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The theory of quantum Brownian motion describes the properties of a large class of open quantum systems.
Nonetheless, its description in terms of a Born-Markov master equation, widely used in the literature, is known to
violate the positivity of the density operator at very low temperatures. We study an extension of existing models,
leading to an equation in the Lindblad form, which is free of this problem. We study the dynamics of the model,
including the detailed properties of its stationary solution, for both constant and position-dependent coupling of
the Brownian particle to the bath, focusing in particular on the correlations and the squeezing of the probability
distribution induced by the environment.
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I. INTRODUCTION

A physical system interacting with the environment is
referred to as open [1]. In reality, such an interaction is un-
avoidable, so every physical system is affected by the presence
of its surroundings, leading to dissipation, thermalization, and,
in the quantum case, decoherence [2,3].

Recently, interest in open quantum systems increased
due to several reasons. On the one hand, both decoherence
and dissipation generally constitute the main obstacle to
the realization of quantum computers and other quantum
devices. On the other hand, recently there has been a series
of very interesting proposals to exploit the interaction with
the environment to dissipatively engineer challenging states
of matter [4–7], and of works where the engineering of
environments paved the way to the creation of entanglement
and superpositions of quantum states [8–10].

Moreover, open quantum system techniques are often
adopted to investigate problems lying at the core of the founda-
tions of quantum mechanics. Here, one of the unsolved issues
regards the problem of the quantum-to-classical transition, i.e.,
the question of how do classical features we experience in
the macroscopic world arise from the underlying quantum
phenomena [3,11–13]. Most of the theories addressing the
emergence of the classical world deem it a consequence of the
coupling of quantum systems with the environment [14–20].

In this work we focus on an ubiquitous model of an
open quantum system, the quantum Brownian motion (QBM),
which describes the dynamics of a particle (playing the role
of the open system) coupled with a thermal bath made up
by a large number of bosonic oscillators (the environment)
[21–26]. QBM is in many situations the default choice for
evaluating decoherence and dissipation processes, and in
general it provides a way to treat quantitatively the effects
experienced by an open system due to the interaction with the
environment [27–30]. Hereafter, we will refer to the central
particle studied in the model as the Brownian particle.

The main tool for the investigation of the dynamics of
the system is the master equation (ME), which describes
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the evolution of the reduced density matrix of the Brownian
particle, obtained by taking the trace over the degrees of
freedom of the bath. The ME allows us to compute various
physical quantities, such as the time scales of decoherence
and dissipation processes, as well as the average values of
variables such as position and momentum. Widely used in
the literature is the so-called Born-Markov master equation
(BMME) [1,3]. The latter, however, does not always preserve
the positivity of the density matrix, leading to violations of the
Heisenberg uncertainty principle (HUP), i.e., σXσP � �/2,
especially at very low temperatures [31,32]. Here σX and σP

are the standard deviation of the position and momentum,
respectively. The MEs in the so-called Lindblad form preserve
the positivity of the density operator at all times [1,3,33],
and this in turn guarantees that the HUP is always satisfied.
A brief, self-contained demonstration of the latter is given
in the Appendix. Various ways of addressing this difficulty
have been put forward [34–43]. In this paper we add a
term to the BMME, which vanishes in the classical limit,
bringing the equation to the Lindblad form and, in particular,
ensuring that the HUP is always satisfied [33]. We study the
dynamics of the obtained equation, in particular its stationary
state.

An important purpose of the current paper is to investigate
models of QBM more general than those usually studied in
the literature. Usually, the particle-bath coupling is assumed
to be linear in both the coordinates of the particle and the
bath oscillators, and for definiteness in the following we
will refer to this specific case with the name “linear QBM”.
We are here also interested in a more general case, where
the coupling is still a linear function of the positions of
the oscillators of the bath, but depends nonlinearly on the
position of the Brownian particle. This situation arises when
dealing with inhomogeneous environments, in which damping
and diffusion vary in space. An immediate application of
this generalization concerns the physical behavior of an
impurity embedded in an ultracold gas. In this case spatial
inhomogeneities are due to the presence of trapping potentials
and, possibly, stray fields [44,45]. Here, we will study in
detail the case when the coupling depends quadratically on
the position of the test particle, and we will refer to this case
with the name “quadratic QBM”.

2469-9926/2016/94(4)/042123(13) 042123-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.042123


LAMPO, LIM, WEHR, MASSIGNAN, AND LEWENSTEIN PHYSICAL REVIEW A 94, 042123 (2016)

The paper is organized as follows. In Sec. II we consider
QBM with a linear coupling. We first introduce the BMME,
and briefly discuss the lack of positivity preservation men-
tioned above. We then add a term to obtain a LME according
to the procedure proposed in Ref. [38], and rewrite it in the
Wigner function representation. The Wigner function defines
a quasiprobability distribution on the phase space [2]. We
derive the time-dependent equations for the moments of this
distribution, show that they have an exact Gaussian solution,
and study in detail its long-time behavior. In particular, we
analyze the correlations induced by the environment, which
cause a rotation and distortion of the distribution, as well as
squeezing effects expressed by the widths and the area of the
distribution’s effective support.

In Sec. III we study a nonlinear QBM, corresponding to
an inhomogeneous environment. In particular we consider an
interaction, which is a quadratic function of the position of the
Brownian particle. This model has been studied in Ref. [32],
by means of a BMME. We again modify the BMME to obtain
an equation in the Lindblad form and we study its stationary
solutions in the phase space (Wigner) representation. For the
quadratic QBM, the exact stationary state is no longer Gaussian
but a Gaussian approximation can be used in certain regimes.
However, when the damping is strong, the Gaussian ansatz
does not converge for large times, showing that it is not a good
approximation to a stationary state.

II. LINEAR QBM

A. Model

The QBM model describes the physical behavior of a
particle interacting with a thermal bosonic bath of harmonic
oscillators. In general the potential of the Brownian particle
can be arbitrary, but we will study the harmonic case only. The
model is described by the Hamiltonian:

Ĥ = ĤS + ĤE + ĤI , (1)

in which

ĤS = P̂ 2

2m
+ m�2X̂2

2
,

ĤE =
∑

k

p̂2
k

2mk

+ mkω
2
k x̂

2
k

2
,

ĤI =
∑

k

gkx̂kX̂, (2)

where m is the mass of the Brownian particle, � is the
frequency of the harmonic potential trapping it, mk and ωk

are the mass and the frequency of the kth oscillator of the
environment, and gk are the bath-particle coupling constants.
In this section, the interaction term ĤI depends linearly on the
positions of both the Brownian particle and the oscillators of
the environment. We refer to this model as a linear QBM.

The Hamiltonian is the starting point to derive the ME.
We are interested in a BMME, obtained by making two
approximations [3]. In the first one, the Born approximation,
we assume that the influence of the particle on the bath is
negligible, so that the two systems remain uncorrelated (i.e.,
their joint state is a tensor product) at all times (including
the initial one). In the second, the Markov approximation,

we neglect memory effects, namely we require that the
self-correlations created within the environment due to the
interaction with the Brownian particle decay over a time scale
much shorter than the relaxation time scale of the particle.

