much
less developed in the context of realistic, open quantum
systems. Pertinent studies include an analysis of the effect
of control noise by using the Lewis–Riesenfeld invariant
formalism [46,47], and superadiabatic protocols for improving
the efficiency of heat engines or accelerating cooling [48–
51]. Most relevant to our setting is a formal treatment of
transitionless dynamics in open systems reported by Vacanti
et al. [52]. This work builds on the Jordan block approach to
adiabaticity in open systems, wherein decoupling of Jordan
blocks of the Lindbladian superoperator is identified with
adiabatic evolution [53]. Transitions between Jordan blocks
are suppressed in Ref. [52] by adding an appropriate counter-
diabatic driving term. This term, in general, requires quantum
channel engineering, a highly nontrivial task.

Here, we propose an approach to transitionless evolutions
in open quantum systems, as well as a systematic method
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to accelerate adiabatic paths without explicitly incorporating
any counter-diabatic driving, thus circumventing the problem
of highly nonlocal interactions associated with the latter.
Our results are applicable to general open quantum systems
described by time-local master equations. We do not invoke the
Jordan blocks approach; rather, we build on the standard notion
of adiabatic evolution as being represented by decoupled
Hamiltonian eigensubspaces or eigenstates. More specifically,
by using the Feshbach P -Q partitioning procedure [54]
and the Nakajima–Zwanzig projection technique [55], we
derive a time-convolutionless (TCL) equation governing the
population dynamics of an arbitrary Hamiltonian eigenstate
subject to open-system evolution [Eq. (21)]. This equation
provides a general condition for eigenstate tracking in open
quantum systems. Adiabatic perturbation theory (an expansion
in powers of 1/T ) and a weak-coupling expansion allow
us to simplify the result into a form that lends itself to an
interpretation in terms of diabatic or bath-induced transitions
[Eq. (27)], which can be suppressed by using a control
protocol. The approach adopted here differs from previous
approaches to open-system adiabaticity, which focused on
Jordan block decoupling [53,56], the weak-coupling limit [57],
coupling to an ancilla [58], zero temperature [59], Markovian
evolution [60], or convergence to the instantaneous steady state
of the Lindbladian [61–65]. In contrast, our approach directly
establishes conditions to keep the system in an eigenstate
of the original Hamiltonian, the only assumption being that
the system’s evolution is described by a time-local master
equation. It recovers the standard closed-system adiabatic
theorem as a special case.

We illustrate our framework by using examples involving
the open-system dynamics of a qubit coupled to various
environments and subject to various control protocols. An
important conclusion that emerges from these examples is that
the condition for transitionless open-system dynamics involves
a competition between the average gap of the Hamiltonian
superoperator and the decoherence rate, with the former
favoring a long evolution time and the latter favoring a
short evolution time. This interplay is reflected in a damped
oscillatory behavior of the eigenstate fidelity as a function of
the evolution time, resulting in optimal adiabatic evolution
times for systems undergoing decoherence. We then show
that fast control, even white noise or chaotic, can be used
to mimic adiabaticity in a nonadiabatic regime. Since white
noise and chaos occur naturally, no control is essentially
required [66], in contrast to control approaches for adiabaticity
relying on precisely engineered interventions, such as assistant
Hamiltonians, dynamical decoupling [67–69], or the quantum
Zeno effect [70].

II. RESULTS

In Sec. II A–II C we present a derivation of an exact
(approximation-free) TCL equation of motion for the projected
eigenstate population. In Sec. II D we invoke the adiabatic
approximation and weak coupling in order to derive an
appropriate perturbation theory. An example is presented and
analyzed in detail in Sec. III A. We show how our framework
incorporates the closed-system case in Sec. III B.

A. Open quantum systems in the adiabatic frame

Consider an N -level quantum system with a time-
dependent Hamiltonian H (t), with instantaneous eigenvalues
En(t) [En(t) � En+1(t) ∀ n,t] and eigenvectors |En(t)〉:
H (t)|En(t)〉 = En(t)|En(t)〉. To generalize the concept of
adiabaticity to open quantum systems, it is convenient to adopt
the superoperator formalism. We assume that the system is
coupled to an environment and is described by a time-local
master equation:

L(t)|ρ(t)〉〉 = ∂t |ρ(t)〉〉. (1)

Here, L(t) = −iH(t) + D(t) is the Liouville superoperator,
represented as an N2 × N2 matrix, and |ρ(t)〉〉 is the density
operator associated with the system, represented as an N2 × 1
vector (hence it is represented by the double ket or bra
notation; we reserve the ordinary ket or bra notation for the
N -component vectors in Hilbert space). The superoperator
D(t) denotes the contribution to L(t) arising from the coupling
to the bath. Consider the basis of eigenvectors of the Hamil-
tonian superoperator H(t), defined through H(t)|�k(t)〉〉 =
�k(t)|�k(t)〉〉. The eigenvectors |�k(t)〉〉 of H(t) are the oper-
ators |En(t)〉〈Em(t)|, with eigenvalues �k = En(t) − Em(t),
where k = m + nN and m,n ∈ {0, . . . ,N − 1}. The inner
product of vectors |u〉〉 and |v〉〉 associated with operators u

and v, respectively, is defined as 〈〈u|v〉〉 = Tr(u†v). The basis
{|�k(t)〉〉} of eigenstates of H(t) defines an “adiabatic frame”
in the open-system scenario. In this frame, the open-system
state can be expanded as

|ρ(t)〉〉 =
N2−1∑
k=0

rk(t)e−i�k (t)|�k(t)〉〉, (2)

with �k(t) = ∫ t

0 dt ′�k(t ′) playing the role of a dynamical
phase. Substituting the expansion (2) into the master equation
(1) yields a set of coupled differential equations for the
coefficients rk(t), of the form

∂t |R(t)〉〉 = L(a)|R(t)〉〉, L(a)(t) = −iH(a)(t) + D(a)(t),

(3)

with |R(t)〉〉 ≡ (r0, r1, . . . ,rN2−1)T (superscript T denotes the
transpose), where

H(a)
kl (t) = −ie−i[�l (t)−�k (t)]〈〈�k(t)|∂t |�l(t)〉〉 (4)

are the matrix elements of the Hermitian matrix H(a)(t)
representing the (Hermitian) Hamiltonian superoperator in the
adiabatic frame, and where

D(a)
kl (t) = e−i[�l (t)−�k (t)]〈〈�k(t)|D|�l(t)〉〉, (5)

are the matrix elements of the (generally non-Hermitian)
matrix D(a)(t) representing the decoherence superoperator in
the adiabatic frame.

