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We provide further nontrivial solutions to the recently proposed time-dependent Dyson and quasi-Hermiticity
relation. Here, we solve them for the generalized version of the non-Hermitian Swanson Hamiltonian with
time-dependent coefficients. We construct time-dependent solutions by employing the Lewis-Riesenfeld method
of invariants and discuss concrete physical applications of our results.
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I. INTRODUCTION

PT -symmetric (PTS) quantum mechanics has attracted
increasing attention since is was demonstrated that PTS
Hamiltonians possess real spectra [1] and allow for a uni-
tary evolution with a redefined inner product [2,3]. Phase
transitions between the regimes of unbroken and broken PT
symmetry, which are a key feature in the energy spectrum, are
well understood to occur when two real eigenvalues coalesce
to form a complex-conjugate pair [1]. Many interesting new
results have recently emerged from the application of PTS
concepts to different areas of physics, in the classical and
the quantum domains, on both fronts, theoretical as well as
experimental. We mention here a few, such as the design
of an ultralow-threshold phonon laser [4], the demonstration
of defect states [5] and beam dynamics [6] in PTS optical
lattices, and the fact that the Jarzynski equality generalizes to
the PTS domain [7]. Reinforcing the practical features, there
are optical structures described by PTS concepts that enable
unprecedented control of light [8]. At a classical level, PTS
properties have also been observed in a variety of experimental
setups, ranging from quantum optics [9] to NMR [10] and
superconductivity [11].

Although the grounds for treating non-Hermitian Hamil-
tonians using time-independent metric operators have been
extensively studied and well established [12,13], the gen-
eralization to time-dependent (TD) metric operators has
raised controversy [14–17]. In Ref. [14], Mostafazadeh has
demonstrated that using a TD metric operator, one cannot
ensure the unitarity of the time evolution simultaneously with
the observability of the Hamiltonian. From this perspective,
with which we agree, the authors of Refs. [15–17] fail to ensure
a unitary time evolution by insisting on the observability of the
Hamiltonian. However, we have recently suggested [18] that
this is not an obstacle and certainly not a no-go theorem. It
is very common in the context of PTS quantum mechanics
that certain operators, such as position or momentum, may
become nonobservable auxiliary variables and only their
quasi-Hermitian counterparts can be measured. In [18] we
take the view that the Hamiltonian, meaning the operator
that satisfies the TD Schrödinger equation (SE), joins this set
of observables in the scenario where a TD metric operator
is considered. For this proposal to be meaningful the TD
quasi-Hermiticity relation and TD Dyson relation need to
possess nontrivial solutions. When this is the case, we have
unitary time evolution and well-defined observables.

Here we provide a further nontrivial solution to this set
of equations for a generalized time-dependent version of
the Swanson Hamiltonian [19] by solving its TDSE and by
computing some observables. In order to solve the SE, we
shall adapt a method presented in Refs. [20,21] for treating
TD Hermitian Hamiltonians. This method takes advantage
of a unitary TD transformation on the SE, here replaced
by a nonunitary transformation to conform to non-Hermitian
Hamiltonians, and the diagonalization of a TD invariant on the
Lewis and Riesenfeld framework [22].

The authors in Ref. [20] pursued the solution of the SE
governed by a general TD quadratic Hamiltonian in order to
investigate the mechanism of squeezed states following from
the nonlinear amplification terms of the Hamiltonian [23,24].
Here, we shall focus on the technique to treat a TD non-
Hermitian Hamiltonian, leaving open the possibility of further
analysis of the squeezing mechanism coming from the nonlin-
ear terms of a TD non-Hermitian Hamiltonian.

