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Signifying the nonlocality of NOON states using Einstein-Podolsky-Rosen steering inequalities
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We construct Einstein-Podolsky-Rosen (EPR) steering signatures for the nonlocality of the entangled
superposition state described by 1√

2
{|N〉|0〉 + |0〉|N〉}, called the two-mode NOON state. The signatures are a

violation of an EPR steering inequality based on an uncertainty relation. The violation confirms an EPR steering
between the two modes and involves certification of an intermode correlation for number, as well as quadrature
phase amplitude measurements. We also explain how the signatures certify an N th order quantum coherence, so
the system (for larger N ) can be signified to be in a superposition of states distinct by a mesoscopic value of
quantum number in each mode. Finally, we examine the limitations imposed for lossy scenarios, discussing how
experimental realizations may be possible for N = 2,3.
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I. INTRODUCTION

The generation and signification of a macroscopic quantum
superposition state is an outstanding challenge. Schrödinger
explained that according to quantum mechanics it is con-
ceptually possible for a macroscopic system (like a cat)
to become entangled with a microscopic one in such a
way that a superposition of two macroscopically distinct
states is created [1]. Schrödinger pointed out the paradoxical
nature of such a macroscopic system: a superposition of two
macroscopically distinguishable states cannot be interpreted
as being in one or the other of the states until measured. In
realistic scenarios, couplings to external environments make
the generation of macroscopic superposition states difficult but
simpler mesoscopic realizations are feasible [2–4].

One of the most interesting realizations is the two-mode
NOON state [5–16]:

|ψNOON〉 = 1√
2
{|N〉|0〉 + eiφ|0〉|N〉}. (1)

Here, N boson particles (or photons) are in a superposition
of being either in the first mode (denoted a) or the second
mode (denoted b). The modes may correspond to different
spatial paths. Denoting the creation and destruction operators
for the two modes by â,â† and b̂, b̂†, |n〉|m〉 is the eigenstate
of numbers n̂a = â†â and n̂b = b̂†b̂ with eigenvalues n and m,
respectively. Experiments have used spontaneous parametric
down conversion to generate photonic NOON states for N up
to 5 [5,8–13]. Recent experiments achieve Hong-Ou-Mandel
interference with atoms (for N = 2) [17] and proposals exist
for Bose-Einstein condensates (BEC) [18]. NOON states are
typically signified by way of interference fringes or fidelity
[8–13,15].

As N → ∞, the NOON state is a superposition of two states
with macroscopically different values of quantum number n̂ in
each mode. While genuinely macroscopic systems (like a cat)
would involve many degrees of freedoms (for example, many
modes) [19], the NOON state (similar to other single and two-
mode states studied in the literature [3,4]) nonetheless provides
a simple model for the Schrödinger cat paradox, as N → ∞.
The NOON state superposition (1) can therefore elucidate
aspects of the transition from microscopic to macroscopic.

In order to quantify the transition, we refer to the state (1) as
an “N -scopic superposition.”

Our motivation is to investigate the nonlocality of the
NOON state (or of an approximate NOON state that may
be generated experimentally). While nonlocality between
two microscopic systems (corresponding to N = 1) has
been experimentally certified using Bell inequalities [20],
relatively little is known about nonlocality between more
mesoscopic systems [21]. In particular, it is an important goal
to experimentally verify the nonlocality of an entangled state
like that described by Schrödinger, where the system is in a
superposition of two mesoscopically distinguishable states. In
this paper, we derive a set of Einstein-Podolsky-Rosen (EPR)
steering inequalities [22–24] based on the number-phase
uncertainty relation

�n̂�P̂ N � 1
2 |〈[n̂,P̂ N ]〉|, (2)

where n̂ is the mode number and P̂ is the mode quadrature
amplitude (defined below). We show how violation of these
inequalities can be used to demonstrate the nonlocality of the
NOON state for arbitrary N . By examining realistic scenarios
for NOON states where losses are present, we suggest feasible
tests for N = 2,3.

The detection of an EPR steering nonlocality between
two optical systems consisting of many photons has been
experimentally verified [25], but this does not in itself imply
the type of entangled state considered by Schrödinger: By
contrast, we are able to show that the violation of the EPR
steering inequalities as predicted for the NOON state certifies
the N -scopic nature of the entanglement of (1), which involves
a superposition of number states distinct by N quanta.

EPR steering has been established as a distinct type of non-
locality, different to both Bell’s nonlocality and entanglement
[22,23,26]. “Steering” is the term used by Schrödinger [27]
to describe the effect where an observer at one location can
apparently change the quantum state at another—the effect
Einstein called “spooky action-at-a-distance” [28]. Some
EPR steering and Bell inequalities have been derived for
NOON states [29–31]. For N = 1 this led to the experimental
verification of the Bell nonlocality of a single photon [31].
More recently, steering inequalities for N = 1 have been
used to give conclusive proof of the “collapse of the wave
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function” [32,33]. The EPR steering inequalities for larger N

may therefore open a way to investigate such effects for a
mesoscopic superposition state.

Most steering and Bell inequalities derived to date use either
number or quadrature phase amplitude measurements. The
proposal of this paper combines number and quadrature phase
amplitude measurements. This gives two advantages. First,
the number measurements are useful in optimizing violation
of the inequalities for entangled two-mode systems over a
range of field intensities where there is a perfect number
correlation between the modes (as with NOON states). Second,
the inequalities are based on variances and provide a simple
method in nonideal scenarios with small losses to demonstrate
that the nonlocality observed in the experiment is indeed due
to a superposition of states distinct by ∼N quanta.

Summary of paper. Our proposed EPR steering inequalities
are derived in Secs. II and III of this paper. For N = 2 and φ �= 0
we show that a suitable signature for the steering nonlocality
of a NOON state is the violation of the EPR steering inequality

�inf n̂b�inf
(
P̂ 2

b

)
� |〈Ĉb〉|inf/2, (3)

where Ĉb = 2X̂2
b,π/4 − X̂2

b − P̂ 2
b . Here we define the rotated

quadrature phase amplitudes for mode b as X̂b,θ = X̂b cos θ +
P̂b sin θ and P̂b,θ = −X̂b sin θ + P̂b cos θ , where X̂b = b̂ +
b̂†, P̂b = (b̂ − b̂†)/i. Also X̂a = â + â†, P̂a = (â − â†)/i. The
�inf n̂b is the uncertainty in the prediction for n̂b based on
measurement of n̂a . Similarly �infP̂

2
b is the uncertainty in P̂ 2

b

based on the measurement X̂a; and |〈Ĉb〉|inf is the magnitude
of the mean value of Ĉb based on the measurement X̂a . An
EPR steering inequality is obtained by replacing the quantities
of an uncertainty relation [in this case (2)] with their predicted
(“inferred”) values [25,34,35]. In Sec. II, we summarize the
local hidden state (LHS) model developed by Wiseman, Jones,
and Doherty [22]. Using the methods of Cavalcanti et al.
[23], we prove that (3) is a steering inequality the violation
of which falsifies LHS models, so that steering of the mode b