B. Feshbach P- Q partitioning

Bearing in mind that closed-system adiabaticity is as-
sociated with the decoupled evolution of the eigenstates
|En(t)〉, our aim here will be to similarly consider the
decoupled evolution of the instantaneous eigenstates of H(t)
corresponding to the eigenprojections |En(t)〉〈En(t)| of H (t).
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Specifically, denoting the target eigenstate of H (t) by |E0(t)〉,
and assuming henceforth that it is nondegenerate, we will be
interested in the decoupled evolution of the eigenprojection
|�0(t)〉〉 = |E0(t)〉〈E0(t)|, captured in the adiabatic frame by
the population coefficient r0(t). We employ the Feshbach P -Q
partitioning technique, introducing the projection operators
P = 1 ⊕ 0N2−1 and Q = I − P = 0 ⊕ 1N2−1 where 0N2−1

and 1N2−1 denote the (N2 − 1) × (N2 − 1) null and identity
matrices, respectively, and P projects the system onto the
target eigensubspace. We thus decompose both the adiabatic
frame Hamiltonian H(a)(t) and decoherence superoperator
D(a)(t) (dropping the explicit time-dependence) as

H(a) = H0 + H1; H0 = gH + eH, H1 = WH + W
†
H,

(6a)

D(a) = D0 + D1; D0 = gD + eD, D1 = WD + VD,

(6b)

where g and e denote the target eigenstate (e.g., the ground
state) and the remaining eigenstates (e.g., the excited states),
respectively, andH0,D0 andH1,D1 denote block-diagonal and
block-off-diagonal contributions, respectively, with

gH = PH(a)P, eH = QH(a)Q, (7a)

WH = QH(a)P, W
†
H = PH(a)Q; (7b)

gD = PD(a)P, eD = QD(a)Q, (7c)

WD = QD(a)P, VD = PD(a)Q. (7d)

Note that in general VD 	= W
†
D.

C. Time-convolutionless dynamics for eigenstate tracking

We now derive an exact, time-convolutionless (TCL)
dynamical equation for the target eigenstate population r0(t),
using a method inspired by the approach in Ref. [55]. Let U0(t)
denote the evolution operator associated with H0(t), i.e.,

U0(t) = Gg(t,0) + Ge(t,0), (8)

where

Gg(t,t ′) ≡ e−i
∫ t

t ′ gH(s)ds, Ge(t,t ′) ≡ T
[
e−i

∫ t

t ′ eH(s)ds
]
, (9)

with T denoting forward time ordering. By working in
the interaction picture with respect to the block-diagonal
Hamiltonian part H0, Eq. (3) becomes

∂t |χ (t)〉〉 = LI (t)|χ (t)〉〉, (10)

where |χ (t)〉〉 = U†
0 (t)|R(t)〉〉, and

LI (t) = −iHI (t) + DI (t), (11)

with

HI (t) = U†
0 (t)H1(t)U0(t), DI (t) = U†

0 (t)D(a)(t)U0(t). (12)

Note that HI (t) is purely block off-diagonal, i.e., PHI (t)P =
QHI (t)Q = 0. By projecting Eq. (10) over P and Q [i.e.,
inserting P + Q = 1 into Eq. (10)], we decompose the
time-local master equation into “relevant” (target eigenstate)
and “irrelevant” (the remaining eigenstates) components,

respectively:

∂tP|χ (t)〉〉 = PLI (t)Q|χ (t)〉〉 + PLI (t)P|χ (t)〉〉, (13a)

∂tQ|χ (t)〉〉 = QLI (t)P|χ (t)〉〉 + QLI (t)Q|χ (t)〉〉. (13b)

Next, we introduce the propagator

G(t,t ′) ≡ T
{

exp

[∫ t

t ′
QLI (x)dx

]}
. (14)

We show in Appendix A that the formal solution to Eq. (13b)
is

Q|χ (t)〉〉 = G(t,0)Q|χ (0)〉〉

+
∫ t

0
G(t,t ′)QLI (t ′)P|χ (t ′)〉〉dt ′. (15)

The first term on the right-hand side (r.h.s.) of Eq. (15) vanishes
if, as we assume from now on, the system is prepared in the
initial eigenstate |�0(0)〉〉 of H(0), so that Q|χ (0)〉〉 = 0.

Inserting Eq. (15) into Eq. (13a) we obtain the Nakajima–
Zwanzig equation for the target eigenstate component:

∂tP|χ (t)〉〉 =
∫ t

0
PLI (t)G(t,t ′)QLI (t ′)P|χ (t ′)〉〉dt ′

+PLI (t)P|χ (t)〉〉. (16)

This result is remarkable, since it gives an exact representation
of the ground-state evolution of an open quantum system.
However, it involves solving a rather complicated integro-
differential equation.

To make further progress, and in particular to obtain a time-
local dynamical equation, we define

|χ (t ′)〉〉 = V−1
I (t,t ′)|χ (t)〉〉, (17)

where

V−1
I (t,t ′) = T←

{
exp

[
−

∫ t

t ′
LI (x)dx

]}
, (18)

with T← denoting reverse time ordering. This allows us to
rewrite Eq. (15) as Q|χ (t)〉〉 = �(t)(P + Q)|χ (t)〉〉, where

�(t) ≡
∫ t

0
G(t,t ′)QLI (t ′)PV−1

I (t,t ′)dt ′. (19)

Thus
Q|χ (t)〉〉 = [1 − �(t)]−1�(t)P|χ (t)〉〉, (20)

As discussed in Appendix B, the invertibility of [1 − �(t)] is
ensured in the closed-system case due to the fact that it can
be treated as a perturbation of the identity in the large-T limit,
and in the open-system case if in addition the system-bath
interaction is weak. Substituting Eq. (20) into Eq. (13a), we
obtain ∂tP|χ (t)〉〉 = PLI (t){[1 − �(t)]−1�(t) + 1}P|χ (t)〉〉,
which simplifies to

∂tP|χ (t)〉〉 = K(t)P|χ (t)〉〉, (21a)

K(t) = PLI (t)[1 − �(t)]−1P. (21b)

Here K(t) is the TCL generator. Equation (21) constitutes
our main result: an exact, time-convolutionless dynamical
equation for the (projected) target eigenstate population.
This time-local result is clearly a significant simplification
compared to the Nakajima–Zwanzig equation [Eq. (16)], but
it is still difficult, in general, to calculate the TCL generator.
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To make further progress we next pursue a perturbative
approach. Specifically, we consider an adiabatic (long-time)
approximation along with weak coupling between the system
and the bath.

D. Weak coupling and adiabatic dynamics

As a first step towards a perturbative expansion we write
[1 − �(t)]−1 as a geometric series. Using Eq. (21b), this yields

K(t) =
∞∑

n=0

PLI (t)[�(t)]n+1P + PDI (t)P, (22)

where we also used the fact that PHI (t)P = 0. We now
assume that the contribution of the decoherence superoper-
ator DI is perturbative due to weak system-bath coupling.
We can then use Eq. (19) to expand �(t) in powers
of LI (t). Since G(t,t ′) = 1 + O(QLI ) and V−1

I (t,t ′) = 1 +
O(LI ), the lowest-order term in LI (t) for �(t) is �(1)(t) =∫ t

0 dt ′QLI (t ′)P .
From this point on, it is useful to split LI (t) into the

Hamiltonian and decoherence superoperators HI (t) and
DI (t), respectively [Eq. (12)]. Moreover, let s = t/T ∈ [0,1]
denote the normalized time, with T being the total evolution
time, and let us replace t by the pair (s,T ) to prepare for an
expansion in 1/T (adiabatic perturbation theory [71]). We
proceed by keeping contributions up to leading order in 1/T ,
which provide a reliable approximation for large T . As shown
below [Eq. (25a)], this corresponds to keeping terms linear in
HI (s ′,T ).