Under these hypotheses, one derives from the Hamiltonian
Eq. (1) the following ME [1,3,32],

∂ρ̂(t)

∂t
= − i

�
[ĤS + CxX̂

2,ρ̂(t)]

− Dx

�
[X̂,[X̂,ρ̂(t)]] − Dp

�m�
[X̂,[P̂ ,ρ̂(t)]]

− iCp

�m�
[X̂,{P̂ ,ρ̂(t)}]. (3)

To avoid ambiguities we wish to stress that, throughout the
whole paper, we will be working in the Schrödinger picture,
where the time dependence is carried by the state of the system
(rather than by the operators), and average values of operators
are calculated as usual as 〈A〉t ≡ Tr[ρ(t)A].

The effects of the bath on the motion of the Brownian
particle are encoded in the spectral density of the bath. In the
following, we will focus on the commonly used Lorentz-Drude
spectral density:

J (ω) = mγ

π

ω

1 + ω2/	2
, (4)

which is linear at low frequencies, and decays as 1/ω beyond
the cutoff 	, introduced to regularize the theory. With this
choice of the spectral density the coefficients of the BMME at
a bath’s temperature T read:

Cp = mγ�

2

	2

�2 + 	2
(5)

Cx = −	

�
Cp (6)

Dx = Cp coth

(
��

2kBT

)
(7)

Dp = 2Cp

π

[
πkBT

�	
+ z(T ,	,�)

]
, (8)

with

z(T ,	,�) = ψ

(
�	

2πkBT

)
− Re

[
ψ

(
i��

2πkBT

)]
, (9)

where ψ(x) is the digamma function, i.e., the logarithmic
derivative of the Gamma function [32]. In the following, we
will refer to T , 	, and γ as the model’s parameters. The term
proportional to Cx in Eq. (3) leads to a renormalization of the
harmonic trapping frequency. Following the usual approach
[1], the latter may be canceled by including in the Hamiltonian
the counterterm V̂c = −CxX̂

2.
The evolution defined by Eq. (3) does not preserve

positivity of the density matrix. As discussed in detail in,
e.g., Refs. [31,32], the lack of positivity leads to viola-
tions of the Heisenberg uncertainty principle away from the
Caldeira-Leggett limit discussed below. In particular, this
prevents the study of the dynamics in the regime of very low
temperatures. In fact, these violations in Eq. (3) are driven by
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the logarithmic divergence at low temperatures of Dp (which
is itself proportional to γ , i.e., to g2

k ).
Overcoming this problem is a fundamental step towards a

correct description of the dynamics of a Brownian particle. In
this section we propose a modified ME for the linear QBM,
which has the Lindblad form and, consequently, preserves
positivity of the density matrix. It is well known that the ME (3)
cannot be expressed in the Lindblad form [1,3]. Our equation
differs from it by two terms, one of which can be naturally
absorbed into the system’s Hamiltonian.

Adopting a LME is not the only possible manner to deal
with the violations of the Heisenberg uncertainty principle.
From a formal point of view, the ME (3) is the result of
a perturbative expansion to the second order in the strength
of the bath-particle coupling (actually, expanding to second
order requires weaker assumptions than the Born and Markov
ones; the resulting equation may still take into account some
non-Markovian effects, which vanish in the limit of large times
[1]). In Ref. [31] it has been shown that Heisenberg principle
violations in the stationary state disappear if one performs a
perturbative expansion beyond the second order in the coupling
constant. Obviously, if the exact ME is used, violation of
Heisenberg principle cannot occur in any parameter regime.

B. Lindblad master equation

A LME has the form:

∂ρ̂

∂t
= − i

�
[ĤS,ρ̂] +

∑
i,j

κij

[
Âi ρ̂Â

†
j − 1

2
{Â†

i Âj ,ρ̂}
]
, (10)

where Âi are called Lindblad operators and (κij ) is a positive-
definite matrix.

Following the approach proposed in Ref. [38] we will
replace the BMME (3), which cannot be brought to a Lindblad
form, by an equation of the form Eq. (10) with a single
Lindblad operator of the form

Â1 = αX̂ + βP̂ , with κ11 = 1. (11)

Substituting this operator into Eq. (10) we obtain:

∂ρ̂

∂t
= − i

�
[Ĥ ′

S,ρ̂] − i
�

�
[X̂,{P̂ ,ρ}] − DXP

�2
[X̂,[P̂ ,ρ̂]]

− DPP

2�2
[P̂ ,[P̂ ,ρ̂]] − DXX

2�2
[X̂,[X̂,ρ̂]], (12)

with

Ĥ ′
S = ĤS − �

2
{X̂,P̂ } ≡ ĤS + �Ĥ (13)

and

DXX =�
2|α|2, DXP = �

2Re(α∗β),

DPP =�
2|β|2, � = �Im(α∗β). (14)

One could obtain the same result employing two Lindblad
operators, proportional to X̂ and P̂ respectively. Without loss
of generality, we may take α to be a positive real number since
multiplying Â1 by a phase factor does not change Eq. (10), and

we will restrict ourselves to Imβ > 0, because, as seen from
Eq. (14), αIm(β) is the damping coefficient �, which must be
positive.

Equation (12) differs from Eq. (3) just by two extra terms,
involving DPP and �Ĥ . Equating the coefficients of the
remaining terms with those of the analogous terms appearing
in Eq. (3), one finds:

DXX = 2�Dx, DXP = �Dp

m�
,

� = Cp

m�
, DPP = (��)2 + D2

XP

DXX

. (15)

In the Caldeira-Leggett (CL) limit kBT � �	 � ��, these
reduce to

� ≈ γ /2,

DXX ≈ 2mγkBT ,

DXP ≈ −γ
kBT

	
,

DPP ≈ γ kBT

2m	2
. (16)

Following Ref. [3], since the quantities represented by P and
m�X have generally the same order of magnitude, one can
argue, as in Eq. (5.56) of Ref. [3], that the terms proportional
to DXP and DPP are negligible in the CL limit, recovering the
structure of the usual CL ME.

The operator �Ĥ can be absorbed into the unitary part
of the dynamics defined by Eq. (12), so it can be eliminated
by introducing a counterterm into the system’s Hamiltonian.
More generally, we will add to ĤS a counterterm

ĤC = (r − 1)�Ĥ, (17)

which depends on a parameter r ∈ R, leading to the modified
Hamiltonian:

Ĥ ′
S = ĤS − (r�/2){X̂,P̂ }

= (P̂ − mr�X̂)2

2m
+ m(�2 − r2�2)X̂2

2
. (18)

The effect of r is twofold: it introduces a gauge trans-
formation, which shifts the canonical momentum P̂ , and it
renormalizes the frequency of the harmonic potential. In the
rest of the section we shall study the dynamics defined by
equation Eq. (12), first for general values of r and then, for
the discussion of the stationary state, focusing on the case
r = 0. We stress that the introduction of a counterterm in the
Hamiltonian does not affect the Lindblad character of the LME
in Eq. (12), since it just enters in its unitary part.