(by measurements on the mode a) can be confirmed.
In Secs. II and III, we provide similar inequalities for

arbitrary N , including one for odd N and φ = 0. Specifically,
EPR steering of the mode b is confirmed if

E
(p)
N = �inf n̂b�infP̂

N
b

1
2 |〈[n̂b,

ˆP N ]〉|inf

< 1 (4)

or

E
(x)
N = �inf n̂b�infX̂

N
b

1
2

∣∣〈[n̂b,X̂
N
b

]〉∣∣
inf

< 1. (5)

For the ideal NOON state, �inf n̂b = 0 and the usefulness of
the inequality depends on whether the denominator is nonzero.
We show that the first criterion is useful provided cos φ �= 0
for N odd or sin φ �= 0 for N even, and the second criterion
is useful for all N provided sin φ �= 0. We explain in Sec. VII
for N up to 3 how the denominator of the inequality can be
measured via homodyne detection. For N = 1 the inequality
becomes straightforwardly

�inf n̂b�infP̂b < |〈X̂b〉|inf/2. (6)

The cases of N = 1 and N = 2 are analyzed in detail
in Secs. IV and V. The explanation of how the steering

inequalities signify an N -scopic superposition state is given
in Sec. VIII.

The inequalities (3)–(5) involve measurement of number
(n̂a , n̂b) and hence have the drawback of low detection
efficiencies (in the photonic case). In the first instance, we
propose that the correlation be established by postselection of
the events where a total of N quanta (photons) are detected at
the sites of both modes. A second problem is distinguishing
between the detection of two and one photons at a given site.
Here, beam splitters or photon number-resolving detectors
could be used [10,13] in conjunction with postselection over
events where a total N photons is counted. The measurement
of observables X̂N , P̂ N is achievable via optical homodyne
techniques that are highly efficient. Nonetheless, we explain
in Secs. VI, VII, and IX that losses have a significant effect
(measurement efficiencies of η > 0.94 are required for N = 3)
and that care needs to be taken to avoid possible loopholes
created by asymmetrical losses for the number and quadrature
measurements.

II. EPR STEERING INEQUALITIES BASED ON
UNCERTAINTY RELATIONS

In this section we give the formal derivation of the EPR
steering criteria summarized in the Introduction. We show in
Sec. III how we can use the inequalities to detect EPR steering
for a NOON state.

A. EPR steering inequalities

EPR steering is verified as a failure of local hidden state
models (LHS). The LHS model was pioneered in the papers
by Wiseman, Jones, and Doherty [22] and is based on the
local hidden variable models considered by Bell [36]. We
define two subsystems A and B and consider spacelike
separated measurements on each of them. The measurements
are described quantum mechanically by observables X̂A(θ )
and X̂B(φ) (respectively) and the outcomes are given by the
numbers XA(θ ) and XB(φ) (written without the “hats”). Here
θ and φ denote the measurement choice at the locations A and
B. To prove Bell’s nonlocality, one falsifies a description of
the statistics based on a local hidden variable model, where
the averages are given as

〈XB(φ)XA(θ )〉 =
∫

λ

dλ P (λ)〈XB(φ)〉λ〈XA(θ )〉λ. (7)

Here
∫
λ
P (λ)dλ = 1 so that the P (λ) is a probability density

(or probability if the integral is replaced by a discrete
summation, as explained in Bell’s papers [36]). The λ denotes
a set of variables {λ} that take the role of the hidden variables as
postulated in Bell’s model. The 〈XA〉λ denotes the average of
the results XA for the system in the particular hidden variable
state denoted by λ; and similarly for 〈XB〉λ. The P (λ) is
independent of the θ and φ. The factorization that occurs
for the moments in the integrand is due to the assumption
of “locality” [36].

To prove EPR steering of subsystem B, we need to falsify a
description of the statistics based on a local hidden state (LHS)
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model where the averages are given as [22,23]

〈XB(φ)XA(θ )〉 =
∫

λ

dλ P (λ)〈XB(φ)〉λ,ρ〈XA(θ )〉λ. (8)

Here an extra condition is placed on the average 〈XB〉λ. The
ρ subscript denotes that the average is to be consistent with
that of a quantum density operator ρB

λ . This is the case for
all choices φ of measurement at B. For example, if XB(θ ) =
XB and XB(π/2) = PB then the statistics for the LHS model
must be consistent with a local uncertainty principle namely
〈(XB − 〈XB〉)2〉λ〈(PB − 〈PB〉)2〉λ � 1. The ρB

λ is an example
of a local quantum state (for site B). No such constraint is made
for the moments 〈XA(θ )〉λ, written without the subscript.

In this paper we consider three quantum observables defined
through the uncertainty relation:

�σ̂X
B �σ̂ Y

B �
∣∣〈σ̂ Z

B

〉∣∣/2. (9)

Following the approach given in Refs. [25,34] used to derive
a criterion for the EPR paradox [26] and also for EPR steering
[22,25], we consider the average conditional uncertainty
�infσ

X
B defined by(

�inf σ̂
X
B

)2 =
∑
xA

j

P
(
xA

j

)[
�

(
σX

B

∣∣xA
j

)]2
. (10)

Here, we denote the possible results of a measurement X̂A at
A by {xA

j }. P (xA
j ) is the probability for obtaining the result xA

j .
The uncertainty (10) is a measure of the (average) uncertainty
in the inferred value [which we take to be the mean of the
conditional distribution P (σX

B |xA
j )] for a measurement σ̂ X

B at

B given a measurement X̂A at A. Specifically, [�(σX
B |xA

j )]2

is the variance of the conditional distribution P (σX
B |xA

j ). We
define similarly(

�inf σ̂
Y
B

)2 =
∑
yA

j

P
(
yA

j

)[
�

(
σX

B

∣∣yA
j

)]2
, (11)

noting that the {yi} is the set of results for a measurement ŶA

made at A to infer the value of the measurement of σ̂ Y
B at B.

Further, we define an (average) inferred value for the modulus
of the mean of measurement of σ̂ Z

B given a measurement ẐA

at A as ∣∣〈σ̂ Z
B

〉∣∣
inf =

∑
zA
j

P
(
zA
j

)∣∣〈σZ
B

〉
zA
j

∣∣. (12)

Here 〈σZ
B 〉zA

j
is the mean of the conditional distribution

P (σZ
B |zA

j ) and the {zj } is the set of values for a measurement

ẐA at A, that we use to infer outcomes for σ̂ Z
B . Using these

definitions, we can prove the following result [35].
Result (1): The EPR steering inequality. The LHS model

(8) implies the inequality(
�inf σ̂

X
B

)(
�inf σ̂

Y
B

)
�

∣∣〈σ̂ Z
B

〉∣∣
inf/2. (13)

Hence violation of this inequality (called an EPR steering
inequality) implies failure of the LHS model [Eq. (8)], and
therefore steering of system B by (measurements at A). The
proof is given in Appendix A.