By inserting �(1)(s,T ) into Eq. (22) and simplifying by
using Q = 1 − P , we find a term that represents the zeroth-
order decoherence contribution to the TCL generator (i.e., that
does not depend on DI at all and hence describes the system
in the absence of the bath),

K(0)(s,T ) = −T

∫ s

0
ds ′PHI (s,T )HI (s ′,T )P, (23)

while the first-order decoherence contribution (linear in DI )
takes the form

K(1)(s,T ) =PDI (s,T )P − iT

∫ s

0
ds ′P[DI (s,T )HI (s ′,T )

+ HI (s,T )DI (s ′,T )]P. (24)

Quadratic and higher-order terms in DI can easily be written
down by following the same strategy.

Let us now demonstrate that the standard adiabatic theorem
for closed system is captured by the K(0) term, while the
competition between adiabaticity and decoherence is captured
by K(1). Indeed, by using Eqs. (23) and (24), we find that, to
first order in DI , Eq. (21) reads

∂sP|χ (s)〉〉 = −T 2P
∫ s

0
ds ′HI (s,T )HI (s ′,T )P|χ (s)〉〉

(25a)

+P
{
TDI (s,T ) − iT 2

∫ s

0
ds ′[DI (s,T )

×HI (s ′,T ) + HI (s,T )DI (s ′,T )]

}
P|χ (s)〉〉.

(25b)

Note that, due to the ∂t in Eq. (4), each HI term contributes
a factor of 1/T in Eq. (25). Moreover, as we show in
Appendix B, after integration by parts both HI (s ′,T ) and
DI (s ′,T ) can be written as a series whose lowest order is
O(1/T ). This is a consequence of the fact that the dynamical
phase term in Eqs. (4) and (5) depends on T as well: �k(s,T ) =
T

∫ s

0 ds ′�k(s ′,T ). Therefore, the zeroth-order decoherence
contribution [Eq. (25a)] vanishes as T 2/T 3 = 1/T . This
vanishing of the closed-system component in the large-T limit
is, of course, in agreement with the standard adiabatic theorem
for closed systems. However, the same scaling arguments
imply that the first-order decoherence contribution [Eq. (25b)]
survives and grows as O(T ) for large T . This survival of
a term that depletes the target eigenstate population even in
the adiabatic (large-T ) limit is a purely open-system effect. It
implies a competition between the adiabatic and decoherence
timescales, resulting in an optimal finite time for the approx-
imately adiabatic (decoupled) evolution of the system. This
conclusion was first proposed using the Jordan block decou-
pling criterion in Ref. [53], but here we see that it holds for the
Hamiltonian eigenstate population. Experimental evidence for
an optimal adiabatic time was reported in Ref. [72].

We now rewrite Eq. (25) in terms of the original time
variable t and rotate it back to the Schrödinger picture.
By using |χ (t)〉〉 = U†

0 (t)|R(t)〉〉, we have ∂tP|χ (t)〉〉 =
G†

g(t,0)[∂tP|R(t)〉〉 + igH(t)P|R(t)〉〉]. After some algebra
using the definitions of HI (t) and DI (t) [Eq. (12)], the
zeroth- [Eq. (23)] and first-order [Eq. (24)] perturba-
tive decoherence contributions can be written as K(0)(t) =
−G†

g(t,0)
∫ t

0 dt ′h(t,t ′) and K(1)(t) = −G†
g(t,0)

∫ t

0 dt ′f (t,t ′) +
G†

g(t,0)gD(t), with

h(t,t ′) = W
†
H(t)Ge(t,t ′)WH(t ′)G†

g(t,t ′), (26a)

f (t,t ′) = i[W †
H(t)Ge(t,t ′)WD(t ′)

+VD(t)Ge(t,t ′)WH(t ′)]G†
g(t,t ′). (26b)

This leads to our second main result: a time-local master
equation in the Schrödinger picture for the target eigenstate
population. Namely, Eq. (25) can now be rewritten as

∂tP|R(t)〉〉 = − P
[(

igH(t) +
∫ t

0
dt ′h(t,t ′)

)

−
(

gD(t) −
∫ t

0
dt ′f (t,t ′)

)]
P|R(t)〉〉, (27)

with P|R(t)〉〉 ≡ (r0(t), 0, . . . ,0)T being the target eigenstate
population, and we have separately grouped the contributions
due to the Hamiltonian and decohering parts. Here [recall
Eq. (7)],

gH(t) = H(a)
00 (t) = −i〈〈�0(t)|∂t |�0(t)〉〉, (28a)

gD(t) = 〈〈�0(t)|D(a)|�0(t)〉〉 (28b)

are, respectively, the target eigenstate matrix elements of the
adiabatic frame Hamiltonian and decoherence superopera-
tors; the terms h(t,t ′) and f (t,t ′) are associated with the
H(a)-dependent and D(a)-dependent level couplings in the
dynamical evolution, respectively.
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FIG. 1. Diagrams illustrating the transitions described by
Eq. (26). (a) Purely unitary evolution, involving an excitation from
the target state to the remaining eigenstate manifold, and the reverse
process. (b) Open-system evolution involving nonunitary decay to the
target eigenstate along with unitary evolution along the other three
paths. (c) Open-system evolution involving nonunitary excitation
from the target eigenstate along with unitary evolution along the
other three paths. These are the three lowest-order processes in our
perturbation theory.

Note that h(t,t ′) is responsible for nonadiabatic closed-
system dynamics: as is evident from Eq. (26a), it describes a
unitary evolution in the target eigenstate [G†

g(t,t ′)], followed
by a transition to the remaining eigenstate manifold [WH(t ′)],
unitary evolution in that manifold [Ge(t,t ′)], and finally a tran-
sition back down to the target eigenstate [W †

H(t); see Fig. 1(a)].
Similarly,

∫ t

0 dt ′f (t,t ′) is responsible for nonadiabatic open-
system dynamics; Eq. (26b) shows that this contribution is
mediated by a transition back to the target eigenstate [VD(t ′);
see Fig. 1(b)] or out of the target eigenstate [WD(t); see

Fig. 1(c)], both generated by the decoherence operator. It
is clear that, in higher-order perturbation theory, each term
will contain several such transitions, including a mixing of
transitions generated by the Hamiltonian and decoherence
superoperators. An evolution that perfectly preserves the target
eigenstate (at this level of perturbation theory) would thus
require the vanishing of both

∫ t

0 dt ′h(t,t ′) and
∫ t

0 dt ′f (t,t ′). It
follows from our earlier arguments that

∫ t

0 dt ′h(t,t ′) vanishes
for large T (adiabatic evolution in the closed system limit),
while the decoherence contribution

∫ t

0 dt ′f (t,t ′) need not.
However, as we shall see in examples below, adiabatic
evolution can be mimicked by introducing appropriate fast
modulations that cause both integrals to vanish, without the
need for counter-diabatic driving.