C. Solution of the LME

We are interested in studying the long-time dynamics of the
Brownian particle. In particular, we consider its representation
in the phase space, employing the Wigner function represen-
tation [2]. In terms of the Wigner function, Eq. (12) becomes
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Ẇ = LW , with

LW = − P

m

∂W

∂X
+ m�2X

∂W

∂P

+ �

[
r

∂

∂X
(XW ) + (2 − r)

∂

∂P
(PW )

]

+ 1

2

[
DXX

∂2W

∂P 2
+ DPP

∂2W

∂X2

]
− DXP

∂2W

∂X∂P
. (19)

Equivalently, one can look at the equations for its moments:

∂〈X〉t
∂t

= 〈P 〉t
m

− r�〈X〉t
∂〈P 〉t

∂t
= −m�2〈X〉t − (2 − r)�〈P 〉t

∂〈X2〉t
∂t

= −2r�〈X2〉t + 2〈XP 〉t
m

+ DPP

∂〈XP 〉t
∂t

= −m�2〈X2〉t − 2�〈XP 〉t + 〈P 2〉t
m

− DXP

∂〈P 2〉t
∂t

= −2m�2〈XP 〉t − (4 − 2r)�〈P 2〉t + DXX,

(20)

where the moments of the Wigner function are calculated as

〈f (X,P )〉t =
∫ ∞

−∞
dX

∫ ∞

−∞
dP f (X,P )W (X,P,t). (21)

These moments correspond to symmetric ordering of the
quantum mechanical operators X̂ and P̂ [46]. In particular,
note that the time dependence is solely contained in the Wigner
function, in agreement with the fact that we work in the
Schrödinger picture.

The solutions for the first moments are

〈X〉t = e−�t
[
X0 cos(βr t) + x0

r sin(βr t)
]
,

(22)
〈P 〉t = e−�t

[
P0 cos(βr t) − p0

r sin(βr t)
]
,

where

x0
r = m�X0(1 − r) + P0

mβr

p0
r = �P0(1 − r) + mX0�

2

βr

(23)

with

X0 ≡ 〈X〉0, P0 ≡ 〈P 〉0, (24)

and

βr ≡
√

�2 − �2(r − 1)2. (25)

Similar solutions have been presented in Refs. [36,37,47].
Equations (20) may alternatively be written in terms of the
kinetic momentum 〈P̃ 〉t = 〈P 〉t − mr�〈X〉t :

∂〈X〉t
∂t

= 〈P̃ 〉t
m

,

(26)
∂〈P̃ 〉t

∂t
= −m[�2 − r(r − 2)�2]〈X〉t − 2�〈P̃ 〉t ,

or equivalently gathered in the compact form

∂2〈X〉t
∂t2

+ 2�
∂〈X〉t

∂t
+ [�2 − r(r − 2)�2]〈X〉t = 0, (27)

which, of course, can be derived directly from Eqs. (20). For
both r = 0 and r = 2 one obtains a damped oscillator with
the original frequency of the harmonic trap, �. For other
values of r the frequency is renormalized, with the maximal
renormalization corresponding to r = 1.

In Eqs. (20) we see that r introduces apparent damping in
the position, as already noted in Ref. [39]. Because of this, in
the following we will set r = 0. The extra term proportional
to DPP , not present in the starting BMME, appears only in
the equation for ˙〈X2〉, without affecting the other equations,
and in particular those for the first moments, so that it may be
interpreted as a position diffusion coefficient.

We wish now to focus on the stationary solution of Eq. (19).
The latter may be found by means of the following Gaussian
ansatz:

WST = ζ exp

[
1

2(ρ2 − 1)

(
X2

σ 2
X

+ P 2

σ 2
P

+ 2ρXP

σXσP

)]
, (28)

which is normalized to one taking

ζ ≡ 1

2πσXσP

√
1 − ρ2

, |ρ| � 1, (29)

with

σX =
√

〈X2〉, σP =
√

〈P 2〉, ρ = −〈XP 〉
σXσP

, (30)

and, in the remainder of this section, the variances are
computed using the time-independent Gaussian ansatz in
Eq. (28) [48]. Inserting the Gaussian ansatz in Eq. (28) into
Eq. (19) we find:

σ 2
X = DXX − 4m�DXP + m2(4�2 + �2)DPP

4m2��2

σ 2
P = DXX + m2�2DPP

4�

σP σXρ = mDPP /2. (31)

We introduce the adimensional variables:

δx =
√

2m�σ 2
X

�
, δp =

√
2σ 2

P

m��
. (32)

With this parametrization, the Heisenberg inequality σXσP �
�/2 reads δxδp � 1.

The Lindbladian character of Eq. (19) guarantees that the
second moments will satisfy the Heisenberg relation at all
times. We furthermore note that the term with coefficient DPP ,
i.e., the extra term induced by the Lindblad form of the ME,
leads to a correlation between the two canonical variables.

Geometrically, this correlation can be interpreted as a
rotation of the stationary solution in the phase space, see
the black sketches in Fig. 1. In the CL limit, the term
with the coefficient DPP is negligible, and the solution is an
ellipse with its axes parallel to the canonical ones, reproducing
the well-known results.
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FIG. 1. Plot of the angle θ/π at γ /� = 0.8. This angle is
represented in the ellipse at the bottom of the picture. Here, the
orange-solid (green-dashed) line represents the minor (major) axis of
the Wigner function, i.e., that related to δl (δL). The axes X and P are
those of the phase space.

To analyze the properties of the stationary state in the phase
space, we consider the variances of the major and minor axes of
the Wigner function. These axes are defined as the eigenvectors
of the covariance matrix:

cov(X,P ) =
(

δ2
x −ρδxδp

−ρδxδp δ2
p

)
. (33)

The smaller and larger eigenvalues of this matrix, δl and δL,
are given, respectively, by

δ2
l,L = 1

2

(
δ2
x + δ2

p ∓
√(

δ2
x − δ2

p

)2 + 4δ2
xδ

2
pρ2

)
. (34)

We now aim to quantify such a rotation, calculating the angle
θ between the major axis of the Wigner function (i.e., the
eigenvector corresponding to δL), and the X axis of the phase
space. In Fig. 1 we present the behavior of θ as function
of T and 	, at fixed γ . At high 	 the major axis aligns
approximately with the P axis of the phase space (θ = π/2),
while at low 	, it is close to the X axis (θ = π ), in agreement
with the behavior of the BMME discussed in Ref. [32],
where 〈XP 〉 was identically zero. On the other hand, at low
temperatures the Wigner function associated to the stationary
solution of the LME may be significantly rotated with respect
to the axes of the phase space.

In Ref. [32] it has been shown that, going to low temper-
ature, the position of the Brownian particle governed by the
BMME experiences genuine squeezing along x in the Wigner
function representation, i.e., δx < 1. Similar squeezing effects
are pointed out in [18], by studying the numerical solution
of the exact ME. In the case of the LME, it was checked
numerically that δx introduced in Eq. (31) is always bigger
than one. However, the minor axis of the ellipse describing the
Wigner function can display genuine squeezing. To quantify
the degree of squeezing of the Wigner function, Fig. 2 shows

2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

0.2

0.4

0.6

0.8

FIG. 2. Eccentricity of the Wigner function introduced in
Eq. (28), at γ /� = 0.8. The red dashed line represents the values
of T and 	 yielding δ2

l = 1, and we have genuine squeezing below it.

the values of eccentricity defined as

η =
√

1 − (δl/δL)2, (35)

computed for different values of temperature T and UV cutoff
	. The eccentricity is largest at low temperatures. In particular,
below the red dashed line, we find an area where δl < 1,
corresponding to genuine squeezing along the minor axis of
the Wigner function, while in the CL limit the eccentricity
η approaches zero, and we obtain a Wigner function with
circular symmetry. In Fig. 3 we present the minimal value of
δ2
l obtained by choosing the appropriate (low) temperature.