II. NON-HERMITIAN HAMILTONIAN
SYSTEMS WITH TD METRIC

Let us briefly review the scheme proposed in [18]: We
consider a non-Hermitian TD Hamiltonian H (t) whose asso-
ciated SE, i∂t |ψ(t)〉 = H (t)|ψ(t)〉, is mapped by means of the
Hermitian TD operator η(t) into the SE i∂t |φ(t)〉 = h(t)|φ(t)〉,
where the corresponding wave functions are transformed as
|φ(t)〉 = η(t)|ψ(t)〉 and the Hamiltonians are related by means
of the TD Dyson relation,

h(t) = η(t)H (t)η−1(t) + i[∂tη(t)]η−1(t). (1)

We set here � = 1. The key feature in this equation is the fact
that H (t) is no longer quasi-Hermitian, i.e., related to h(t) by
means of a similarity transformation, due to the presence of
the last term. Thus H (t) is not a self-adjoined operator and
therefore is not observable. Using the Hermiticity of h(t), we
then derived the TD quasi-Hermiticity relation,

H †(t)ρ(t) − ρ(t)H (t) = i∂tρ(t), ρ(t) = η†η, (2)

replacing the standard quasi-Hermiticity relation for a time-
independent ρ, given by H †ρ = ρH . In fact, the TD quasi-
Hermiticity relation ensures the TD probability densities in
the Hermitian and non-Hermitian systems are related in the
standard form

〈ψ(t)|ψ̃(t)〉ρ = 〈ψ(t)|ρ(t)|ψ̃(t)〉 = 〈φ(t)|φ̃(t)〉. (3)
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With the assumption that ρ(t) is a positive-definite operator,
the operator ρ(t) plays the role of the TD metric, and we
conclude that any self-adjoined operator o(t), i.e., observable,
in the Hermitian system possesses a counterpart O(t) in the
non-Hermitian system given by

O(t) = η−1(t)o(t)η(t), (4)

in complete analogy with the time-independent scenario. Thus
as long as the generalized equations (1) and (2) possess
nontrivial solutions for η(t) and ρ(t), respectively, we have a
well-defined physical system with TB observables and unitary
time evolution governed by a TD non-Hermitian Hamiltonian.
However, we have the slightly unusual feature that the TD
Hamiltonian H (t) does not belong to the set of observables.
We should also remark that the well-known feature of the
metric, which is not unique (see, e.g., [2,25]), will acquire
here an additional ambiguity due to the fact that (1) and (2)
are, in general, nonlinear differential equations (see [18]) and
will therefore usually have several different types of solutions.

III. THE GENERALIZED TIME-DEPENDENT
SWANSON HAMILTONIAN

The system we wish to investigate here is related to the
non-Hermitian TD Swanson Hamiltonian

H (t) = ω(t)(a†a + 1/2) + α(t)a2 + β(t)a†2, (5)

where a and a† are bosonic annihilation and creation operators,
for instance, of a light field mode. In comparison with the time-
independent case all parameters have acquired an explicit time
dependence ω(t),α(t),β(t) ∈ C. Clearly, when ω(t) /∈ R or
α(t) �= β∗(t), the Hamiltonian (5) is not Hermitian. It becomes
PT symmetric when ω(t),α(t),β(t) are required to be even
functions in t or generic functions of it .

Let us now solve the TD Dyson equation by making the
following general and, for simplicity, Hermitian ansatz for the
Dyson map:

η(a,a†,t) = exp[ε(t)(a†a + 1/2) + μ(t)a2 + μ∗(t)a†2] (6)

= exp[λ+(t)K+] exp[ln λ0(t)K0] exp[λ−(t)K−].

(7)

We require here the variant (7) of our ansatz to be able to
compute the time derivatives of η. The equality follows by
recalling that K+ = a†2/2, K− = a2/2, K0 = (a†a/2 + 1/4)
form an SU(1,1) algebra, such that the group element in (6)
can be Iwasawa decomposed according to [26]. The TD
coefficients read

λ+ = 2μ∗ sinh �

� cosh � − ε sinh �
, (8a)

λ− = λ∗
+, (8b)

λ0 =
(

cosh � − ε

�
sinh �

)−2
, (8c)

where we abbreviated the argument of the hyperbolic functions
to � =

√
ε2 − 4|μ|2, demanding ε be real and ε2 − 4|μ|2 � 0.