III. STEERING INEQUALITIES FOR THE
NOON STATE

To arrive at a steering signature for a NOON state, we
consider the three observables for each mode: number n̂, and
the two quadrature phase amplitudes X̂ and P̂ . Specifically,
n̂a = â†â, X̂a = â + â†, and P̂a = (â − â†)/i, and n̂b = b̂†b̂,
X̂b = b̂ + b̂†, and P̂b = (b̂ − b̂†)/i. Where the notation is
clear, we omit the “hat” for these operators. Using the Result
(1) given by Eq. (13), we can write down EPR steering criteria
associated with the three observables: we certify EPR steering
(of B by A) if either one of the following hold:

�infnb�inf
(
P N

b

)
<

∣∣〈[nb,P
N
b

]〉∣∣
inf/2 (14)

and

�infnb�inf
(
XN

b

)
<

∣∣〈[nb,X
N
b

]〉∣∣inf/2. (15)

Here, �infnb refers to the average uncertainty of the result
for nb given a measurement Ôn at A, as defined by (10).
Similarly, �infP

N
b refers to the average uncertainty of the result

for P N
b given a measurement Ôp at A. The �infX

N
b refers to the

average uncertainty of the result for XN
b given a measurement

Ôx at A. The |〈Ĉ〉|inf where Ĉ = [nb,P
N
b ] (or [nb,X

N
b ]) is

defined similarly, by (12), as the average value of the modulus
of the expectation value of Ĉ conditioned on a measurement
Ôc at A. The steering inequalities of this paper take Ôn = n̂a ,
Ôp = X̂a , Ôx = X̂a , and Ôc = X̂a . The motivation for this
choice is explained in Sec. IV.

To evaluate the right side of the inequalities (14) and
(15), we determine the commutation relations: [n,X] = −iP

and [n,P ] = iX. By ordering the P ’s to be always on the
left of the X’s and since [X,P ] = 2i, we arrive at the
commutation relation [X,P k] = 2ikP k−1. It can be shown
that [n,P N ] = iN{P N−2[PX + (N − 1)i]} and [n,XN ] =
−iN{XN−2[XP − (N − 1)i]}. We use this result to further
evaluate the right side of the steering inequalities. Most
generally, the right side of the steering inequality (14) can
be written∣∣〈[nb,P

N
b

]〉∣∣
inf = N

∣∣〈P N−1
b Xb + i(N − 1)P N−2

b

〉∣∣
inf, (16)

so that the procedure is to measure the modulus of the expecta-
tion value of the measurement Ĉ = P N−1

b Xb + i(N − 1)P N−2
b

made on mode b, given a specific result for a measurement Ôc

is made on mode a, and then take the weighted average as
defined by (12). We discuss methods for measuring P N−1

b Xb

where N = 1,2,3 in Sec. VII below.
To investigate whether the steering inequalities will be

useful for the NOON states (1) with phase φ, we evaluate
the prediction for the right side of the steering inequality (14)
in the general NOON case. We will take Ôc to be the mea-
surement Xa and denote the result of that measurement by x.
We find∣∣〈[nb,P

N
b

]〉∣∣
inf = N

∣∣〈P N−2
b (PbXb + (N − 1)i

〉∣∣
inf

= N |(〈bN 〉 + (−1)N+1〈b†N 〉|inf

= N
√

N !

∣∣∣∣ [eiφ + (−1)N+1e−iφ]

2

∣∣∣∣
×

∫ ∞

−∞
|〈x|0〉〈x|N〉| dx, (17)
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where |x〉 are the eigenstates of X. The cases N = 1 and N = 2
are presented in Secs. IV and V below. We find similarly∣∣〈[nb,X

N
b

]〉∣∣
inf = N

∣∣〈XN−2
b [XbPb − (N − 1)i]

〉∣∣
inf

= N | − 〈bN 〉 + 〈(b†)N 〉|inf

= N
√

N !| sin φ|
∫ ∞

−∞
|〈x|0〉〈x|N〉| dx. (18)

Now we determine when each of the steering criteria (14) and
(15) will be useful. For the NOON state, the mode numbers
are always correlated, and we observe that �infnb = 0. Hence
either of the steering criteria (14) and (15) will be effective to
detect steering in NOON states, provided that the right side of
the inequality is not zero, and provided the variances �inf (XN

b ),
�inf(P N

b ) are finite. Since the integral
∫ ∞
−∞ |〈x|0〉〈x|N〉| dx is

nonzero for the NOON state, we see from the expressions
(17) and (18) that the condition for the right side of the
inequalities (14) and (15) to be nonzero is, for N odd, cos φ �=
0 and sin φ �= 0, respectively; for N even, sin φ �= 0 in both
cases.

To summarize, we rewrite the EPR steering criteria (14)
and (15) as

E
(p)
N = �infnb�infP

N
b

1
2

∣∣〈[nb,P
N
b

]〉∣∣
inf

< 1 (19)

and

E
(x)
N = �infnb�infX

N
b

1
2

∣∣〈[nb,X
N
b

]〉∣∣
inf

< 1. (20)

Steering is obtained if E
(x/p)
N < 1. Either criterion is sufficient

to certify an EPR paradox, or EPR steering. For the NOON
state |ψNOON〉 = 1√

2
{|N〉|0〉 + eiφ|0〉|N〉} the first criterion is

useful provided cos φ �= 0 for N odd or sin φ �= 0 for N even,
and the second criterion is useful for all N provided sin φ �= 0.
We comment that the right side of the steering inequalities
(14) and (15) needs to be measured in the experiment. We
examine how this can be done below in Sec. VII, finding that
cases of low N are much more accessible to experiment. We
also point out that except where N = 1 or 2, the equivalence
of the first two lines in Eqs. (17) and (18) holds only for
the expectation values as calculated for the ideal NOON
state (1).

In Sec. VI, we will evaluate predictions for the nonideal
case where loss is present. To complete the prediction for the
steering inequalities with loss present, we also need to calculate
�inf(P N ), �inf(XN ). In this paper, we use Ôx = Ôp = X̂a as
the measurement on mode a. As above, we take x to be the
result of the measurement Xa . We evaluate

�2
inf

(
P N

b

) =
∫ ∞

−∞
P (x)

{
�

(
P N

b

∣∣x)}2
dx

=
∫ ∞

−∞
P (x)

[〈
P 2N

b

〉
x
− 〈

P N
b

〉2
x

]
dx, (21)

where 〈. . .〉x denotes the expectation value conditioned on the
result x, as defined for (12). The 〈P 2N

b 〉x and 〈P N
b 〉x can be

expressed in terms of the momentum representation functions

FIG. 1. Predictions for EPR steering of the NOON states. EPR
steering is observed when E

(p)
N < 1. It is assumed that the two-mode

NOON state is created and that each mode is then (independently)
subjected to losses. Loss at each mode is modeled by a beam splitter
coupling as described in Sec. VI. Here the beam splitter transmission
efficiencies are η = ηa = ηb. We select the NOON state (1) with
φ = 0 for N odd and φ = π/2 for N even.