This picture highlights the range of values of 	 and γ where
genuine squeezing occurs. We find that the eccentricity is an
increasing function of the damping constant, i.e., squeezing
becomes more pronounced as γ grows. In particular, at least
γ /� > 0.5 is needed to obtain δl < 1.

We may say that the Brownian particle experiences an
effective heating if the effective phase space area is larger than
the one occupied by a quantum Gibbs-Boltzmann distribution
at the same temperature. We thus define the system to be cooled
if1

χ = δlδL

coth
(

��
2kBT

) < 1, (36)

and heated otherwise. The degree of heating/cooling χ is
shown in Fig. 4. In Fig. 5 we present the minimal value
achieved by χ as the temperature is varied. We note that to
obtain small values of χ one needs to choose large values of
both 	 and γ .

There is a difference between the configuration of the
cooling areas arising in the Lindblad dynamics studied here,
and the ones produced by the BMME (3) studied in Ref. [32]. In
the latter, the boundary between cooling and heating coincides
with the line defined by δx = δp, and this condition does
not depend on γ , while in the present Lindblad model, the
location of the boundary varies with γ . However, the boundary
calculated within the LME converges to the BMME one in

1For the Gibbs-Boltzmann distribution we have 〈X2〉GB〈P 2〉GB ∼
coth2 (��/2kBT ). So the denominator of Eq. (36) provides an
information regarding the area of the Gibbs-Boltzmann distribution.
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FIG. 3. Minimum value of δ2
l over all temperatures, as a function

of the cut-off frequency, at several values of the damping constant.

the γ → 0 limit. Moreover, the LME discussed here displays
heating at very low temperatures.

In Figs. 3 and 5 we have not extended the range of
values of the damping constant beyond γ = 1. In fact, the
expressions for the coefficients of Eq. (12) have been obtained
by comparing it with Eq. (3). The latter is perturbative to
second order in the strength of the coupling between the
Brownian particle and the environment. The square of the
coupling constant is proportional to the damping coefficient,
so the validity of the perturbative expansion fails for γ large.
In particular, in the case of QBM this perturbative expansion
holds for γ � � [1,23].

Low-temperature regime

We consider here in detail the stationary state in the
low-temperature regime kBT < ��. Such a study was impos-
sible in Ref. [32] because solutions violated the Heisenberg
principle there. Here, the Lindblad form of the ME in Eq. (12)
ensures the positivity of the density matrix at all times, so no
violations of the Heisenberg principle occur.

In the discussion above, we noticed that the time-dependent
equations of motion of the LME admit as an exact solution a
Gaussian with nonzero correlations between the two canonical
variables X and P . In the stationary state, in particular, one
finds 〈XP 〉 = −mDPP /2 �= 0. This is a novelty in comparison
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FIG. 4. Cooling parameter χ introduced in Eq. (36), plotted for
γ /� = 0.8. The system exhibits cooling to the right of the solid line,
and heating to its left. For comparison, the dashed line represents the
boundary between cooling and heating obtained with the BMME (3),
which is independent of γ .
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FIG. 5. Minimum value of the cooling parameter χ over all
temperatures, as a function of the cut-off frequency, at several values
of the damping constant.

with the stationary solution of the BMME in Eq. (3), which
shows no correlations between X and P . In the range of 	

explored in Fig. 1, the correlation between X and P becomes
noticeable for kBT � 0.5��. So, an important feature of the
stationary solution of our LME at low temperature is that its
major axis is rotated with respect to those of the phase space.

In Fig. 2 we analyze the eccentricity of the stationary state.
We point out that as the temperature decreases, the distribution
becomes increasingly more squeezed. In particular, at low
temperature we find a region displaying genuine squeezing
of the probability distribution in the direction of l.

In Fig. 4 we also note the presence of a cooling area in the
low-temperature regime. Nevertheless, in the zero-temperature
limit the stationary state shows again heating.

The zero-temperature limit of the Lindblad model deserves
special attention, as the two limits T → 0 and γ → 0 do not
commute. Taking first the zero-coupling and then the zero-
temperature limit, one simply finds δx = δp (in agreement with
the general result for a free harmonic oscillator), but no further
information on their specific value. If instead one takes first
T → 0 and then γ → 0, one finds δx = δp and the additional
condition:

δxδp = δlδL = 5

4
+ [log(	/�)]2

π2
> 1, (37)

indicating that for the Lindblad model the Heisenberg inequal-
ity is not saturated in the limit when the particle becomes
free. This is in contrast with the behavior of the non-Lindblad
BMME (3), for which, in this limit, we have δxδp = 1.
Summarizing, the effect of DPP is to introduce extra heating
at low temperatures and couplings, manifested by a small
constant, and a weak logarithmic dependence on the UV
cutoff 	.

III. QUADRATIC QBM

A. Hamiltonian and Lindblad ME

In this section we consider the quadratic QBM, whose
coupling is still linear in the positions of the oscillators of the
bath, but is quadratic in the position of the Brownian particle:

ĤI =
∑

k

gk

R
x̂kX̂

2. (38)
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Here R is a characteristic length related to the motion of
the Brownian particle and we set it to be R = √

�/m�. The
interaction term in Eq. (38) describes an interaction of the
particle with an inhomogeneous environment, giving rise to
position-dependent damping and diffusion.

A concrete example where we may encounter this kind of
nonlinearity is the model of an impurity in a Bose-Einstein con-
densate. In Refs. [44,45] it has been shown that the dynamics of
such a system can be described by the Fröhlich Hamiltonian. In
an inhomogeneous gas, i.e., a gas with a spatially dependent
density profile, this Hamiltonian differs from the QBM one
due to the nonlinear dependence of the interaction term on the
position of the impurity. When we consider, for instance, a
Thomas-Fermi density profile, i.e., a density profile varying
quadratically with the position, the interaction Hamiltonian is
an even function of the position. Here, the coupling in Eq. (38)
provides the first-order correction to the zero-order term in
the expansion of the interaction between the impurity and the
bath. In short, QBM with a quadratic coupling is not just
a mathematical exercise, but opens modeling possibilities in
new contexts. In Appendix F of Ref. [32] it has been shown
in detail that the Hamiltonian of an impurity in a BEC can be
expressed in the form of that of QBM with a generic coupling.

The dynamics induced by the interaction term in Eq. (38)
has already been discussed in detail in Ref. [32]. There,
the ME for the Brownian particle has been derived, in the
BM approximations, for a Lorentz-Drude spectral density.
Nevertheless, this ME is not in a Lindblad form, nor is it
exact. Accordingly, the stationary solution is not defined for
some values of the model’s parameters because of violations
of the Heisenberg uncertainty principle at low temperatures.