The notation may be simplified even further by intro-
ducing some new quantities. As in [25], we define z =
2μ/ε = |z|eiϕ within the unit circle, such that we obtain

� = ε
√

1 − |z|2. Furthermore, we define � = |z|/�−, with
�± = 1 ± �̃ coth �, �̃ = �/ε, �̃± = �±/�̃, and, finally, χ =
�̃+/�̃− = 2/�− − 1 = 2�/|z| − 1. With the notation settled,
the coefficients in (8a)–(8c) simplify to

λ+ = −�e−iϕ , (9a)

λ− = −�eiϕ , (9b)

λ0 = 1

�̃2− sinh2 �
= �2 − χ , (9c)

where sinh2 � = �̃2�2/[|z|2(�2 − χ )] = �̃2λ+λ−/|z|2λ0.
Using the relations

η(t)

(
a

a†

)
η−1(t) = ± 1√

λ0

( −1 λ+
−λ− χ

)(
a

a†

)
, (10)

we obtain, after some algebra, the transformed Hamiltonian

h(z,ε,t) = η(t)H (t)η−1(t) + iη̇(t)η−1(t)

= W (z,ε,t)(a†a + 1/2) + V (z,ε,t)a2 + T (z,ε,t)a†2,
(11)

where the coefficient functions are

W (z,ε,t) = − 1

λ0

[
ω(χ + λ+λ−) + 2(αλ+ + βχλ−)

− i

2
(λ̇0 − 2λ+λ̇−)

]
, (12a)

V (z,ε,t) = 1

λ0

(
α + ωλ− + βλ2

− + i

2
λ̇−

)
, (12b)

T (z,ε,t) = 1

λ0

[
ωχλ+ + αλ2

+ + βχ2

+ i

2
(λ0λ̇+ + λ2

+λ̇− − λ+λ̇0)

]
. (12c)

As is common, the overdot denotes derivatives with respect to
time.

For the Hamiltonian h(t) to be Hermitian we need to
impose that W is real and, in addition, T = V ∗. From the
first constraint we derive the equality

λ̇0 = 2|ω|(χ + �2) sin ϕω + 2�[�̇ + 2|α| sin(ϕ − ϕα)

− 2|β|χ sin(ϕ + ϕβ)], (13)

while the second one leads to the coupled nonlinear differential
equations

�̇ = 2

χ − 1
{[|ω|� sin ϕω + |α| sin(ϕ − ϕα)](1 − �2)

+ |β|[(2χ − 1)�2 − χ2] sin(ϕ + ϕβ)},

ϕ̇ = 2

(χ − 1)�
[|α|(1 − �2) cos(ϕ − ϕα)

+ |β|(�2 − χ2) cos(ϕ + ϕβ)] + 2|ω| cos ϕω. (14)

Here, ϕα , ϕβ , and ϕω are the polar angles of α, β, and ω,
respectively, and χ is a function of � and |z|, as defined
above. Therefore, in a way similar to that in Ref. [25], we may
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consider |z| the only free parameter that determines the metric,
with ε following from the relation

ε = 1√
1 − |z|2

arctanh

√
1 − |z|2�
� − |z|

= 1

2
√

1 − |z|2
ln

[
(1 +

√
1 − |z|2)� − |z|

(1 −
√

1 − |z|2)� − |z|

]
, (15)

which may be derived from the parameter � = |z|/�−, as
defined above, which in turn depends, as well as on ϕ, on
the solution of the system (14) and the TD coefficients of the
starting Hamiltonian (5). Evidently, for a given pair (|z|,�),
i.e., a given choice of |z|, this must be further corroborated
by a real solution of ε in Eq. (15), with the argument of the
arctanh (ln) being not greater than unity (greater than zero),
thus requiring |z|2 > 2�/(1 + �2). We finally observe that |z|
can conveniently be considered a time-independent parameter,
constraining the time dependence to the remaining parameters,
ϕ and ε.