〈p|N〉 as shown in Appendix B. Similarly,

�2
inf

(
XN

b

) =
∫ ∞

−∞
P (x)

{
�

(
XN

b

∣∣x)}2
dx

=
∫ ∞

−∞
P (x)

[〈
X2N

b

〉
x
− 〈

XN
b

〉2
x

]
dx. (22)

The 〈XN
b 〉x and 〈X2N

b 〉x can be solved in terms of the harmonic-
oscillator wave functions 〈x|N〉 (27) as shown in Appendix B
and explained for N = 1, 2 below. We have introduced the
shorthand notation �2x ≡ (�x)2 to avoid overuse of brackets.
We have solved for the effect of loss on the NOON states using
the methods outlined in Sec. VI and the results for the steering
inequalities are plotted in Fig. 1.

IV. SPECIAL CASE OF N = 1

Steering for the case of N = 1 has been proposed by Jones
and Wiseman [32] and experimentally achieved by Fuwa et al.
[33]. The inequalities used in those papers verified steering in
the high efficiency limit based on homodyne detection, thus
giving a firm experimental proof of the nonlocality of the
NOON (N = 1) state. Here, we outline the application of the
steering inequalities (14) and (15) for this case.

For N = 1, the relevant Heisenberg uncertainty relations
are �n�P � |〈X〉|/2 and �n�X � |〈P 〉|/2. We see from
(13) that a criterion sufficient to certify EPR steering of mode
b by measurements on mode a is

�infnb�infPb < |〈Xb〉|inf/2. (23)

The inequality �infnb�infXb < |〈Pb〉|inf/2 is also a steering
criterion. Note we can also define the corresponding criteria
for steering of the a mode by interchanging the a and b indices.
The quantities have been defined above in Secs. II and III.

The choice of measurements Ôn, Ôc, Ôp, Ôx = X̂a to be
made on the mode a [as defined for Eqs. (14) and (15)] is
generally so as to optimize the criterion for a given state,
but is otherwise not explicitly specified in the criterion. Here,
the choice of Ôn = n̂a is crucial because it takes advantage
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of the correlation of number between the two modes of the
NOON state, to allow precisely that �infnb = 0. The criterion
(23) is then predicted to be satisfied for any finite �infPb,
provided |〈Xb〉|inf �= 0. For the choice of Ôc, Ôp, we focus
on quadrature phase amplitude measurements because they
are readily measurable experimentally. For �infPb, we select
Ôp = X̂a , but we note in the Appendices B–D that the result
is not particularly sensitive to this choice. On the other hand,
without a suitable measurement on mode a, |〈Xb〉|inf will
vanish. We find below that the measurement X̂a on a does not
completely collapse the state b, and the resulting superposition
predicts a nonzero result for |〈Xb〉|inf . With this motivation, we
take Ôn = n̂a , Ôp = X̂a , Ôx = X̂a , and Ôc = X̂a .

We examine the NOON state |ψ〉 = 1√
2
{|N〉|0〉 + |0〉|N〉}

(φ = 0) and restrict therefore to the steering criterion (23). The
measurement of na will enable a perfectly accurate prediction
for the number nb, so that �infn = 0. Taking Ôc = Xa we
evaluate the mean of Xb (or Pb) at b, given a result x for
measurement of Xa at A. This enables us to evaluate |〈Xb〉|inf

and |〈Pb〉|inf for a valid steering criterion. If we measure Xa

with result x, the normalized reduced wave function is (we
denote the eigenstate of X for mode a by |x〉)

|ψ〉x = 〈x|N〉|0〉 + 〈x|0〉|N〉√
|〈x|N〉|2 + |〈x|0〉|2

. (24)

Thus we write the reduced density operator as

ρred,x = 1

2P (x)
{|〈x|N〉|2|0〉〈0| + |〈x|0〉|2|N〉〈N |

+ 〈0|x〉〈x|N〉|0〉〈N | + 〈N |x〉〈x|0〉|N〉〈0|}, (25)

where the probability distribution for obtaining a result x for
Xa is

P (x) = 1
2 {|〈x|0〉|2 + |〈x|N〉|2}. (26)

Here 〈x|n〉 are the standard oscillator wave functions

〈x|n〉 = (
√

π2nn!)−
1
2

2
1
4√
c
e
− x2

c2 Hn

(√
2

c
x

)
(27)

involving Hermite polynomials Hn and derived using that x̂ =
c
2 (â + â†),p̂ = c

2i
(â − â†). In this paper we have taken c = 2.

Now we see that the mean for Xb given the result x for Xa is

〈Xb〉x = Tr(ρred,xXb)

= 1

2P (x)
{〈0|x〉〈x|N〉〈N |Xb|0〉

+ 〈N |x〉〈x|0〉〈0|Xb|N〉} (28)

and similarly

〈Pb〉x = Tr(ρred,xPb)

= 1

2P (x)
{〈0|x〉〈x|N〉〈N |Pb|0〉|

+ 〈N |x〉〈x|0〉〈0|Pb|N〉}. (29)

In fact the mean 〈Xb〉x will be nonzero only for N = 1, in
which case the steering criterion (23) is satisfied because
�infnb = 0 (and �infPb �= ∞). Hence the inequality (23) is
a suitable steering criterion for N = 1. Specifically, following

the definition (12), we evaluate

|〈Xb〉|inf =
∫ ∞

−∞
P (x)|〈Xb〉x |dx =

√
2

π
, (30)

where 〈Xb〉x is the conditional quantity between two modes,
as defined in (12). To complete the prediction for the steering
inequality, we calculate a suitable value for �infPb by selecting
the measurement at A to be Xa . We denote the result of that
measurement by x. Then the reduced density operator is ρred,x

as above, which for N = 1 gives

(�(Pb|x))2 = 1

2P (x)
{|〈x|1〉|2 + 3|〈x|0〉|2} (31)

and thus

�2
infPb =

∫ ∞

−∞
P (x){�(Pb|x)}2dx

= 1

2

∫ ∞

−∞
{|〈x|1〉|2 + 3|〈x|0〉|2} = 2, (32)

where �2x ≡ (�x)2. We obtain an EPR steering when E
(p)
1 ≡

�infnb�infPb

|〈Xb〉|inf/2 < 1. For the ideal NOON state with no losses,

E
(p)
1 = 0 and the steering is always detectable via this criterion.

The situation with loss is studied in Sec. VI and presented in
Fig. 1. Efficiencies η > 0.92 are required to detect the steering.