In this section, we aim to find a LME as similar as possible
to that derived in Ref. [32]. Just like in the case of linear QBM,
we expect it to differ from the BMME by some extra terms.
To achieve this goal we consider a single Lindblad operator:

Â1 = μX̂2 + ν{X̂,P̂ } + εP̂ 2, (39)

where μ, ν, and ε are nonzero complex numbers. Substituting
it into Eq. (10) we obtain:

∂ρ̂

∂t
= − i

�
[ĤS + �Ĥ2,ρ̂] − Dμ

2�2
[X̂2,[X̂2,ρ̂]]

− Dν

2�2
[{X̂,P̂ },[{X̂,P̂ },ρ̂]] − Dε

2�2
[P̂ 2,[P̂ 2,ρ̂]]

− Dμν

�2
[X̂2,[{X̂,P̂ },ρ̂]] − Dμε

�2
[X̂2,[P̂ 2,ρ̂]]

− Dεν

�2
[P̂ 2,[{X̂,P̂ },ρ̂]] − i

Cμν

�
[X̂2,{{X̂,P̂ },ρ̂}]

− i
Cμε

�
[X̂2,{P̂ 2,ρ̂}] − i

Cεν

�
[P̂ 2,{{X̂,P̂ },ρ̂}], (40)

where

Dμ

�2
≡ |μ2|, Dμν

�2
≡ Re(μ∗ν),

Cμν

�
≡ Im(μ∗ν), (41)

and similarly for the other combinations of indices. We could
have obtained the same result by means of three Lindblad
operators (rather than a single one), each proportional to one
of the terms appearing on the right-hand side of Eq. (39).

Similarly to Sec. II, there is a term that appears in the unitary
part of the ME:

�Ĥ2 = 2DμνX̂
2 − 2DενP̂

2 + 2Dμε{X̂,P̂ }
− 1

2Cμν{{X̂,P̂ },X̂2} − 1
2Cμε{P̂ 2,X̂2}

+ 1
2Cεν{{X̂,P̂ },P̂ 2}. (42)

We eliminate it by introducing appropriate counterterms in the
Hamiltonian.

The ME in Eq. (40) is in a Lindblad form. Proceeding as
in Sec. II, equating the coefficients on the right-hand side of
Eq. (40) to the corresponding ones in the BMME for quadratic
QBM derived in Ref. [32], we obtain:

Dμε = Dpp

m�
, Dμν = Dxp,

(43)

Cμε = Cpp

�m�
, Cμν = Cxp

�
,

and Dμ = 2m�Dxx . The remaining coefficients are then
uniquely determined as

Dεν = 1

Dμ

[DμνDμε + �
2CμνCμε],

Cεν = 1

Dμ

[CμνDμε − DμνCμε],

Dε = 1

Dμ

[D2
με + (�Cμε)2],

Dν = 1

Dμ

[D2
μν + (�Cμν)2]. (44)

It is easy to check that in the CL limit kBT � �	 � ��, the
coefficients of all extra terms vanish, and Eq. (40) recovers the
structure of the BMME introduced in Ref. [32].

B. Stationary state of the quadratic QBM

We turn now to the study of the stationary state of the Brownian
particle in the case of quadratic coupling. To this end we
express the LME in Eq. (40) in terms of the Wigner function
W , and obtain an equation of the form Ẇ = LW , with:

L = −∂XP

m
+ m�2∂P X + 2Dμ∂2

P X2

+ 2Dν(∂P P − ∂XX)2 + 2Dε∂
2
XP 2

+ 4Dμν

(
∂2
P XP − ∂P ∂XX2 + ∂P X

)
− 4Dμε(∂XX − 1)∂P P − 4DενP ∂X(∂P P − ∂XX)

+ 8Cμν

[
∂P PX2 + �

2

4
∂2
P (∂XX − 1)

]

+Cμε

[
4∂P XP 2 − �

2∂P ∂2
XX + 2�

2∂P ∂X

]
− 2CενP ∂X(4XP + �

2∂P ∂X). (45)

We now find the stationary solution of the above equation.
In this case the Gaussian ansatz in Eq. (28) may at best provide
an approximate solution, in contrast with the case of the linear
QBM, since the system of equations for the second moments
is not closed. We approximate higher-order moments by their
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FIG. 6. Eccentricity η of the Wigner function at γ /� = 0.1, for
quadratic coupling.

Wick expressions in terms of second moments (which would
be exact in a Gaussian case), obtaining the following closed,
nonlinear system of equations in the variables δx , δp, and ρ:

1

2

∂δ2
x

∂t
= 4m��Cεν

[
1 + δ2

xδ
2
p(1 + 2ρ2)

]
+ 2m2�2Dεδ

2
p + 4Dνδ

2
x − �δxδpρ (46)

1

2

∂δ2
p

∂t
= 2Dμ

m2�2
δ2
x − 4�

m�
Cμν + 6�Cμεδxδ

3
pρ + �δxδpρ

+ 4δ2
p

[
Dν − Dμε − �Cμν

m�
(1 + 2ρ2)δ2

x

]
, (47)

and:

−1

2

∂(δxδpρ)

∂t

= 4�Cμε + �δ2
p − 8m�Dενδ

2
p + 12�

m�
Cμνδpδ3

xρ

+ (
8Dμε − 12m��Cενδ

2
p

)
δxδpρ

−
[
� + 8

Dμν

m�
+ 2�(1 + 2ρ2)Cμεδ

2
p

]
δ2
x. (48)

This system of equations could admit more than one
stationary solution, so we have to study the proper one. We
choose the solution that coincides with that obtained with the
non-Lindblad dynamics in the CL limit, since in this limit the
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FIG. 7. Cooling parameter χ for quadratic coupling, at
γ /� = 0.1.

2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

–0.4

–0.3

–0.2

–0.1

0

FIG. 8. Angle θ/π between the major axis of the Wigner function,
and the X axis of the phase space at γ /� = 0.1, for quadratic
coupling.

coefficients of the extra terms of the LME in Eq. (40) vanish.
In Ref. [32] the stationary state in the case of the non-Lindblad
dynamics has been studied in detail, and the variances have
been calculated analytically.

Similarly to the linear QBM studied in the previous section,
we characterize the stationary state in terms of the variances
of the Wigner function, and define the eccentricity, the cooling
parameter, and the angle between the major axis and the X

axis of the phase space as before. These quantities are shown
in Figs. 6, 7, and 8, as functions of 	 and T , when γ /� = 0.1.
In Fig. 6 we point out that the eccentricity tends to zero in the
CL limit, while it increases away from it. This behavior is
similar to that found for the linear QBM. We found that for
γ /� � 0.1 the Brownian particle experiences neither cooling
nor genuine squeezing.

In contrast to the linear case, we do not find a noticeable
rotation at low temperature in the quadratic one. We would
expect to observe this at larger values of γ , as in the case of
linear coupling. However, for larger values of the damping
constant the many stationary solutions of the system of
Eqs. (46)–(48) cross, and therefore it is not straightforward

5 10 15 20 25 30

5

10

15

20 γ / =0.35

γ / =0.2

γ / =0.1

FIG. 9. Time dependence of δ2
x for several values of γ , at 	/� =

16 and kBT /�� = 4. The thin solid lines represent the stationary
value of δ2

x in the state, namely the stationary solution of Eqs. (46)–
(48) for such a quantity.
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FIG. 10. Plot of the product δxδp at γ /� = 0.1, for quadratic
coupling. This quantity is always larger than 1, in accord with the
HUP.

to determine the stationary solution of (45) that coincides
with the one obtained in the CL limit. Moreover, for larger
values of γ the Gaussian ansatz given in Eq. (28) may fail
to approximate any stationary states. To show this point, in
Fig. 9 we plotted the time dependence of δ2

x for several values
of γ , at fixed values of T and 	. Above a certain value of
γ , the position variance does not converge to a stationary
value. This suggests that in these cases the Gaussian solution
of Eq. (45) is not stationary. Figure 9 is plotted for the initial
conditions δ2

x = δ2
p = 1, corresponding to the case when the

harmonic oscillator is in its ground state. The choice of the
initial conditions is not crucial, as we observe a very similar
behavior with quite different initial conditions.