III. APPLICATIONS

A. Open-system quasi-adiabatic evolution of a qubit

To illustrate the general theory we developed for adia-
baticity in open systems, we turn now to the consideration
of the decay of a single qubit. In this section we demonstrate
control protocols that allow for tracking of an excited state.
Moreover, we show that these protocols are insensitive to
implementation details. Specifically, we assume that the time-
dependent system Hamiltonian is

H (t) = J (t)
[
cos

( π

2T
t
)
σz + sin

( π

2T
t
)
σx

]
, (29)

whose eigenvectors and eigenvalues are |E+(t)〉 =
cos( π

4T
t)|0〉 − sin( π

4T
t)|1〉, |E−(t)〉 = sin( π

4T
t)|0〉 + cos( π

4T
t)

|1〉 and E± = ∓J (t), respectively, with σz|0〉 = −|0〉 and
σz|1〉 = |1〉. Thus, the time-dependent gap is 2J (t), where
J (t) is assumed to be a controllable parameter. We transform
to the rotating frame provided by the eigenstate basis {|E±(t)〉}
and assume a spin-boson model with system-bath interaction
HSB (t) and bath Hamiltonian HB :

HSB(t) =
∑

k

(gkσ+(t)bk + g∗
k σ−(t)b†k), (30a)

HB =
∑

k

ωkb
†
kbk, (30b)

where the creation and annihilation operators bk and b
†
k satisfy

bosonic commutation relations [bk,b
†
k′ ] = δkk′ and the coupling

operators are σ+(t) ≡ |E−(t)〉〈E+(t)| and σ−(t) ≡ σ
†
+(t). The

evolution of the qubit is then described by the exact master
equation [73]

∂tρ(t) = −i[J (t) + S(t)][σz(t),ρ(t)]

+ κ(t)
[
σ−(t)ρ(t)σ+(t) − 1

2 {σ+(t)σ−(t),ρ(t)}],
(31)

where σz(t) ≡ |E−(t)〉〈E−(t)| − |E+(t)〉〈E+(t)|, κ(t) ≡
−2Re[ċ+/c+], and S(t) ≡ −Im[ċ+/c+] (dot denotes time
derivative). Here c+(t) ≡ c̃+(t)ei

∫ t

0 dsJ (s), where c̃+(t) is the
solution of ˙̃c+(t) + ∫ t

0 dsα̃(t − s)c̃+(s) = 0, and α̃(t − s) ≡
α(t − s)e−2i

∫ t

s
dxJ (x), with α(t − s) ≡ ∑

k |gk|2e−iωk (t−s)

denoting the bath correlation function.
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The system is prepared in the initial excited state
|E−(0)〉 = |1〉. We use the Uhlmann fidelity F ≡√〈E−(T )|ρ(T )|E−(T )〉 = √|r0(T )| as a measure of adia-
baticity, where r0(T ) is the excited-state population at the final
time T . Let us denote the average gap between the ground and
excited states by

J̃ (t) ≡ 1

t

∫ t

0
dt ′J (t ′). (32)

By computing h(t,t ′) and f (t,t ′) to leading order using
Eqs. (26a) and (26b), respectively, we obtain (see Appendix C
for details), after approximating J̃ by a constant function,

h(t,t ′)|11 ≈ π2

8T 2
cos[2(t − t ′)J̃ ], (33a)

f (t,t ′)|11 ≈ −π2κ(t ′)
16T 2J̃

sin[2(t − t ′)J̃ ], (33b)

where the scalars h(t,t ′)|11 and f (t,t ′)|11 are the nonvanishing
(1,1) matrix elements of the projected matrices [P h(t,t ′)P]
and [P f (t,t ′)P], respectively. Note that both the closed-
system contribution h(t,t ′) and the open-system contribution
f (t,t ′) decay as 1/T 2 to leading order. This is because the
order 1/T contribution in f (t,t ′) vanishes for this example (as
shown in Appendix C). Another important observation that
follows from Eq. (33) is that a sufficiently large J̃ implies the
vanishing of the integrals [Eq. (27)] of both h(t,t ′) and f (t,t ′)
due to the highly oscillatory nature of the integrand (i.e., the
Riemann–Lebesgue lemma [74]). Recall that these terms are
responsible for transitions out of the eigenstate considered
(Fig. 1). This illustrates that adiabaticity may be enforced via
active control, as shown in the closed-system case in Ref. [75].
Our results show that this conclusion persists even in the
open-system case (see also Refs. [67–69]).

Next, we compute the exact fidelity F by solving the
master equation (31), and the TCL approximation FTCL for
the fidelity by substituting Eq. (33) into Eq. (27). The results
are, respectively (see Appendix C for details),

F = exp

[
−1

2

∫ T

0
dt κ(t)

]
, (34a)

FTCL ≈ exp

[
−1

2

∫ T

0
dt κ(t) +

(π

8

)2 (cos 2J̃ T − 1)

(J̃ T )2

]
.

(34b)

As a concrete application, we now assume an environ-
ment with correlation function α(t,s) = �γ

2 e−γ |t−s|, where
γ parametrizes the memory of the environment (1/γ is
proportional to the memory time) and � quantifies the system-
bath coupling strength. We consider a fixed � and use �t to
represent a dimensionless time variable. The control function
J (t) is taken as

J (t) = J0 + �(t), (35)

which will be associated with two distinct control procedures:
a periodic pulse sequence and biased Poissonian continuous-
time white noise [66,76,77]. Specifically, we consider the
following scenarios: (a) a periodic rectangular pulse se-
quence �(t) = �/� for nχ − � < �t < nχ and �(t) = 0

0 1 2 3 4 5

0.4

0.6

0.8

11

Γ T

F
id

el
ity

(a)

0 1 2 3 4 5
0.8

0.85

0.9

0.95

1

Γ T

F
id

el
ity

(b)

γ/Γ=0.1
γ/Γ=0.1, TCL
γ/Γ=0.4
γ/Γ=0.4, TCL
γ/Γ=0.7
γ/Γ=0.7, TCL

Δ/χ=0.8
Δ/χ=0.8, TCL
Δ/χ=0.3
Δ/χ=0.3, TCL
Δ/χ=0.2
Δ/χ=0.2, TCL

FIG. 2. Excited-state fidelity for a qubit evolving quasi-
adiabatically in the presence of a dissipative environment as a
function of the dimensionless time �T , for the model described
in the text. (a) Periodic rectangular pulse sequence for several
values of γ (the inverse bath memory time), with �/χ = 0.4; (b)
White-noise pulse sequence for several ratios �/χ of pulse duration
to sequence period, with γ = 0.5�. The control parameters are given
by J0 = � = � and χ = 0.02�t , with time slices chosen such that
sequence length K ∈ [6,16]. Convergence is obtained by averaging
over 200 realizations of the white-noise sequence. Curves without
symbols are the exact fidelity results [Eq. (34a)], while curves with
symbols are the perturbative TCL results [Eq. (34b)].

elsewhere, where n � 1 is an integer, � denotes the pulse
amplitude, and � is the duration of the pulse in one period
χ ; (b) white noise �(t) = ∑K

j=1 �jδ(t − tj ), where the times
tj and the amplitudes �j are random during the duration
� of the pulse and the latter vanish afterwards, i.e., they
vanish in the dark time [nχ, (n + 1)χ − �]. The amplitudes
satisfy M[�j ] = � for each duration �, with M[·] denoting
an ensemble average. Note that the control merely rescales
the eigenvalues E± of H (t) [Eq. (29)], but it does not modify
the instantaneous eigenstates. It can be realized, e.g., for spin
systems, by changing the splitting of the system energy levels
via an external magnetic field.