V. SPECIAL CASE OF N = 2

We now examine the details for the NOON state
with N = 2 which represents an important case poten-
tially accessible to experiment, in view of recent advances
[13,17,33]. First, [n,X2] = −i(XP + PX) = −2iXP − 2 =
2(a†2 − a2). Similarly, [n,P 2] = i(XP + PX) = −2(a†2 −
a2). The steering criteria are

�infn�inf(X
2) < |〈a†2 − a2〉|inf (33)

and

�infn�inf(P
2) < |〈a†2 − a2〉|inf . (34)

For the NOON state (1) with N = 2 we obtain

|〈a†2 − a2〉|inf =
∫

P (x)|〈â2|x〉 − 〈(â†)2|x〉| dx

=
√

2| sin φ|
∫

|〈x|0〉〈x|2〉| dx

= 2

√
2

eπ
| sin φ| = 0.968| sin φ|.

Both the steering criteria (33) and (34) become useful for
the NOON state with φ = π/2. We show in Appendix B by
integration of the Hermite polynomials that �inf(X2) = 3.18
and �inf(P 2) = 3.18. For the ideal case with no detection loss,
�infn = 0 and the steering for the NOON state with N = 2 is
detectable using either criterion. Comparing with the results
for N = 1, we see that the prediction for the ratio of the right
to left sides of the steering inequalities decreases for N = 2.
We expect the criteria will be more difficult to satisfy at higher
N in nonideal cases. Details of the calculations for arbitrary
N are given in Appendices B and C. The effect of the losses is
studied below in Sec. VI and the results are shown in Fig. 1.
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FIG. 2. Contour plot shows the effect of loss on the EPR steering:
EPR steering is observed when E

(p)
N < 1. The ηa and ηb are the

efficiencies for detection of mode a and b, respectively.

VI. INCLUDING LOSSES

Signatures of the NOON state superposition are known
to be fragile to losses. We examine the effect of loss on the
signatures proposed here, by using a simple model for loss. We
couple each mode a and b to second independent fields taken
as single modes and initially in independent vacuum states,
following the beam splitter model introduced for the study of
the decoherence of a macroscopic superposition state by Yurke
and Stoler [3]. We thus evaluate the moments of detected fields
with boson operators adet, bdet given by

adet = √
ηaa +

√
1 − ηaav,

bdet = √
ηbb +

√
1 − ηbbv. (35)

Here the av and bv are destruction operators for independent
external vacuum modes that couple to the modes of the NOON
state. These external modes model the presence of an external
environment into which quanta can be lost from the a and b

modes. The amount of coupling for each mode is determined
by the efficiency factors ηa and ηb, respectively. The ηA/B = 1
indicates zero loss; low ηA/B indicates high loss. The model
is effective for optical NOON states where thermal noise can
be neglected. The full calculation is explained in Appendix D.
We find for N = 1 and φ = 0

E
(p)
1 ≡ �infn�infP

|〈X〉|inf/2

= 2

[
ηb(ηa + ηb − 2)

2(ηa − 2)
(1 + ηb)

] 1
2
/[√

2

π

√
ηaηb

]
.

(36)

The expressions for higher N are more complex but are
explained in Appendix D and evaluated numerically. Figure 1
shows E

(p)
N versus η, for the case of symmetrical efficiency

η = ηa = ηb. The criterion for EPR steering is satisfied for
N = 1 provided η > 0.92 but as expected for the NOON state,
the cutoff efficiency increases sharply for higher N . For N = 2
there is asymmetrical dependence on ηa and ηb as evident
by the contour plots of Fig. 2. The signature appears more
sensitive to the efficiency ηB of mode b. Such asymmetrical
sensitivity depending on the steering direction has been noted
previously [37,38].

We note that the model (35) describes losses that occur
prior to detection. It is assumed that the subsequent detection

process gives no further loss. Alternatively, if the beam splitter
is to model detection losses, then the losses would need to
be assumed identical for each of the detection processes
(number or homodyne). In reality, for low N the numbers
na , nb are usually detected via counting techniques where the
efficiency of detection is often small. On the other hand, the
quadratures X and P are measured via homodyne detection
where efficiencies are high (at least for optical fields). This
creates a situation where the loss coefficient η is dependent
on the choice of measurement made at each site, which we
point out can create loopholes in the use of the signature for
a practical experiment if not considered carefully [36,39]. We
discuss this further in the Conclusion.

VII. MEASUREMENT

We next consider how to experimentally measure the
moments on the right side of the steering inequalities (14)
and (15). For N = 1 this is straightforward as explained in
Sec. IV. For N = 2, on examining the expressions (17) and
(18), we see we need to measure 〈[n,P 2]〉 = 〈XP + PX〉. We
define the measurable rotated quadrature phase amplitudes as
Xθ = X cos(θ ) + P sin(θ ) and Pθ = −X sin(θ ) + P cos(θ ).
Hence Xπ/4 = 1√

2
{X + P } and Pπ/4 = 1√

2
{−X + P } and we

note that 〈X2
π/4〉 = 〈X2 + P 2 + XP + PX〉/2. Thus we can

deduce either 〈XP 〉 or 〈PX〉 by measuring the moments
〈X2〉, 〈P 2〉, and 〈X2

π/4〉. The steering criteria (4) and (5) for
N = 2 can be written as (here we drop the subscripts b for
convenience)

�infn�inf(P
2) < |〈[n,P 2]〉|inf/2

= ∣∣〈X2
π/4 − X2/2 − P 2/2

〉∣∣
inf (37)

and

�infn�inf(X
2) < |〈[n,X2]〉|inf/2

= ∣∣〈X2
π/4 − X2/2 − P 2/2

〉∣∣
inf . (38)

The moments of X, P , and Xπ/4 are each measurable using
homodyne detection.

For N = 3, we see from (17) and (18) that we need to
measure [n,P 3] = 3〈P 2X + 2iP 〉, the other measurements
being straightforward. Expanding gives

〈
X3

π/4 − P 3
π/4

〉 = 1√
2

(〈X3〉 + 6i〈P 〉 + 3〈P 2X〉).

Hence we can measure 〈X3
π/4〉,〈P 3

π/4〉, 〈X3〉, 〈P 〉 and conse-
quently infer the value of 〈P 2X〉. Specifically, the steering
inequalities become

�infn�inf(P
3) < |〈[n,P 3]〉|inf/2

= ∣∣〈√2
(
X3

π/4 − P 3
π/4

) − X3
〉∣∣

inf/2 (39)

and

�infn�inf(X
3) < |〈[n,X3]〉|inf/2

= ∣∣〈√2
(
X3

π/4 + P 3
π/4

) − P 3
〉∣∣

inf/2. (40)

We comment that the inequalities (37)–(40) are valid as a
sufficiency test of EPR steering for all states, i.e., we do not
assume ideal NOON states.
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VIII. DISCUSSION

To conclude, we discuss an obvious question, which is
how to ensure in an experiment that the observed steering
is due to the quantum coherence of the NOON superposition,
as opposed to an alternative microscopic effect that might arise
from superpositions of number states distinct by less than N

quanta? This is an important question where losses are present,
because then the outcomes for number measurements can be
different to zero and N .