We conclude this section pointing out that, although in
Eqs. (46)–(48) we performed the Gaussian approximation at
the level of the equations for the moments, it is possible to
obtain exactly the same result applying the approximation
directly on the original LME in Eq. (40), or on that LME
expressed in terms of the Wigner function, Eq. (45). In
Appendix B we show, by a very general analytical demonstra-
tion, that the Gaussian approximation applied to the original
LME yields again a ME of the Lindblad form, guaranteeing,
therefore, that the approximated solutions will preserve the
HUP at all times. We provide further numerical evidence of
this fact in Fig. 10, where we plot the product of the two
uncertainties δx and δp resulting by Eqs. (46)–(48), on which
the Gaussian approximation has been carried out. As may
be noticed in the figure, the approximated equations do not
produce any violation of the HUP.

IV. CONCLUSIONS AND OUTLOOK

We studied a modification of the QBM model, focusing on
the description of the stationary state of the Brownian particle
in the phase space, using the Wigner function representation.
To perform this analysis we considered a ME of the Lindblad
form, which ensures the positivity of the density matrix at
all times. In this way we got rid of the Heisenberg principle
violations discussed in Ref. [32], which prohibited the study
of the dynamics in the low-temperature regime.

In Sec. II we dealt with QBM with a linear coupling. In
this case, the stationary state can be represented exactly by a

Gaussian Wigner function. We put particular emphasis on the
analysis of its properties in the low-temperature regime, where
its properties are most interesting.

At low temperature we found that the Brownian particle
exhibits genuine squeezing of the probability distribution.
An important feature of the stationary state in this regime
is its rotation in the phase space, a direct consequence of
the extra terms introduced to obtain a Lindblad form for
the equation. Another important effect experienced by the
stationary state can be quantified by the degree of cooling,
expressing the ratio of the area of the effective support of the
Wigner function to that of the Gibbs-Boltzmann distribution
at the same temperature. A concrete physical system where
cooling and squeezing can be encountered is suggested in
Ref. [49].

In Sec. III we performed the same analysis for QBM with
a coupling, which is quadratic in the coordinates of the test
particle. Importantly, we found that there exists a critical value
of the damping constant over which the Gaussian ansatz fails
to approximate any stationary solutions.

Our procedure of adding extra terms to the BMME derived
in Ref. [32], so that the resulting equation is in a Lindblad form,
is just one of the ways to obtain a Markovian dissipative LME.
Other approaches have been presented, e.g., in Refs. [50,51].
Moreover, for Gaussian dynamics an exact (non-Markovian)
closed master equation with time-dependent coefficients can
be derived [52–54]. The derivation of a LME describing QBM
with a general class of couplings, and the study of its various
limiting behaviors, in particular the small mass limit of the
Brownian particle, are subjects for future work.

The method that we used to treat the LME in this paper is
not the only suitable one. Another possible manner to solve
these kinds of equations, and in particular to characterize the
stationary solution has been presented in Ref. [55]. The core of
this procedure is turning LMEs into partial first-order differ-
ential equations for a phase-space distribution (PSD), which
generalizes well-known ones such as the Wigner function. The
main point lies in removing the evolution generated by the free
Hamiltonian by including it in the interaction representation.
Accordingly, the time dependence of the PSD originates solely
from the interaction term. Although the interaction picture
adopted in Ref. [55] could be used in the context we are
treating, its usefulness is not necessarily guaranteed. In fact,
the interaction picture represents a suitable tool when the free
part of the Hamiltonian describes a dynamics much faster than
that induced by the interaction term. In general this is not the
case for the Brownian motion of a trapped particle, where the
time scales related to both processes can approach the same
order of magnitude. On the other hand, employing this method
looks like a very interesting task, which could allow us to go
beyond the Gaussian approximation underlying Sec. III. This
task, however, lies outside of the focus of the current paper.
We thus reserve it for future works.

There are other methods to correct the Heisenberg principle
violations highlighted in Ref. [32]. The BMME for the
quadratic QBM derived in Ref. [32] is based on a second-order
perturbative ME in the bath-particle coupling constant. Going
to higher orders permits one, in principle, to get rid of the
violations of the Heisenberg principle. This task can be pursued
by means of the time-convolutionless method presented in
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Ref. [1]. An advantage of this approach is that the resulting
ME incorporates non-Markovian effects. Nevertheless, since
it arises from a perturbative expansion, it does not allow to
investigate the strong coupling regime γ > �, where cooling
and squeezing effects are expected to be stronger.

The ideas presented here can be used to investigate the
physical behavior of an impurity in a BEC by open quantum
systems techniques. In this framework the impurity plays
the role of the Brownian particle, while the set of the BEC
Bogoliubov modes represents the environment. The linear
QBM provides a useful tool to study the dynamics of the
impurity in a uniform medium, while the QBM with a generic
coupling may be used to investigate impurities immersed in an
inhomogeneous background, such as the one provided by an
harmonic trap.

In conclusion, in Appendix B we proved that the Gaussian
approximation preserves the Lindblad form of a ME, and so
it does not yield any HUP violation, regardless of whether it
is performed on the equations for the moments or directly
on the LME. We developed this demonstration starting
from a LME related to a Lindblad operator, which is just
quadratic in the creation and annihilation operators, because
it is enough to cover the situation analyzed in Sec. III. In
general, one could extend the proof to LMEs associated to
Lindblad operators containing higher powers of creation and
annihilation operators. This, as far as we know, has never been
shown and constitutes an interesting motivation for future
projects. Also, a generalization of this proof to LMEs for
fermionic systems [56] is apparently possible and interesting.
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Pedrera, ERC Advanced Grant OSYRIS, EU IP SIQS, EU PRO
QUIC, EU STREP EQuaM (FP7/2007-2013, No. 323714),
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APPENDIX A: HEISENBERG UNCERTAINTY PRINCIPLE
FOR DENSITY OPERATORS

The purpose of this Appendix is to present a self-contained
derivation of the Heisenberg uncertainty principle for density
operators. We start from the pure-state case. Consider an
arbitrary state |ψ〉 and observables Â and B̂. Denoting by
〈Â〉 the mean of the observable Â in the state |ψ〉,

〈Â〉 = 〈ψ |Â|ψ〉, (A1)

for the variance of Â we have

σ 2
A = 〈ψ |(Â − 〈Â〉)2|ψ〉, (A2)

and similarly for B̂. For future reference, let us also note that
for any real number a,

〈ψ |(Â − a)2|ψ〉 � σ 2
A. (A3)