We illustrate our results by comparing the exact and TCL-
approximation cases in Fig. 2, where we plot the excited-state
fidelity for the model specified above. Figure 2(a), for periodic
control, shows that the longer the bath-memory time 1/γ is,
the slower the overall fidelity decays. The fidelity exhibits
oscillations, showing that it can be optimized locally in time.
This can be achieved by using a protocol reminiscent of
previous work on the use of dynamical decoupling to enhance
adiabaticity in open quantum systems [67–69], but without
requiring any encoding. The symbol-free and symbol-marked
curves denote the exact and TCL-approximation fidelities,
respectively. It can be seen that, while the TCL approximation
overestimates the decay rate of the fidelity for small �T , the
difference between these fidelities quickly tends to vanish with
larger �T , especially for small γ /� values. This is consistent
with Eq. (34b), which shows that the two fidelities converge to
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the same value for large �T . In this regime, the perturbative
TCL method provides a rather accurate description of the
fidelity, irrespective of the choice of γ /�. Figure 2(b) shows
the fidelity under white-noise control, for different ratios of the
pulse duration time and the period. Qualitatively, the results
are similar to those in the case of periodic control, i.e., the
exact and the approximated fidelities tend to rapidly converge
in the regime of large �T . However, the oscillations seen in
the periodic-control case are absent, and the fidelity tends
to monotonically decrease for sufficiently large �T . This
suggests that, in the presence of white-noise control, it is
harder to find optimized fidelity and evolution time pairs. The
fidelity improves monotonically in terms of the ratio of the
pulse duration to pulse sequence period, meaning that more
control (i.e., more random δ functions) improves the fidelity,
despite the control being stochastic.

B. The closed-system limit and accelerated paths to adiabaticity

The formalism we have developed can also be applied
in the closed-system limit, which can be obtained by sim-
ply requiring that [gD(t) − ∫ t

0 dt ′f (t,t ′)] �→ 0N2 in Eq. (27).
However, in this scenario, it is more convenient to abandon the
superoperator formalism. To set up the conventional Hilbert
space notation, we expand the state vector in the adiabatic
frame as |ψ(t)〉 = ∑N−1

n=0 cn(t)e−iθn(t)|En(t)〉, where θn(t) ≡∫ t

0 dt ′ En(t ′) is the dynamical phase. Then, the Schrödinger
equation i∂t |ψ(t)〉 = H (t)|ψ(t)〉 (� ≡ 1) yields [75]

∂tcm(t) = −i

N−1∑
n=0

H (a)
mn (t)cn(t), (36a)

H (a)
mn (t) ≡ −ie−i(θn−θm)〈Em|∂t |En〉, (36b)

where the Hermitian N × N matrix H (a)(t) is the Hamiltonian
in the adiabatic frame [78–80]. Equation (36) thus represents
a set of differential equations for the components of the vector
|C(t)〉 ≡ [c0, c2, . . . ,cN−1]T . Assuming nondegeneracy, the
target-state amplitude can be taken as that of the ground state,
c0(t). We may now repeat the earlier derivation (with the
projection operators P = 1 ⊕ 0N−1 and Q = I − P = 0 ⊕
1N−1), or skip directly to the leading order of the closed-system
version of the TCL dynamical equation [Eq. (27)]:

∂tP|C(t)〉 = −P
(

igH (t) +
∫ t

0
dt ′h(t,t ′)

)
P|C(t)〉, (37)

where h(t,t ′) is the closed-system transition operator given
by h(t,t ′) = W

†
H (t)Ge(t,t ′)WH (t ′)G†

g(t,t ′), with Gg(t,t ′) ≡
T [e−i

∫ t

t ′ gH (s)ds], Ge(t,t ′) ≡ T [e−i
∫ t

t ′ eH (s)ds], and gH (t) =
PH (a)(t)P , eH (t) = QH (a)(t)Q, and WH = QH (a)(t)P . Note
that the term

∫ t

0 dt ′h(t,t ′) in Eq. (37) is responsible for leakage
out of the ground state into excited states. Therefore, its
vanishing constitutes a perturbative TCL condition for the
transitionless evolution of the quantum system, and in partic-
ular represents a novel type of general adiabatic condition.
As we show in Appendix D, the condition

∫ t

0 dt ′h(t,t ′) = 0 is
consistent with the usual adiabatic approximation in the sense
that it is enforced in the limit T → ∞. However, as we shall
illustrate, it is more general and can be applied to accelerate
adiabaticity in situations where the usual adiabatic condition

does not apply, e.g., where the energy gap oscillates strongly,
with a large average value.

To illustrate this approach in closed systems we revisit an
example that was considered in Ref. [75] without the TCL
approach and only for the white-noise model. We consider a
qubit prepared in the ground state |E0(0)〉 at t = 0. By using
Eq. (37), it follows that the amplitude c0(t) obeys the TCL
equation

∂tc0(t) =
[
−〈E0(t)|Ė0(t)〉 −

∫ t

0
dt ′ h(t,t ′)

∣∣
11

]
c0(t), (38)

where h(t,t ′)|11 is the (1,1) matrix element of Ph(t,t ′)P ,
which is given by

h(t,t ′)|11 = 〈E0(t)|Ė1(t)〉〈E1(t ′)|Ė0(t ′)〉

× exp

[∫ t

t ′
dx(iE(x) + 〈E0|Ė0〉 − 〈E1|Ė1〉)

]
,

(39)

with E(x) ≡ E0(x) − E1(x).
Let us now show that fast, transitionless evolutions mim-

icking adiabaticity can be induced purely by manipulating
h(t,t ′). In this sense our approach provides an alternative to the
so-called shortcuts to adiabaticity (see, e.g., Ref. [38]). Toward
this end, we consider a system subjected to a modification in
its energy scale: J0 �→ J = J0 + �(t), which is the same as
the control function �(t) in the open-quantum-system case
given in Sec. III A [Eq. (35)]. To show that our shortcut
protocol is insensitive to the choice of control function, we
consider three different choices for �(t). In addition to the two
(periodic rectangular pulse sequence and biased Poissonian
continuous-time white noise) discussed in Sec. III A, here
we use another periodic pulse sequence but with a chaotic
interaction intensity �n = �Ln, where the dimensionless
strength Ln in different periods constitutes the logistic map
Ln+1 = μ(Ln − L2

n), with μ = 3.9 [81].
First we consider a general time-dependent Hamiltonian

for a qubit, which reads H (t) = J (aσx + bσy + ω
2 σ z), where

J sets the energy scale, with a, b, and ω describing
magnetic fields in the x, y, and z directions, respectively.
Then the eigenstates of the Hamiltonian H (t) can be ex-
pressed as |E0(t)〉 = e−iβ cos γ |↑〉 + sin γ |↓〉 and |E1(t)〉 =
−e−iβ sin γ |↑〉 + cos γ |↓〉, where β = tan−1(b/a) and γ =
cos−1 k+ω√

2k2+2kω
with k ≡ ±(ω2 + 4a2 + 4b2)1/2. We now con-

sider a simple case given by a = cos(�t), b = sin(�t), with
time independent � and ω. The transition operator for this
model is

h(t,t ′)|11 = �2

k2
ei�(sin2 γ )(t−t ′)ei

∫ t

t ′ dxE(x), (40)

where E(x) = [J0 + �(x)]k. Under free evolution (without
modification of the original energy scale J0), we obtain

∫ t

0
dt ′ h(t,t ′)

∣∣
11 = i�2[1 − ei(J0k+� sin2 γ )t ]

k2(J0k + � sin2 γ )
. (41)

Thus, adiabaticity can be reached when � approaches zero
(indeed, here the conventional adiabatic condition is � � ω).
Consider now a nonadiabatic regime where � = ω = 5J0. In
Fig. 3, the blue curves depict the control-free evolution of
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FIG. 3. Ground-state amplitude |c0(t)| for a qubit in the presence
of different control methods: (a) periodic rectangular pulse sequence,
(b) periodic pulse sequence with chaotic strengths, (c) white noise.
The blue curves in each panel represent the control-free-evolution
case. The parameters are chosen as � = ω = 5J0, so that the system
is far from the adiabatic regime.

|c0(t)|, which oscillates from unity to 0.36. In Fig. 3(a), we
use pulse sequences with different periods to control h(t,t ′),
with the pulse strength � = 0.01J0 and �/χ = 0.5 fixed.
By increasing the pulse repetition rate, |c0(t)| is made to
approach unity at all times. In Fig. 3(b), the fixed pulse
strength is replaced by chaotic pulses. Although the control
effect is not as apparent as in Fig. 3(a), the same qualitative
behavior is observed. In Fig. 3(c), we display the results
of the biased Poissonian-white-noise case. The fluctuations
of |c0(t)| are seen to be suppressed by increasing the noise
strength W .