IV. SOLUTIONS OF THE SCHRÖDINGER EQUATION
FOR THE GENERALIZED TIME-DEPENDENT

SWANSON HAMILTONIAN

In order to solve the SE for H (t) we shall adapt to the
case of TD non-Hermitian Hamiltonians a method presented
in Ref. [20] for solving the SE for TD Hermitian Hamiltonians.
This technique takes advantage of a TD transformation
on the SE for the desired Hamiltonian, here a nonunitary
transformation to conform with non-Hermitian Hamiltonians,
and the diagonalization of a TD invariant within the Lewis and
Riesenfeld framework [22]. The Lewis and Riesenfeld method
ensures that a solution of the SE governed by a TD Hermitian
Hamiltonian H(t) is an eigenstate of an associated Hermitian
invariant I (t), defined as ∂t I (t) + i[H(t),I (t)] = 0, apart from
a TD global phase factor. The method in Ref. [20] proposes
that, instead of solving the SE for H(t) by deriving an invariant
directly associated with this Hamiltonian, a transformation is
performed on the SE for bringing the original Hamiltonian to
another form which already has an associated invariant.

The authors in Ref. [20] pursued the solution of the SE
governed by a general TD quadratic (Hermitian) Hamil-
tonian in order to investigate the mechanism of squeezed
states [23,24] following from the nonlinear amplification
terms of the Hamiltonian. They thus consider the unitary
squeeze operator for transforming the SE for the TD quadratic
Hamiltonian, reducing it to a form associated with a linear
Hamiltonian which already has an associated invariant [27].
Here, we shall focus on the method to approach a TD
non-Hermitian Hamiltonian, leaving open the analysis of the
squeezing mechanism coming from the nonlinear terms of a
TD non-Hermitian Hamiltonian.

In the present contribution a strategy similar to that in
Ref. [20] will be used, starting with the non-Hermitian H (t)
and then deriving the transformed Hermitian h(t) through
the metric operator η(t), instead of a unitary transformation.
We further identify this transformed Hamiltonian with the
Hermitian quadratic one treated in Ref. [20], whose solutions
have been derived. Evidently, we must disregard the linear

amplification process considered in Ref. [20] since it is absent
from h(t). To this end, we next rewrite the coefficients of the
Hermitian (11) considering Eqs. (13) and (14). Under Eqs. (13)
and (14) we obtain the real frequency

W (|z|,ϕ,t) = |ω| cos ϕω + 2�

1 − χ
[|α| cos(ϕ − ϕα)

− |β| cos(ϕ + ϕβ)]. (16)

From the system (14) we obtain V (|z|,ϕ,t) = T ∗(|z|,ϕ,t) =
VR(|z|,ϕ,t) + iVI (|z|,ϕ,t) = κ(|z|,ϕ,t)eiζ (|z|,ϕ,t), with κ =
(V 2

R + V 2
I )

1/2
, ζ = arctan (VI/VR), and

VR(|z|,ϕ,t) = 1

1 − χ
(|ω|� sin ϕω sin ϕ

+ |α| cos ϕα − |β|χ cos ϕβ), (17a)

VI (|z|,ϕ,t) = 1

χ − 1
(|ω|� sin ϕω cos ϕ

− |α| sin ϕα − |β|χ sin ϕβ). (17b)

Note that when starting with a Hermitian Hamiltonian (5),
with real ω and α = β∗, we verify from Eqs. (16) and (17) that
W (|z|,ϕ,t) = |ω| and V (|z|,ϕ,t) = α(t), such that h = H .