The claim we want to prove is

σ 2
Aσ 2

B � 1

4

〈
[Â,B̂]

i

〉2

, (A4)

where the right-hand side contains the mean value of the
observable [Â,B̂]/i in the state |ψ〉. Introducing the vectors

|f 〉 = |(Â − 〈Â〉)ψ〉 and |g〉 = |(B̂ − 〈B̂〉)ψ〉 (A5)

we have

σ 2
Aσ 2

B = 〈f |f 〉〈g|g〉 � |〈f |g〉|2, (A6)

applying the Cauchy-Schwarz inequality. The right-hand side
of the last inequality can be rewritten as

|〈f |g〉|2 =
( 〈f |g〉 + 〈g|f 〉

2

)2

+
( 〈f |g〉 − 〈g|f 〉

2i

)2

(A7)

with both terms on the right-hand side non-negative. Rewriting
the second term as the square of the mean of the observable
[Â,B̂]/2i, and leaving the first term out (keeping it would
lead to a stronger inequality, called the Robertson-Schrödinger
inequality), we obtain the desired bound

σ 2
Aσ 2

B � 1

4

〈
[Â,B̂]

i

〉2

(A8)

in the pure-state case. Now, if ρ = ∑
j pj |φj 〉〈φj | is an

arbitrary density operator, with pj non-negative coefficients
summing up to 1, the mean of Â in the state ρ equals

〈Â〉(ρ) = Tr(ρ̂Â). (A9)

For the variance of Â in the state ρ we have(
σ

(ρ)
A

)2 = Tr[ρ̂(Â − 〈Â〉(ρ))2], (A10)

and similarly for B̂. We thus have(
σ

(ρ)
A

)2 =
∑

j

pj 〈φj |(Â − 〈Â〉(ρ))2|φj 〉

�
∑

j

pj

(
σ

(φj )
A

)2
, (A11)

where (σ
(φj )
A )

2
denotes the variance of Â in the state |φj 〉, and

in the last step we used inequality Eq. (A3). Similarly,(
σ

(ρ)
B

)2 �
∑

j

pj

(
σ

(φj )
B

)2
. (A12)

By the (discrete version of) the Cauchy-Schwarz inequality (it
is crucial that pj � 0 here) we obtain

(
σ

(ρ)
A

)2(
σ

(ρ)
B

)2 �

⎛
⎝∑

j

pjσ
(φj )
A σ

(φj )
B

⎞
⎠

2

, (A13)

which, using the pure-state version of the uncertainty principle,
is bounded from below by

1

4

⎛
⎝∑

j

pj 〈φj | [Â,B̂]

i
|φj 〉

⎞
⎠

2

= 1

4

⎛
⎝

〈
[Â,B̂]

i

〉(ρ)
⎞
⎠

2

, (A14)
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which is the desired mixed-state version of the inequality. In
the last application of the Cauchy-Schwarz inequality, it is
crucial that we are dealing with a density operator, so that the
eigenvalues pj are non-negative.

In the case most important for us, when Â = X̂ is the
position operator and B̂ = P̂ is the momentum operator, the
commutator of Â and B̂ is a multiple of identity, [X̂,P̂ ] = i�Î .
The mean value of [X̂,P̂ ]

i
in any state is thus equal to � and in

particular, for the density operators ρ̂t , solving a Lindblad
equation we obtain at all times the standard form of the
Heisenberg uncertainty principle,

σ 2
Xσ 2

P � �
2

4
. (A15)

APPENDIX B: GAUSSIAN APPROXIMATION

The purpose of this Appendix is to prove that the Gaussian
approximation performed on the LME for quadratic QBM
preserves its Lindblad form. The demonstration we are about
to present considers a Gaussian approximation carried out
directly on the ME, while in Sec. III B it has been done on
the equations for the moments. As we will show, the two
procedures are completely equivalent.

Theorem. For a quadratic Lindblad operator:

L̂ = α̃â2 + β̃(â†)2 + γ̃ â†â + δ̃â + ε̃â† + η̃ (B1)

the self-consistent Gaussian approximation preserves the
Lindblad form (and thus the positivity of ρ̂ and HUP).

The annihilation and creation operators are represented
respectively by â and â†, while α̃,β̃,γ̃ ,δ̃,ε̃,η̃ are complex
parameters. It is immediate to prove that the Lindblad operator
introduced in Eq. (39) can be expressed in the form showed in
Eq. (B1). Note that it is possible to assume 〈â〉 = 0, since it
just shifts the parameters.

Lemma 1. The parameter η̃ in Eq. (B1) can be shifted
arbitrarily.

Proof. The core of the proof lies in the fact that any additive
constant in the definition of the Lindblad operator can be
compensated by a redefinition of the Hamiltonian, namely:

∂ρ̂

∂t
= − i

�
[Ĥ ,ρ̂] + DL+�η̃(ρ̂)

= − i

�
[Ĥ + �Ĥ�η̃,ρ̂] + DL(ρ̂), (B2)

where

DL(ρ̂) = L̂ρ̂L̂† − L̂†L̂ρ̂/2 − ρ̂L̂†L̂/2, (B3)

is the Lindblad dissipator, and

�Ĥ�η̃ = − i

2
[(�η̃)L̂† − (�η̃)∗L̂], (B4)

with �η̃ ∈ C.
Of course changing of Hamiltonian is allowed, since it just

modifies the time dependence of â and â† in the interaction
picture.

Lemma 2. It is possible to perform the factorization:

L̂ = d̂1d̂2 (B5)

with

d̂1 = Ãâ + B̃â† + C̃

d̂2 = â + D̃â† + Ẽ. (B6)

Proof. Comparing Eqs. (B5) and (B1), one obtains:

Ã = α̃, ÃD̃ + B̃ = γ̃ , ÃD̃ + C̃Ẽ = η̃

B̃D̃ = β̃, ÃẼ + C̃ = δ̃, B̃Ẽ + C̃D̃ = δ̃, (B7)

so that

D̃ = β̃/B̃, α̃β̃/B̃ + B̃ = γ̃ (B8)

provide in general two solutions B̃1 and B̃2 for B̃, and

α̃Ẽ + C̃ = δ̃, B̃Ẽ + (β̃/B̃)C̃ = η̃. (B9)

If we can solve these linear equations for Ẽ and C̃, we may
plug the solution into α̃D̃ + C̃Ẽ = η̃, and adjust η adequately
(which we can do according to Lemma 1).

It is easy to check that the two equations for Ẽ and C̃

cannot be solved if B̃1 = B̃2 = 0, which implies γ̃ = 0 and
α̃β̃ = 0, i.e., the nongeneric case L̂ = α̃â2 + δ̃â + ε̃â† + η̃,
and the related one with α̃ = 0, β̃ �= 0. The case α̃ = β̃ = 0 is
trivial, as it corresponds to linear Lindblad operator: for such
a case, the Gaussian approximation is not needed, since there
exists an exact solution of Gaussian form.