First, the answer is clear in the ideal case of a two-mode
system that generates only outcomes zero or N for the number
measurements. The density operator can then be written in
terms of four basis states |0〉|0〉,|0〉|N〉,|N〉|0〉,|N〉|N〉. The
violation of an EPR steering inequality is also confirmation
of an entangled state, and in this case that can only imply
entanglement involving the mesoscopically distinguishable
basis states. The violation of the steering inequality confirms
the presence of an N th-order off-diagonal matrix element (i.e.,
〈0|〈N |ρ|0〉|N〉 �= 0). The details are straightforward and given
in Appendix E.

In experiments where loss or noise is present, the distri-
bution pn for number n̂b will include outcomes other than
zero and N . It is not then clear whether an observation of
EPR steering is a result of the superposition of states such as
|M ′〉|n〉 and |M〉|m〉 where M − M ′ ∼ N , or the result of less
interesting superpositions where M ∼ M ′.

The problem of determining whether the system has an
N th-order quantum coherence (defined as 〈0|〈N |ρ|0〉|N〉 �= 0)
is nontrivial [40–43]. However, the following approach based
on the steering inequality may be useful. The outcomes for
number at mode a are either na > 0 or na = 0. The distribution
for the outcome nb of number at mode b given any result na > 0
is (for small losses) a “hill” centered near (or at) zero. The
distribution for nb given the result na = 0 is a hill centered
near N . The mean and variance of each of the two hills is
measurable and denoted by 〈nb〉1, (�n̂b)2

1 and 〈nb〉2, (�n̂b)2
2

respectively. For small losses, each of the two variances will
be small.

We suppose that the experimentalist has measured a
violation of the EPR steering inequality �inf n̂b�inf(P̂ N

b ) �
|〈Ĉb〉|inf/2 where (�inf n̂b)2 = ∑

na
P (na)(�(nb|na))2 and

P (na) is the probability of outcome na . We note that where
the conditional distribution for nb given na is uniform for
all na > 0, this will imply violation of the new but similar
inequality[

P1(�n̂b)2
1 + P2(�n̂b)2

2

](
�infP̂

N
b

)2 � 1
4

∣∣〈Ĉb

〉∣∣2
inf . (41)

Here we specify as selected in (3) that the inferred values

for P̂b
N

and Ĉb are calculated using the same observable
at mode a. Here P1 is the probability of na > 0 and we
have assumed (�n̂b)2

1 = �(nb|na) for na > 0. Similarly, P2

is the probability that na = 0 and (�n̂b)2
2 = �(nb|na) for

na = 0. We note that the loss model of Sec. VI predicts the
distributions to be uniform, but if this is not the case then the
inequality can be measured directly.

It is shown in Appendix F that violation of the inequality
(41) is a negation of the mixture

ρ = P1ρ
ab
1 + P2ρ

ab
2 , (42)

where ρab
1 and ρab

2 are two-mode density operators with a mean
and variance for n̂b given by 〈nb〉1, (�nb)2

1 and 〈nb〉2, (�nb)2
2

respectively. The negation is for all mixtures of the form (42),
which includes where ρab

i can be a superposition of number
states. However the spread of number states involved in the
superposition is constrained by the small variances associated
with each ρab

i . The ρab
1 and ρab

2 each have a variance for n̂b

that is narrower than the variance of the distribution given by
the NOON superposition state. In other words, the violation
of the inequality (41) can only be consistent with a density
operator ρ involving superpositions |ψsup〉 of states distributed
over both hills.

IX. CONCLUSION

The particular steering inequalities we present in this paper
involve measurements of number as well as quadrature phase
amplitude correlation. Number measurements often entail poor
efficiencies. It would seem feasible to perform in the first
instance an experiment based on postselection of the events
where a total of N quanta (e.g., photons) are detected across
both sites. The problem of distinguishing multiple from single
photon counts at a given location require photon-number-
resolving detectors, or could be handled with N -photon counts
being evaluated using multiple beam splitters [10,13].

The experiment for N = 2 would be a demonstration of a
higher order (more mesoscopic) nonlocality than for N = 1
and would seem not unrealistic given the high efficiencies
available with homodyne detection. Our calculations show that
η > 0.94 is required. Care is needed to model the homodyne
inefficiency as a loss before detection, and this small amount of
loss must therefore also enter into the evaluation of the number
correlation, to avoid the well-documented possible loopholes
associated with losses that depend on measurement choices.
The experiment for N = 1 is feasible. Such an experiment
would complement that performed recently by Fuwa et al.
[33] based on a different EPR steering inequality.

Finally, we point out that the steering inequalities (4) and
(5) might be useful for detecting steering in other two-mode
systems, especially where there is an intermode photon number
correlation so that �infnb = 0. For instance, we can apply the
first-order inequality �inf n̂b�infP̂b < |〈X̂b〉|inf/2 [Eq. (6)] to
the two-mode squeezed state. Denoting the two-mode squeeze
parameter by r , the solutions for this state give �infnb = 0 for
all r . Further, it is well known that there is an EPR correlation
between the quadrature phase amplitudes of the two modes
for all r [25,34], so that |〈X̂b〉|inf �= 0 and �infP̂b → 0 as
r → ∞. While steering has been experimentally achieved
for this state via the alternative EPR steering inequality
�infX̂b�infP̂b < 1 [34,44,45], it is quite possible that the use of
the steering inequality with the number correlation �infnb = 0
(which is valid for all r) may provide advantages in some
regimes.
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TEH, ROSALES-ZÁRATE, OPANCHUK, AND REID PHYSICAL REVIEW A 94, 042119 (2016)

thank Bryan Dalton, Peter Drummond, and M. Chekhova for
stimulating discussions about NOON states.

APPENDIX A: PROOF OF RESULT (1)

We will assume that the LHS model holds, for which
moments are given by

〈XA(θ )XB(φ)〉 =
∫

λ

dλ P (λ)〈XA(θ )〉λ,ρ〈XB(φ)〉λ

≡
∑
R

PR〈XA(θ )〉R,ρ〈XB(φ)〉R. (A1)

Here we give two alternative (but equivalent) notations for
the hidden variable-type parameters, denoting the continuous
variable option by the symbol λ as in Bell’s work and the
discrete option by R. The proof is unchanged whether we use
integrals (λ) or discrete summations (R).

We consider the inference variance (�infσ
X
A )2.

Based on the definitions given in Sec. III, we see that∑
xB

j
P (xB

j ){�(σX
A |xB

j )}2= ∑
xB

j
P (xB

j )
∑

σX
A

P (σX
A |xB

j ){σX
A −

〈σX
A 〉xB

j
}2, which we can reexpress as

∑
xB

j ,σX
A

P (xB
j ,

σX
A ){σX

A − 〈σX
A 〉xB

j
}2 and hence as

∑
R PR

∑
xB

j ,σX
A

PR(xB
j ,σX

A )

{σX
A − 〈σX

A 〉xB
j
}2. This follows using that for a probabilistic

(hidden variable) mixture P (xB
j ,σA

X ) = ∑
R PRPR(xB

j ,σA
X ).