As a second example we now consider two coupled qubits,
whose Hamiltonian is given by H = J (dσ+

1 σ−
2 + d∗σ−

1 σ+
2 +

B1σ
z
1 + B2σ

z
2 ), where d ≡ a − ib is a time-dependent param-

eter, B1 = B + ω/4, and B2 = B − ω/4, with B playing the
role of a noise parameter. If the system state is initialized
as |ψ(0)〉 = μ|↑↓〉 + ν|↓↑〉 (with |μ|2 + |ν|2 = 1), then B

acts on a time-dependent decoherence-free subspace [82–
84], hence giving rise to no influence on the dynamics.
Consequently, the effective Hamiltonian for this model can be
written as Heff = J [(dσ+

1 σ−
2 + H.c.) + ω(σ z

1 − σ z
2 )/4]. The

corresponding eigenstates of Heff could also be expressed
as those of a single qubit, via the mapping |↑↓〉 �→ |↑〉 and
|↓↑〉 �→ |↓〉. Moreover, we also have in this case σ+

1 σ−
2 �→ σ+

and (σ z
1 − σ z

2 )/2 �→ σz. We now let a = t/T , b = 0, and
ω/2 = 1 − t/T . Then

h(t,t ′)|11 = 4

T 2k2(t)k2(t ′)
ei

∫ t

t ′ dx[J0+�(x)]k(x), (42)

where k(t) = 2(T 2 − 2tT + 2t2)1/2/T . Our goal is to realize
the evolution from the eigenstate |↑↓〉 of H (0) = J0(σ z

1 −
σ z

2 )/2 to the eigenstate |↑↓〉 + |↓↑〉 of H (T ) = J0(σ+
1 σ−

2 +
h.c.).

FIG. 4. Amplitude |c0(t)| for a coupled pair of qubits in the
presence of different control methods: (a) periodic rectangular pulse
sequence, (b) periodic pulse sequence with chaotic strengths, (c)
white shot noise. The blue curves in each panel represent the
control-free evolution of |c0(t)|.

To illustrate the nonadiabatic dynamics of the coupled
system, we take T = 1/J0 and plot in Fig. 4 the behavior
of |c0(t)| as a function of the dimensionless time t/T . The
blue curves depict the control-free case. Similar to Fig. 3,
the other curves show the onset of the adiabaticity induced
by ordered pulses [Fig. 4(a)], chaotic pulses [Fig. 4(b)], and
white noise [Fig. 4(c)]. As can be seen, fast manipulation of
h(t,t ′) drives the system to the desired eigenstate of H (T ), i.e.,
|ψ(T )〉 ≈ |E0(T )〉. Hence, it induces a transitionless evolution
in a nonadiabatic regime.

It is straightforward to extend our control-induced-
adiabaticity protocol to multiparticle systems. For example, the
following Hamiltonian can be used to demonstrate adiabatic
passage from the ground eigenstate of a special Bose–Hubbard
model to that of a Heisenberg XY model [85]:

Heff = J

[(
1 − t

T

)
Hbh + t

T
Hxy

]
, (43a)

Hbh = −
N−1∑
k=1

√
k(N − k)

2
(b†kbk+1 + H.c.), (43b)

Hxy =
N−1∑
k=1

(b†kbk+1 + H.c.). (43c)

Here N is the number of particles in a one-dimensional (1D)
chain that can consist of harmonic oscillators (in the single-
exciton subspace) or spins-1/2 (then bk �→ σ−

k and b
†
k �→ σ+

k ).
The model described by Hbh can be mapped to one described
by the angular-momentum operator, the eigenstates of which
are different from that of Hxy.

In Fig. 5, we plot the ground-state amplitude |c0(t)|
corresponding to induced-adiabatic passage of this multiple-
particle system, computed numerically from Eq. (37). We can
still find a fast manipulation over h(t,t ′) that drives the system
from the ground state of Hbh to that of Hxy. The efficacy of the
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FIG. 5. Ground-state amplitude |c0(t)| during adiabatic passage
for a multiparticle chain with different number of sites N , in the
presence of a periodic rectangular pulse sequence. The blue (red)
curves represent the result of free (control) evolution of |c0(t)|. We
take T = 1/J0 and employ the ordered pulse sequence �(t). Here
|�(t)| = J0 and the ratio of pulse duration and period is fixed as
�/χ = 0.4, where χ = 0.02J0t .

control decreases with increasing N . Still, even for N as high
as 20 we find that |c0(T )| is close to 0.99. This result shows
that our control-induced adiabaticity protocol is insensitive to
the size of the system.

IV. DISCUSSION

We have employed the Feshbach P -Q partitioning and the
Nakajima–Zwanzig projection techniques to derive a general
one-component projected time-convolutionless equation for
open quantum systems described by time-dependent master
equations: Eq. (21). By choosing the projection to the ground-
state manifold, we were able to identify conditions for ground-
state dynamics in open quantum systems. These conditions
provide an alternative design for shortcuts to adiabatic-
ity beyond the transitionless-tracking algorithm [33–35,37–
39,42,43], that does not require the addition of (typically
highly nonlocal) counter-diabatic driving to mimic adiabatic
behavior. Specifically, we have demonstrated the onset of
transitionless evolutions induced by fast control through, e.g.,
periodic rectangular pulses, white noise, and chaotic signals.
The insensitivity of the success of the ground-state tracking
protocol to the details of the control sequence shows that the
protocol is highly robust, in particular to noise. Moreover,
the evolution of the system under our control protocols not
only connects the two eigenstates of the initial and final
Hamiltonians, but also adheres to an adiabatic path. Therefore
there is no need for a precise design of counter-diabatic driving
or time-dependent confining potentials. Similarly to dynamical
decoupling protocols for protecting adiabatic evolution from
the effects of coupling to the bath, our methodology also
involves fast controls, but does not require encoding. These
results imply the existence of versatile schemes for shortcuts
to adiabaticity in both closed or open quantum systems, with
direct impact on the physical implementation of quantum
control protocols, in particular in open-system adiabatic

quantum computation and quantum annealing. We expect that
eigenstate-tracking techniques for open system will play a key
role in this context, as well as in quantum thermodynamics
[48–51] and dissipative quantum state engineering [86–88].
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APPENDIX A: FORMAL SOLUTION TO EQ. (13b)

We verify that Eq. (15) is the solution to Eq. (13b) as
claimed in the main text. Indeed, upon differentiation of
Eq. (15) and use of ∂tG(t,t ′) = QLI (t)G(t,t ′) and G(t,t) = 1,
we obtain

∂tQ|χ (t)〉〉 = QLI (t)

[
G(t,0)Q|χ (0)〉〉 + P|χ (t)〉〉

+
∫ t

0
G(t,t ′)QLI (t ′)P|χ (t ′)〉〉dt ′

]

= QLI (t)P|χ (t)〉〉 + QLI (t)Q|χ (t)〉〉,
as required by Eq. (13b), where in the second line we use
Eq. (15) again.