The solutions of the Schrödinger equation generated by
Hamiltonian (11), given in Ref. [20] as

|vn(t)〉 = U (t)|n〉, (18)

define a complete set of states, with |n〉 being the Fock states
and U (t) being the unitary operator

U (t) = ϒ(t)S[ξ (t)]D[θ (t)]R[�(t)]. (19)

Here, S[ξ (t)] = exp {[ξ (t)a†2 − ξ ∗(t)a2]/2} is the squeeze op-
erator, with ξ (t) = r(t)eiφ(t) defining the squeeze parameters,
which follow from another set of coupled nonlinear differential
equations,

ṙ(t) = −2κ(t) sin [ζ (t) − φ(t)], (20a)

φ̇(t) = −2W (t) − 4κ(t) coth [2r(t)] cos [ζ (t) − φ(t)], (20b)

where D[θ (t)] = exp [θ (t)a† − θ∗(t)a] is the displacement
operator and θ (t) satisfies the equation iθ̇ (t) = �(t)θ (t), with

�(t) = W (t) + 2κ(t) tanh r(t) cos [ζ (t) − φ(t)]. (21)

Finally, R[�(t)] = exp [−i� (t)a†a] is the rotation operator,
with � (t) = ∫ t

0 �(t ′)dt ′, and ϒ(t) = exp (−i� (t)/2) is a
global phase factor.

With the wave vectors in Eq. (18), we directly obtain
the solutions of the Schrödinger equation generated by
Hamiltonian (5), given by

|ψn(t)〉 = η−1(t)|vn(t)〉 = η−1(t)U (t)|n〉. (22)

For a generic superposition |ψ(t)〉 = ∑
ncn|ψn(t)〉 it follows

that

|ψ(t)〉 = η−1(t)V (t)|v(0)〉, (23)

with the evolution operator

V (t) = U (t)U †(0)

= ϒ(t)S[ξ (t)]D[θ (t)]R[�(t)]S†[ξ (0)]D†[θ (0)]. (24)
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At this point it is worth mentioning a theorem which can
be straightforwardly adapted from Ref. [20] to the context of
TD non-Hermitian quantum mechanics: If I (t) is an invariant
associated with a non-Hermitian Hamiltonian H (t), then
Iη(t) = η(t)I (t)η−1(t) is also an invariant but is associated
with the transformed Hermitian Hamiltonian h(t), with both
invariants I (t) and Iη(t) sharing the same eigenvalue spectrum.
Moreover, the Lewis and Riesenfeld phase is invariant under
the transformation η(t). It is not difficult to see that this theorem
fully supports the solutions presented in Eqs. (22) and (23).

Before analyzing the observables associated with the
pseudo-Hermitian H (t), it is worth addressing two par-
ticular cases: when the coefficients of H (t) are real TD
functions and when considering a time-independent metric
operator.

A. On the solutions for the TD coupled differential
equations (14), (20), and (28)

Before addressing particular cases where the coefficients
of the Hamiltonian (5) are real TD functions and/or a time-
independent metric operator is considered, we add a few
comment on the coupled equations ruling the evolution of
the metric parameters � and ϕ [Eqs. (14) and (28)] and the
squeezing parameters r and φ [Eq. (20)]. As advanced in
Ref. [20], despite its time dependence, the system (20) can be
solved analytically, by quadrature, under particular constraints
linking together its TD functions and thus leaving a lower
degree of arbitrariness. Some solutions for system (20) have
been presented in Ref. [20], and reasoning by analogy with
this reference it will be possible to find analytical solutions for
systems (14) and (28), at least for some specific demands
on the TD functions. For example, considering a real TD
function

ω(t) ≡ ḟ (t)

2
+ 2|β|� cos (ϕ − ϕα) (25)

and ϕβ(t) = −ϕα(t), we eliminate the parameter time from the
system (14) to obtain, with ς (t) = ϕ(t) + f (t) and a constant
v = ϕα(t) + f (t), the first-order differential equation

d�

dς
= �

tan (ς − v)
, (26)

whose integration leads to a constant of motion and thus to the
solutions for � and ϕ.