Now we note that 〈(x − δ)2〉 � 〈(x − 〈x〉)2〉 where δ is any
number. Hence the expression becomes bounded from below,
and we can simplify further to show that

∑
R

PR

∑
xB

j ,σX
A

PR

(
xB

j ,σX
A

){
σX

A − 〈
σX

A

〉
xB

j

}2

�
∑
R

PR

∑
xB

j

PR

(
xB

j

){
�R

(
σX

A

∣∣xB
j

)}2

=
∑
R

PR

{
�inf,RσX

A

}2
.

Here, the subscripts R imply that the probabilities, averages,
and variances are with respect to the state R and we have used
that {�R(σX

A |xB
j )}2 = ∑

σX
A

PR(σX
A |xB

j ){σX
A − 〈σX

A 〉xB
j ,R}2. We

note that the symbol λ is used alternatively to R in the main
text, to describe that the variables may also be continuous. The
proof follows similarly in either case. Now, if we assume the
separability between the bipartition A − B for each state R, in
accordance with the LHS model (8), then

PR

(
xB

j ,σX
A

) = PR

(
xB

j

)
PR

(
σX

A

)
. (A2)

This implies 〈σX
A 〉xB

j ,R = 〈σX
A 〉R and {�R(σX

A |xB
j )}2 =

(�RσX
A )2. Then we find, on using

∑
xB

j
PR(xB

j ) = 1, that we

can write {�inf,RσX
A }2 = {�RσX

A }2. Thus, on applying the

Cauchy-Schwarz inequality, we see that

�2
infσ

X
A �2

infσ
Y
A �

(∑
R

PR

{
�RσX

A

}2

)(∑
R

PR

{
�RσY

A

}2

)

�
(∑

R

PR

{
�RσX

A

}{
�RσY

A

})2

,

where we define �2
infσ

X
A ≡ (�infσ

X
A )2 and

�2
infσ

Y
A ≡ (

�infσ
Y
A

)2 =
∑
yB

j

P
(
yB

j

){
�

(
σX

A

∣∣yB
j

)}2

noting that the {yj } is the set of results for a measurement y

made at B to infer the value of the measurement of σY
A at A.

We consider an LHS model (8) where we assume the states
at A are local quantum states, so that we can use quantum
uncertainty relations to derive a final steering inequality:
e.g., {�R(σX

A )}{�R(σY
A )} � |〈σZ

A 〉R|/2 for any quantum state
denoted by R. Using the above results, the LHS model implies(

�infσ
X
A

)(
�infσ

Y
A

)
�

∑
R

PR

{
�RσX

A

}{
�RσY

A

}

�
∑
R

PR

(∣∣〈σZ
A

〉
R

∣∣/2
)
.

However, for a separable model, we know that 〈σZ
A 〉zB

j ,R =
〈σZ

A 〉R and hence∑
zB
j

P
(
zB
j

)∑
R

PR

∣∣〈σZ
A

〉
zB
j ,R

∣∣ =
∑
R

PR

∑
zB
j

P
(
zB
j

)∣∣〈σZ
A

〉
R

∣∣
=

∑
R

PR

∣∣〈σZ
A

〉
R

∣∣,
where here the {zj } is the set of results for a measurement z at
B, that we use to infer results for σZ

A . Hence(
�infσ

X
A

)(
�infσ

Y
A

)
�

∑
zB
j

P
(
zB
j

) ∑
R

PR

∣∣〈σZ
A

〉
zB
j ,R

∣∣/2

=
∑
zB
j

P
(
zB
j )|〈σZ

A

〉
zB
j

∣∣/2.

We have used (for states constrained by the LHS model),〈
σZ

A

〉
zB
j

=
∑
σZ

A

σZ
A P

(
σZ

A

∣∣zB
j

)

=
∑
σZ

A

σZ
A

∑
R

PRPR

(
σZ

A

∣∣zB
j

)

=
∑
R

PR

〈
σZ

A

〉
zB
j ,R

.

Defining |〈σZ
A 〉|inf = ∑

zB
j
P (zB

j )|〈σZ
A 〉zB

j
|, we see finally that

the LHS model implies (�infσ
X
A )(�infσ

Y
A ) � |〈σZ

A 〉|inf/2. Vio-
lation of this inequality implies failure of the LHS model, and
therefore implies steering of A by B. The result is steering of
B by A if the A and B indices are exchanged (as in the main
text). This completes the proof. �
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APPENDIX B: EVALUATION OF INFERRED VARIANCES

Here we will evaluate the inferred uncertainties �inf(XN )
and �inf(P N ) for the NOON state given in Eq. (1). We
first consider X ≡ Xb and evaluate �2

inf(X
N
b ) ≡ [�inf(XN

b )]
2
,

which is given by (22). The terms of the form 〈Xn
b 〉inf,x ≡

〈Xn
b |x〉, with n = N or n = 2N , are evaluated using the

reduced density operator ρred,x :

ρred,x = 1
2 {|〈x|N〉|2|0〉〈0| + e−iφ〈x|N〉〈0|x〉|0〉〈N |
+ |〈x|0〉|2|N〉〈N | + eiφ〈x|0〉〈N |x〉|N〉〈0|} (B1)

and the fact that operators X̂ and P̂ can be described in terms
of a complete set of projectors as X̂n

B = ∫ ∞
−∞ xn

B |xB〉〈xB | dxB

and P̂ n
B = ∫ ∞

−∞ pn
B |pB〉〈pB | dpB . Therefore, we get

〈Xn〉inf,x = Tr(ρred,xX
n)

= 1

2P (x)

[
|〈x|N〉|2

∫
xn

B |〈xB |0〉|2dxB

+ e−iφ 〈x|N〉〈0|x〉
∫

xn
B〈N |xB〉〈xB |0〉 dxB

+ eiφ 〈x|0〉〈N |x〉
∫

xn
B〈0|xB〉〈xB |N〉 dxB

+ |〈x|0〉|2
∫

xn
B |〈xB |N〉|2 dxB

]
, (B2)

where P (x) = 1
2 [|〈x|0〉|2 + |〈x|N〉|2] is the probability of

measuring XA and getting outcome x and 〈x|N〉 are the
harmonic-oscillator functions given in Eq. (27). The value for
�inf(XN

b ) is obtained on evaluating the expressions of 〈Xn〉inf,x ,
with n = N or 2N , and substituting on the expression given
in Eq. (22). Similarly, we evaluate the inferred variance of
P ≡ Pb, which is given by (21). Using the reduced density
operator ρred,x given above we find

〈P n〉inf,x = 1

2P (x)

[
|〈x|N〉|2

∫
pn

B |〈pB |0〉|2 dpB

+ e−iφ 〈x|N〉〈0|x〉
∫

pn
B〈0|pB〉〈pB |N〉 dpB

+ eiφ 〈x|0〉〈N |x〉
∫

pn
B〈N |pB〉〈pB |0〉 dpB

+ |〈x|0〉|2
∫

pn
B |〈pB |N〉|2 dpB

]
. (B3)

To evaluate, we first consider N = 2. We let φ = π/2:

〈X2〉inf,x = 1

2P (x)

[
|〈x|2〉|2

∫
x2

B |〈xB |0〉|2dxB

+ |〈x|0〉|2
∫

x2
B |〈xB |2〉|2 dxB

]

= 1 + 8

3 − 2x2 + x4

and

〈X4〉inf,x = 3 + 72

x4 − 2x2 + 3
,

where we have used that P (x) = e
− x2

2

2
√

2π
( (2x2−2)

2

8 + 1). On
performing the integration using the above results we get
for the N = 2 state that �2

inf(X
2
b) = 10.1351 and �inf(X2

b) =
3.18356. Similarly we evaluate �2

inf(P
N
b ):

〈P 2〉inf,x = 1 + 8

3 − 2x2 + x4
,

〈P 4〉inf,x = 3 + 72

x4 − 2x2 + 3
.