APPENDIX B: ADIABATIC PERTURBATIVE EXPANSION
IN OPEN QUANTUM SYSTEMS

Here we present the adiabatic perturbation theory steps de-
scribed in the main text. Our analysis also gives the conditions
for the invertibility of [1 − �(t)], which is needed for the TCL
dynamical equation [Eq. (21)]. As in the main text, we define
the normalized time s = t/T , where s ∈ [0,1]. Changing
variables in HI (t) [Eq. (12)] yields HI (t) �→ HI (s,T ), with

HI (s,T ) = U†
0 (s,T )[WH(s,T ) + W

†
H(s,T )]U0(s,T ). (B1)

The matrix elements of the operator HI (s,T ) can be
written as [HI (s,T )]mn = [HW

I (s,T )]mn + [HW
I (s,T )]∗mn, with

[HW
I (s,T )]mn = ∑

p[U†
0 ]mp[WH]p0[U0]0n. From Eq. (4), we

then obtain
[
HW

I (s,T )
]
mn

= − i

T

∑
p

Omnp(s,T )e−iT
∫ s

0 dx �0p(x), (B2)

where Omnp(s,T ) = [U†
0 ]mp〈〈�p| ∂

∂s
|�0〉〉[U0]0n. We are now

ready to apply perturbation theory in terms of 1/T , which will
appear whenever [HW

I (s,T )]mn is integrated. First note that,
by Eq. (B2), i

∫ t

0 dt ′[HW
I (t ′)]mn = iT

∫ s

0 ds ′[HW
I (s ′,T )]mn =∑

p Imnp(s,T ), with

Imnp(s,T ) =
∫ s

0
ds ′Omnp(s ′,T )e−iT

∫ s′
0 dx �0p(x). (B3)

042131-9



JING, SARANDY, LIDAR, LUO, AND WU PHYSICAL REVIEW A 94, 042131 (2016)

So far T cancels out. However, integration by parts will
yield 1/T due to the presence of T in the dynamical phase
term. Indeed, by letting u = Omnp(s ′,T )/�0p(s ′) and dv =
�0p(s ′) exp[−iT

∫ s ′

0 dx �0p(x)]ds ′, we obtain after integrat-
ing by parts with

∫
udv = uv − ∫

vdu:

Imnp(s,T ) = i

T

[Omnp(s ′,T )

�0p(s ′)
e−iT

∫ s′
0 �0p(x)dx

]∣∣∣∣
s ′=s

s ′=0

− i

T

∫ s

0
O(1)

mnp(s ′,T )e−iT
∫ s′

0 �0p(x)dx, (B4)

whereO(1)
mnp(s ′,T ) ≡ ∂

∂s ′
Omnp(s ′,T )

�0p(s ′) . Note that the boundary term
(B4) is of order 1/T . Comparing Eq. (B3) and Eq. (B4), it
is clear that a second integration by parts, accomplished by
letting u = O(1)

mnp(s ′,T ) and dv as above, will produce a new
boundary term of order O(T −2) from the v term. Repeating
the integration by parts, we can write a perturbation expansion
of the form Imnp(s,T ) = ∑∞

k=1 T −kI (k)
mnp(s), where I (k)

mnp(s) is
the kth boundary term resulting from the kth integration by
parts. In summary, we can perform the identification

iT

∫ s

0
ds ′[HW

I (s ′,T )
]
mn

= i

T

∫ s

0
ds ′

[
HW

I (s ′,T )
]

mn
+ O(T −2), (B5)

with

[
HW

I (s ′,T )
]
mn

= d

ds ′
∑

p

[Omnp(s ′,T )

�0p(s ′)
e−iT

∫ s′
0 �0p(x)dx

]∣∣∣∣
s ′=s

s ′=0

.

(B6)

Similarly to HI (s,T ), the integration by parts of the deco-
herence contribution DI (s,T ) also exhibits a leading order
T −1. This is again due to the presence of the dynamical phase
e−i[�l (s)−�k (s)] [see Eq. (5)].

With these results at hand, we now address the invertibility
of [1 − �(t)]. Concerning �(t), we obtain from Eq. (19)
that its 1/T expansion after the change of variables �(t) �→
�(s,T ) yields

�(s,T ) = T

∫ s

0
G(s,s ′,T )QLI (s ′,T )PV†

I (s,s ′,T )ds ′

= T

∫ s

0
[1 + O(QLI )]QLI (s ′,T )P[1 + O(LI )]ds ′

= T

∫ s

0
QLI (s ′,T )Pds ′ + O

(
L2

I

)

= T

∫ s

0
Q[−iHI (s ′,T ) + DI (s ′,T )]Pds ′ + O

(
L2

I

)
.

(B7)

Since
∫ s

0 ds ′HI (s ′,T ) = O(1/T 2), as we have already shown,
this contribution vanishes in the large-T limit, which ensures
the invertibility of [1 − �(s,T )] for closed systems. The
contribution of the decoherence superoperator need not vanish,
since DI (s ′,T ) = O(1/T ), as we have also already shown.
Therefore the leading-order contribution to �(s,T ) is a
constant (T -independent) term. However, we may assume

that the contribution of the decoherence superoperator DI

is perturbative due to the weak system-bath coupling, as
we did after Eq. (22). It is then consistent to assume that
T

∫ s

0 QDI (s ′,T )Pds ′ is a perturbation of the identity, which
ensures the invertibility of [1 − �(s,T )] for open systems in
the weak-coupling limit.

APPENDIX C: OPEN-SYSTEM EXAMPLE: DERIVATION
OF EQS. (33) AND (34)

Let us consider here the two-level open system de-
scribed in section III A. We prepare the system in the
excited state |E−(0)〉 and are interested in the fidelity F ≡√〈E−(T )|ρ(T )|E−(T )〉. For the computation of the exact
fidelity, we further change variables in the master equa-
tion (31) through ρ → ρI (t) = U (t)ρ(t)U †(t), with U (t) =
exp{i ∫ t

0 dt ′[J (t ′) + S(t ′)]σz(t ′)}. Then, we obtain

∂tρI (t) = κ(t)
[
σ−(t)ρI (t)σ+(t) − 1

2 {σ+(t)σ−(t),ρI (t)}].
(C1)

The matrix element of ρI (t) associated with the fidelity
is ρ−

I (t) ≡ 〈E−(t)|ρI |E−(t)〉. In particular, notice that F =
√〈E−(T )|ρ(T )|E−(T )〉 =

√
ρ−

I (t), since U †(T )|E−(T )〉 =
exp{−i

∫ T

0 dt ′[J (t ′) + S(t ′)]}|E−(T )〉. To obtain ρ−
I (t), we

use Eq. (C1), which yields

∂tρ
−
I (t) = −κ(t)ρ−

I (t). (C2)

Hence, as provided by Eq. (33), the exact fidelity reads

F(T ) = exp

[
−1

2

∫ T

0
dt κ(t)

]
.