V. PARTICULAR CASES

A. The generalized TD Swanson’s Hamiltonian with real
coefficients ω(t),α(t),β(t)

When considering the TD coefficients ω(t),α(t),β(t) to
be real functions instead of complex ones, the equations in
Secs. III and IV considerably simplify. Let us start by requiring
h(t) in Eq. (11) to be Hermitian. By imposing that W is real
we now obtain

λ̇0 = 2�[�̇ + 2(α − βχ ) sin ϕ], (27)

while the imposition T = V ∗ leads to the simplified coupled
nonlinear differential equations

�̇ = 2

χ − 1
{α(1 − �2) + β[(2χ − 1)�2 − χ2]} sin ϕ,

(28a)

ϕ̇ = 2ω − 2

(1 − χ )�
[α(1 − �2) + β(�2 − χ2)] cos ϕ.

(28b)

Again, |z| can be taken as the only free parameter that
determines the metric, with ε following from Eq. (15). To
further identify the transformed Hermitian h(t) with the
quadratic Hamiltonian whose SE is solved in Ref. [20], we
rewrite the coefficients of h(t) considering Eqs. (27) and (28).
We thus obtain the real frequency

W (|z|,ϕ,t) = ω + 2�

1 − χ
[α − β] cos ϕ (29)

and the simplified real function

V (|z|,ϕ,t) = T (|z|,ϕ,t) = κ(|z|,ϕ,t) = α − βχ

1 − χ
. (30)

From the above equations the solutions presented in Eqs. (22)
and (23) follow straightforwardly.

B. The generalized TD Swanson’s Hamiltonian
with a time-independent metric operator

When a time-independent metric operator is considered, the
coefficients of the transformed Hamiltonian h(z,ε,t) simplify
to

W (z,ε,t) = − 1

λ0
[ω(χ + λ+λ−) + 2(αλ+ + βχλ−)], (31a)

V (z,ε,t) = 1

λ0
(α + ωλ− + βλ2

−), (31b)

T (z,ε,t) = 1

λ0
(ωχλ+ + αλ2

+ + βχ2), (31c)

For h to be Hermitian we again impose that W is real and
T = V ∗. The first constraint leads to the relation

|ω|(χ + �2) sin ϕω + 2�[|α| sin(ϕ − ϕα)

− |β|χ sin(ϕ + ϕβ)] = 0, (32)

while the latter gives rise to the equations

|ω|(1 − χ )� cos ϕω − |α|(1 − �2) cos(ϕ − ϕα)

+ |β|(χ2 − �2) cos(ϕ + ϕβ) = 0, (33a)

|ω|(1 + χ )� sin ϕω + |α|(1 + �2) sin(ϕ − ϕα)

− |β|(χ2 + �2) sin(ϕ + ϕβ) = 0. (33b)

From Eqs. (32) and (33b) we obtain the relation

|α|(1 − �2) sin(ϕ − ϕα) = |β|(χ2 − �2) sin(ϕ + ϕβ), (34)
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which, together with Eq. (33a), gives us

sin(ϕ − ϕα) = |β|(χ2 − �2)

|ω|(1 − χ )� cos ϕω

sin(ϕα + ϕβ), (35a)

sin(ϕ + ϕβ) = |α|(1 − �2)

|ω|(1 − χ )� cos ϕω

sin(ϕα + ϕβ). (35b)

By substituting Eq. (35) back into Eq. (32), we finally obtain
the equation

|z|�3 + (2 − |z|2)�2 − 3|z|� + |z|2 = 0, (36)

whose roots enable us to compute ϕ from Eq. (35) and then ε

from the relation given in Eq. (15). Here, the real frequency
W (|z|,ϕ,t) and the complex V (|z|,ϕ,t) = T ∗(|z|,ϕ,t) still
follow from Eqs. (16) and (17), respectively, with time-
independent z and ε.