Now we prove the theorem in the generic case.
Proof of the theorem. We look to the Lindblad dissipator

related to the factorized Lindblad operator in Eq. (B5):

DL(ρ̂) = d̂1d̂2ρ̂d̂
†
2 d̂

†
1 − 1

2 {d̂†
2 d̂

†
1 d̂1d̂2,ρ̂}. (B10)

In the Gaussian approximation, one replaces pairs of operators
by their mean values. Anomalous terms generate contributions
that may be reabsorbed in the Hamiltonian, such as

〈d̂1d̂2〉
[
ρ̂d̂

†
2 d̂

†
1 − 1

2 {d̂†
2 d̂

†
1,ρ̂}] = − 1

2 〈d̂1d̂2〉[d̂†
2 d̂

†
1,ρ̂] (B11)

and

〈d̂†
2 d̂

†
1〉

[
d̂1d̂2ρ̂ − 1

2 {d̂1d̂2,ρ̂}] = 1
2 〈d̂†

2 d̂
†
1〉[d̂1d̂2,ρ̂]. (B12)

The nontrivial terms are

〈d̂†
2 d̂1〉d̂2ρ̂d̂

†
1 + 〈d̂†

1 d̂1〉d̂2ρ̂d̂
†
2 + 〈d̂†

2 d̂2〉d̂1ρ̂d̂
†
1 + 〈d̂†

1 d̂2〉d̂1ρ̂d̂
†
2

−
{

(〈d̂†
2 d̂1〉d̂†

1 d̂2 + 〈d̂†
2 d̂2〉d̂†

1 d̂1),
ρ̂

2

}

−
{

(〈d̂†
1 d̂1〉d̂†

2 d̂2 + 〈d̂†
1 d̂2〉d̂†

2 d̂1),
ρ̂

2

}
. (B13)
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The resulting ME has a dissipator of the form:

DL(ρ̂) =
∑

i,j=1,2

�̃ij

(
d̂i ρ̂d̂

†
j − 1

2
{d̂†

j d̂i ,ρ̂}
)

, (B14)

where �̃ij = 〈d̂†
j ′ d̂i ′ 〉, where 1′ = 2 and 2′ = 1. This matrix

is evidently positive definite, as follows from the Schwartz
inequality, so that the dissipator is again of Lindblad
form.

Note that the generalization to many oscillators, many
Lindblad operators is straightforward. Note also that the
nongeneric case is simple to treat. It requires, however, a direct
calculation. The quartic Lindblad term in this case is treated
as above, while the quadratic one does not need to be touched,
since it already describes a Gaussian quantum process. The
third-order term on the other hand partially vanishes and
partially gives contributions to the Hamiltonian in the Gaussian
approximation.

The remaining question is whether the approximation that
we perform on the level of the ME is the same as the Gaussian
decorrelation we performed according to the Wick’s theorem
prescription at the level of the equations for the moments
in Sec. III B. To illustrate this, we consider an arbitrary
operator Ô and we derive the dynamical equations for its
average value starting by the ME induced by the superoperator
in Eq. (B10).

The dynamical equation for the average value of an operator
Ô presents the following form:

∂〈Ô〉
∂t

= hu
O + h

(1)
O − 1

2

(
h

(2)
O + h

(3)
O

)
(B15)

in which

hu
O = − i

�
Tr(Ô[Ĥ ,ρ̂])

h
(1)
O = Tr(Ôd̂1d̂2ρ̂d

†
2 d̂

†
1) = 〈d̂†

2 d̂
†
1Ôd̂1d̂2〉

h
(2)
O = Tr(Ôd̂

†
2 d̂

†
1 d̂1d̂2ρ̂) = 〈Ôd̂

†
2 d̂

†
1 d̂1d̂2〉

h
(3)
O = Tr(Ôρ̂d̂

†
2 d̂

†
1 d̂1d̂2) = 〈d̂†

2 d̂
†
1 d̂1d̂2Ô〉. (B16)

Performing the Gaussian approximation at the level of the
equation for the moments means to carry out such an

approximation on the average values in Eqs. (B16),

h
(1)
O = Tr(Ôd̂1d̂2ρ̂d

†
2 d̂

†
1) = 〈d̂†

2 d̂
†
1Ôd̂1d̂2〉

� 〈d̂†
2 d̂

†
1〉〈Ôd̂1d̂2〉 + 〈d†

2 d̂
†
1Ô〉〈d̂1d̂2〉 − 〈d̂†

2 d̂
†
1〉〈Ô〉〈d̂1d̂2〉

+ 〈d̂†
2 d̂1〉〈d̂†

1Ôd̂2〉 + 〈d̂†
2Ôd̂1〉〈d̂†

1 d̂2〉 − 〈d̂†
2 d̂1〉〈Ô〉〈d̂†

1 d̂2〉
+ 〈d̂†

2 d̂2〉〈d̂†
1Ôd̂1〉 + 〈d̂†

2Ôd̂2〉〈d̂†
1 d̂1〉

− 〈d̂†
2 d̂2〉〈Ô〉〈d̂†

1 d̂1〉, (B17)

h
(2)
O = Tr(Ôd̂

†
2 d̂

†
1 d̂1d̂2ρ̂) = 〈Ôd̂

†
2 d̂

†
1 d̂1d̂2〉

� 〈d̂†
2 d̂

†
1〉〈Ôd̂1d̂2〉 + 〈Ôd̂

†
2 d̂

†
1〉〈d̂1d̂2〉 − 〈d̂†

2 d̂
†
1〉〈Ô〉〈d̂1d̂2〉

+ 〈d̂†
2 d̂1〉〈Ôd̂

†
1 d̂2〉 + 〈Ôd̂

†
2 d̂1〉〈d̂†

1 d̂2〉 − 〈d̂†
2 d̂1〉〈Ô〉〈d̂†

1 d̂2〉
+ 〈d̂†

2 d̂2〉〈Ôd̂
†
1 d̂1〉 + 〈Ôd̂

†
2 d̂2〉〈d̂†

1 d̂1〉
− 〈d†

2 d̂2〉〈Ô〉〈d̂†
1 d̂1〉, (B18)

h
(3)
O = Tr(Ôρ̂d̂

†
2 d̂

†
1 d̂1d̂2) = 〈d̂†

2 d̂
†
1 d̂1d̂2Ô〉

� 〈d̂†
2 d̂

†
1〉〈d̂1d̂2Ô〉 + 〈d̂†

2 d̂
†
1Ô〉〈d̂1d̂2〉 − 〈d̂†

2 d̂
†
1〉〈Ô〉〈d̂1d̂2〉

+ 〈d̂†
2 d̂1〉〈d̂†

1 d̂2Ô〉 + 〈d̂†
2 d̂1Ô〉〈d̂†

1 d̂2〉 − 〈d̂†
2 d̂1〉〈Ô〉〈d̂†

1 d̂2〉
+ 〈d̂†

2 d̂2〉〈d̂†
1 d̂1Ô〉 + 〈d̂†

2 d̂2Ô〉〈d̂†
1 d̂1〉

− 〈d†
2 d̂2〉〈Ô〉〈d̂†

1 d̂1〉. (B19)

It is now tedious but easy to check that replacing the
expressions in Eqs. (B17)–(B19) in Eq. (B15) we get the
dynamical equations generated by the terms in Eqs. (B11)–
(B13), obtained by performing the Gaussian approximation
on the ME related to a dissipator in Eq. (B10). This proves that
performing the Gaussian approximation at the level of the ME
is equivalent to doing it at the level of the equations for the
moments of an observable. Note that the equations resulting
by this approximation will always admit a Gaussian solution,
although it is not guaranteed that the latter is stationary.

The demonstration we developed holds for Lindblad op-
erators that are quadratic in the creation and annihilation
operators. This case covers the situation studied in Sec. III,
but it is not the most general one. In fact, one could consider
also LMEs with Lindblad operators containing higher powers
of creation and annihilation operators. Extending the proof we
presented to this general case is an interesting perspective that
we reserve for future works.
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[35] L. Diósi, On High-Temperature Markovian Equation for Quan-
tum Brownian Motion, Europhys. Lett. 22, 1 (1993).
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