To obtain the perturbative TCL fidelity F ≡√〈E−(T )|ρ(T )|E−(T )〉 = √|r0(T )|, with r0(T ) denoting
here the excited-state population and being provided by
Eq. (27), we have to determine the Hamiltonian H(a)(t) and
the decoherence D(a)(t) superoperators in the adiabatic frame.
Then, by computing H(a)(t) and D(a)(t) according to Eqs. (4)
and (5), respectively, we obtain

H(a) = π

4T

⎛
⎜⎜⎝

0 −ieiJ̄ (t) −ie−iJ̄ (t) 0
ie−iJ̄ (t) 0 0 −ie−iJ̄ (t)

ieiJ̄ (t) 0 0 −ieiJ̄ (t)

0 ieiJ̄ (t) ie−iJ̄ (t) 0

⎞
⎟⎟⎠,

(C3)
where J̄ (t) ≡ 2

∫ t

0 dt ′J (t ′), and

D(a) =

⎛
⎜⎜⎝

−κ(t) 0 0 0
0 2iS(t) − κ(t)

2 0 0
0 0 −2iS(t) − κ(t)

2 0
κ(t) 0 0 0

⎞
⎟⎟⎠.

(C4)
According to Eqs. (7b) and (7d), we can determine the
superoperators gH, eH, and WH through the decomposition
of Eq. (C3). In particular, we obtain gH = 0N2 . Then, from
Eq. (9), we get Gg(t,t ′) = 1N2 . Similarly, we can also find gD,
eD, WD, and VD through the decomposition of Eq. (C4). In
particular, we obtain gD = −κP and VD = 0N2 . Therefore,
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Eqs. (26a) and (26b) can be explicitly written as

h(t,t ′)|11 =
( π

4T

)2
[0, − ie2iJ̃ t , − ie−2iJ̃ t ,0]

×Ge(t,t ′)[0,ie−2iJ̃ t ′ ,ie2iJ̃ t ′ ,0]T

≈ π2

8T 2
cos[2J̃ (t − t ′)], (C5)

and

f (t,t ′)|11 = i
π

4T
[0, − ie2iJ̃ t , − ie−2iJ̃ t ,0]

×Ge(t,t ′)[0,0,0,κ(t ′)]T

≈ −π2κ(t ′)
16T 2J̃

sin[2J̃ (t − t ′)]. (C6)

To obtain Eqs. (C5) and (C6), we approximated the average
gap J̃ by a constant and considered the expansion

Ge(t,t ′) = T
[
e−i

∫ t

t ′ eH(x)dx
] ≈ I − i

∫ t

t ′
eH(x)dx, (C7)

where

−i

∫ t

t ′
eH(x)dx

= π

8T J̃

⎛
⎜⎝

0 0 0 0
0 0 0 −A − iB

0 0 0 −A + iB

0 A − iB A + iB 0

⎞
⎟⎠, (C8)

with A ≡ sin 2J̃ t − sin 2J̃ t ′ and B ≡ cos 2J̃ t − cos 2J̃ t ′.
Note that the adiabatic expansion of the propagator Ge(t,t ′)
provides the leading order (1/T 2) for f (t,t ′) in Eq. (C6).
Moreover, observe that, by treating κ(t) as a perturbative
parameter (weak-coupling regime), we have ||f (t,t ′)|| �
||h(t,t ′)||. We can then disregard the contribution for the
fidelity from f (t,t ′) with respect to h(t,t ′). Hence, by using
Eq. (C5), we obtain the fidelity through the perturbative TCL
master equation (27), which reads

FTCL(T )

≈ exp

[
−1

2

∫ T

0
dtκ(t) − 1

2

∫ T

0
dt

∫ t

0
dt ′ h(t,t ′)

∣∣
11

]
,

= exp

[
−1

2

∫ T

0
dtκ(t) +

(π

8

)2 (cos 2J̃ T − 1)

(J̃ T )2

]
.

APPENDIX D: ADIABATICITY IN CLOSED SYSTEMS:
THE LARGE-T LIMIT

To show that the transitionless condition
∫ t

0 dt ′h(t,t ′) = 0
includes, as a particular case, the ordinary adiabatic condition

for a large total evolution time T , we reintroduce the
normalized time s. Then, by rewriting Eq. (37) in terms of
s, we obtain

∂sc0(s) =
[
−〈E0(s)|∂s |E0(s)〉 − T 2

∫ s

0
ds ′g(s,s ′)

]
c0(s),

(D1)
where

g(s,s ′) = 1

T 2

N−1∑
p,q=1

[W †
H (s)]1p [Ge(s,s ′)]pq

× [WH (s ′)]q1 [G†
g(s,s ′)]11. (D2)

However, note that the integration over g(s,s ′) will only
affect the terms [Ge(s,s ′)]pq[WH (s ′)]q1[G†

g(s,s ′)]11. Then, the
integral [I (s)]pq for an individual term (p,q) in the sum can
be written as

[I (s)]pq ≡
∫ s

0
ds ′[T eiZ(s,s ′)]pq

×[−i〈Eq(s ′)|∂s ′ |E0(s ′)〉eiT
∫ s′

0 dxωq0(x)
]
, (D3)

where ωq0(x) ≡ Eq(x) − E0(x) and [T eiZ(s,s ′)]pq ≡
[Ge(s,s ′)]pq [G†

g(s,s ′)]11. Then, integrating by parts, we
obtain

[I (s)]pq = −eiT
∫ s

0 ωq0(x)dx 〈Eq(s)|∂s |E0(s)〉
T ωq0(s)

× [T eiZ(s,s ′)]pq

∣∣s
0 +

∫ s

0
ds ′eiT

∫ s′
0 ωq0(x)dx

× ∂

∂s ′

{
[T eiZ(s,s ′)]pq

〈Eq(s ′)|∂s ′ |E0(s ′)〉
T ωq0(s ′)

}
.

Now, by using the Riemann–Lebesgue lemma [74,89], we
can obtain a vanishing integral [I (s)]pq by imposing that

T � max
s,q

∣∣∣∣ 〈Eq(s)|∂s |E0(s)〉
ωq0

∣∣∣∣

= max
s,q

∣∣∣∣∣
〈Eq(s)|[∂sH (s)]|E0(s)〉

ω2
q0

∣∣∣∣∣ (q 	= 0). (D4)

Note that Eq. (D4) is exactly the ordinary adiabatic condition
[3]. It has been obtained here from the transitionless condition∫ t

0 dt ′h(t,t ′) = 0 by requiring a total evolution time T that
is large in comparison with the inverse of the minimum
instantaneous energy gap. However, note that the transitionless
condition is more general than Eq. (D4). In particular, as we
have shown, it may achieve an acceleration of the adiabatic
path by inducing a fast oscillating gap.
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Shnirman, Phys. Rev. Lett. 105, 030401 (2010).
[60] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, New J. Phys.

14, 123016 (2012).
[61] A. Joye, Commun. Math. Phys. 275, 139 (2007).
[62] O. Oreshkov and J. Calsamiglia, Phys. Rev. Lett. 105, 050503

(2010).
[63] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, Commun. Math.

Phys. 314, 163 (2012).
[64] L. C. Venuti, T. Albash, D. A. Lidar, and P. Zanardi, Phys. Rev.

A 93, 032118 (2016).
[65] W. K. A. Salem, Ann. Henri Poincaré 8, 569 (2007).
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