1. A time-independent metric operator with real TD coefficients
ω(t),α(t),β(t)

When a time-independent metric operator is considered
together with real TD parameters ω(t),α(t),β(t), it follows
from Eq. (32) that ϕ = 0, and from Eq. (33a) we derive the
equation

(|α| − |β|)�2 + |ω|(1 − χ )� − |α| + |β|χ2 = 0, (37)

which leads to the relation
tanh(2�)

�̃
= α − β

α + β − zω
(38)

and, consequently, to the metric parameter

ε = 1

2
√

1 − |z|2
arctanh

(|α| − |β|)
√

1 − |z|2
|α| + |β| − |z||ω| (39a)

= 1

4
√

1 − |z|2
ln

|α| + |β| − |z||ω| + (|α| − |β|)
√

1 − |z|2
|α| + |β| − |z||ω| − (|α| − |β|)

√
1 − |z|2

.

(39b)

However, a time-independent metric brings about the con-
straint on the TD parameters of the Hamiltonian

|α̇| + |β̇| − |z||ω̇| + (|α̇| − |β̇|)
√

1 − |z|2
|α| + |β| − |z||ω| + (|α| − |β|)

√
1 − |z|2

= |α̇| + |β̇| − |z||ω̇| − (|α̇| − |β̇|)
√

1 − |z|2
|α| + |β| − |z||ω| − (|α| − |β|)

√
1 − |z|2

, (40)

where we have assumed a time-independent |z| as the only free
parameter that determines the metric, with ε following from
Eq. (41). The existence of a real solution for ε requires the
argument of the arctanh (ln) not to be greater than unity (to be
greater than zero), and consequently, there is no real solution
for |z| ∈ [|z−|,|z+|], with

|z±| = (|α| + |β|)|ω| ± (|α| − |β|)(|ω|2 − 4|α||β|)
|ω|2 + (|α| − |β|)2

. (41)

The roots |z±| present the same form as those in Ref. [25], the
difference here being that |ω|, |α|, and |β| are TD functions
instead of constant parameters, additionally constrained by
Eq. (40), thus making it more difficult to observe the

requirements for a real solution for ε. Finally, when we
identify the Hamiltonian h(z,ε,t) with the Hermitian quadratic
one in [20], we obtain for W (|z|,ϕ,t) and V (|z|,ϕ,t) =
T ∗(|z|,ϕ,t) = κ(|z|,ϕ,t)eiζ (|z|,ϕ,t) the same expressions as in
Eqs. (29) and (30), respectively, with time-independent |z| and
ε.

VI. OBSERVABLES

A. The generalized TD Swanson Hamiltonian

Considering the observables for the generalized TD Swan-
son Hamiltonian, we start by focusing on the derivation
of all the Hermitian operators on the continuous variety of
Hilbert spaces Hz for any |z| ∈ [−1,1]. As argued in [18], the
Hamiltonian H itself is not one of the Hermitian operators due
to the presence of the gaugelike term in Eq. (1). We use Eq. (15)
to rewrite the metric operator in Eq. (7) in the form [25,28]

η(t) =
(

(1 +
√

1 − |z|2)� − |z|
(1 −

√
1 − |z|2)� − |z|

) a†a+ 1
2 (za2+z∗a†2)+ 1

2

2
√

1−|z|2

(42a)

=
(

(1+
√

1 − |z|2)�−|z|
(1−

√
1 − |z|2)�−|z|

) (1−|z| cos ϕ)p2+(1+|z| cos ϕ)ω2x2−|z|ω sin ϕ{x,p}
4ω

√
1−|z|2

,

(42b)

which we use to solve the quasi-Hermiticity condition
O†(t)μ(t) = μ(t)O(t). Given (42), we only find the observ-
ables

O(t) = (1 − |z| cos ϕ)p2 + (1 + |z| cos ϕ)ω2x2

− |z|ω sin ϕ{x,p}, (43)

demonstrating that neither the position x = 1√
2ω

(a + a†) nor

the momentum p = i
√

ω
2 (a† − a) operators remain Hermitian

as they are in the standard L2 metric with regard to the
TD η(t) metric even for particular choices of |z|. Using the
relation O(t) = η−1(t)oη(t) together with Eq. (14), we may
compute the quasi-Hermitian position X(t) and momentum
P (t) operators

X(t) = 1

|z|
√

�2 − χ

{
[(1 − i|z| sin ϕ)� − |z|]x

+ i

ω
(1 − |z| cos ϕ)�p

}
, (44a)

P (t) = 1

|z|
√

�2 − χ
{[(1 + i|z| sin ϕ)� − |z|]p

− iω(1 + |z| cos ϕ)�x}, (44b)

corroborating the conclusion we have drawn from Eq. (43).

B. Particular cases

The observables computed above in Eqs. (43) and (44)
also apply to the cases where real coefficients ω(t),α(t),β(t)
are assumed and when a time-independent metric operator is
considered, the difference being that � and ϕ now follow from,
instead of Eq. (14), the coupled Eqs. (28) in the former case
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and Eqs. (35) and (36) in the latter case. However, when a time-
independent metric operator is considered simultaneously with
real coefficients ω(t),α(t),β(t), the Hermitian observables in
Eq. (43) and those in Eq. (44) simplify to

O(t) = (1 − |z|)p2 + (1 + |z|)ω2x2, (45a)

X(t) = 1

|z|
√

�2 − χ

[
(� − |z|)x + i

ω
(1 − |z|)�p

]

= cosh(�)x + i

ω

(1 − |z|)√
1 − |z|2

sinh(�)p, (45b)

P (t) = 1

|z|
√

�2 − χ
[(� − |z|)p − iω(1 + |z|)�x]

= cosh(�)p − iω
(1 + |z|)√

1 − |z|2
sinh(�)x. (45c)

Equations (45) are exactly the same form as those in
Ref. [25], the difference being that here we have TD pa-
rameters. Therefore, when considering the Hamiltonian (5)
with time-independent real parameters together with a time-
independent metric operator, it is straightforward to verify that
all the above derivations are in complete agreement with those
in [25].

VII. CONCLUSION

We have studied a generalized Swanson Hamiltonian al-
lowing for TD complex coefficients and a TD metric operator.
We treated the model within the framework introduced in
Ref. [18], where, despite the lack of observability of the
non-Hermitian Hamiltonian under a TD metric operator, their
associated observables are computed as in the case where a
time-independent metric is considered. To solve the SE for the
generalized TD Swanson’s Hamiltonian we have adapted a

technique presented in Ref. [20] which relies on the Lewis and
Riesenfeld TD invariants. Apart from deriving the solutions of
the SE for our TD non-Hermitian Hamiltonian we have thus
computed their associated observables, analyzing particular
cases where a time-independent metric operator is considered
and TD real coefficients are assumed for the non-Hermitian
Hamiltonian.

From the results presented here we may next explore some
interesting applications such as the generation of squeezing
from a non-Hermitian parametric oscillator. Moreover, our
TD Hamiltonian can be also considered to describe the
non-Hermitian dynamical Casimir effect, and thus the rate of
particle creation resulting, for example, from the accelerated
movement of a cavity mirror can also be computed. The results
for the generation of squeezing and the rate of photon creation
derived from a non-Hermitian quadratic Hamiltonian can then
be compared with the well-known results of the Hermitian
Hamiltonians, thus delivering more timely hints on the physics
of non-Hermitian Hamiltonians.

Another application motivated by this work is the possi-
bility of engineering effective non-Hermitian Hamiltonians
within trapped ions, circuit or cavity QED, NMR, and other
systems presenting great flexibility of handling its internal
interactions. By mastering not only the technique for treating
non-Hermitian Hamiltonians but also that for constructing
non-Hermitian interactions, we seek to contribute to the
implementation of processes such as quantum simulation
and quantum logical implementation, bringing additional
ingredients to the usual Hermitian quantum mechanics.
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