These results are the same as for X, since for this value of
angle eiφ = i = −e−iφ , and also∫

pn
B〈0|pB〉〈pB |2〉 dpB =

∫
pn

B〈2|pB〉〈pB |0〉 dpB

=
∫

xn
B〈0|xB〉〈xB |2〉 dxB,

so that the second and third terms of Eq. (B3) cancel. We
obtain for N = 2 that �2

inf(P
2
b ) = 10.1351.

Continuing for higher N , we obtain for N = 3, �2
inf(P

3
b ) =

477.081 and �inf(P 3
b ) = 21.8422; for N = 4, �2

inf(P
4
b ) =

10982.8 and �inf(P 4
b ) = 104.799; and for N = 5, �2

inf(P
5
b ) =

795639 and �inf(P 5
b ) = 891.986. Identical results are obtained

for the inferred variances in XN .

APPENDIX C: EVALUATION OF |〈[nb,X N
b ]〉|inf

AND |〈[nb,P N
b ]〉|inf

The expressions for the terms |〈[nb,X
N
b ]〉|inf and

|〈[nb,P
N
b ]〉|inf are calculated from Eq. (16) and the first line

of Eq. (18). Using that Xb = b + b† and Pb = (b − b†)/i, we
note that on evaluating the expectation value for the NOON
states given in Eq. (1), the only nonzero contributions involve
terms of the form 〈bN 〉 and 〈b†N 〉:∣∣〈[nb,X

N
b

]〉∣∣
inf = N | − 〈bN 〉 + 〈b†N 〉|inf,

(C1)∣∣〈[nb,P
N
b

]〉∣∣
inf = N |〈bN 〉 + (−1)N+1〈b†N 〉|inf .

We evaluate 〈bN 〉 = Tr[ρred,xb
N ] and 〈b†N 〉 =

Tr[ρred,x(b†)
N

] using the reduced density matrix given
in Eq. (B1):

〈b̂N 〉inf,x = eiφ

2P (x)

√
N !〈x|0〉〈x|N〉,

〈(b̂†)N 〉inf,x = e−iφ

2P (x)

√
N !〈x|0〉〈x|N〉. (C2)

On integrating over all possible values we get

∣∣〈[nb,X
N
b

]〉∣∣
inf = N

√
N !| sin φ|

∫ ∞

−∞
|〈x|N〉〈0|x〉| dx.

For |〈[nb,P
N
b ]〉|inf the expression for N odd is given by

∣∣〈[nb,P
N
b

]〉∣∣
inf = N

√
N !| cos φ|

∫ ∞

−∞
|〈x|N〉〈0|x〉| dx,
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TEH, ROSALES-ZÁRATE, OPANCHUK, AND REID PHYSICAL REVIEW A 94, 042119 (2016)

while for N even we find ∣∣〈[nb,P
N
b

]〉∣∣
inf = N

√
N !| sin φ|

∫ ∞

−∞
|〈x|N〉〈0|x〉| dx. (C3)

We obtain for N = 2 that |〈[nb,P
N
b ]〉|inf = 1.93577 with φ = π/2; for N = 3, |〈[nb,P

N
b ]〉|inf = 4.53 with φ = 0; for N = 4,

|〈[nb,P
N
b ]〉|inf = 11.2024 with φ = π/2; and for N = 5, |〈[nb,P

N
b ]〉|inf = 29.5504 with φ = 0.

APPENDIX D: INCLUDING LOSSES

The detected fields âdet, b̂det are given by

adet = √
ηaa +

√
1 − ηaav, aloss = −

√
1 − ηaa + √

ηaav,

with similar definitions for the mode operators bdet and bloss. Using these transformations it is possible to write the operators a, b

and hence the NOON state |ψ〉 of Eq. (1) in terms of a
†
det, a

†
loss, b

†
det, and b

†
loss. We will denote the vacuum state for all four modes

by |0〉. The density operator ρ = |ψ〉〈ψ | can then also be expressed in terms of these operators. Since we are not interested
in the modes aloss and bloss (which we label A,loss and B,loss) we take the trace over the states of the loss mode to evaluate
ρ ′ ≡ TrA,loss;B,lossρ. After using the binomial expansion for terms such as (

√
ηaa

†
det − √

(1 − ηa)a†
loss) and performing the trace,

the reduced density operator for the detected modes is

ρ ′ = 1

2

[∑
s

(
N

N − s

)
(ηa)N−s(1 − ηa)s |N − s〉A,det〈N − s| ⊗ |0〉B,det〈0| + (

√
ηaηb)Ne−iφ |N〉A,det〈0| ⊗ |0〉B,det〈N |

+ (
√

ηaηb)Neiφ |0〉A,det〈N | ⊗ |N〉B,det〈0| +
∑

s

(
N

N − s

)
(ηb)N−s(1 − ηb)s |0〉A,det〈0| ⊗ |N − s〉B,det〈N − s|

]
. (D1)

1. Calculating �2
inf (P N

b ) and �2
inf (X N

b )

The �2
inf(P

N
b ) and �2

inf(X
N
b ) are the inferred variances of quantities P N

b and XN
b due to a measurement in Xa . These are given

by (21) and (22). We evaluate these inferred variances using the density operator for modes adet and bdet given in Eq. (D1). For
the inferred variances we evaluate the density operator ρ ′′, where we consider that the mode A,det is in the state |x〉. This density
operator is given by

ρ ′′ = |x〉A,det〈x|ρ ′|x〉A,det〈x|
P (x)

= 1

2P (x)

[∑
s

(
N

N − s

)
(ηa)N−s(1 − ηa)s〈x|N − s〉Ad〈N − s|x〉|x〉Ad〈x| ⊗ |0〉Bd〈0|

+ (
√

ηaηb)Ne−iφ 〈x|N〉Ad〈0|x〉|x〉Ad〈x| ⊗ |0〉Bd〈N | + (
√

ηaηb)Neiφ 〈x|0〉Ad〈N |x〉|x〉Ad〈x| ⊗ |N〉Bd〈0|

+
∑

s

(
N

N − s

)
(ηb)N−s(1 − ηb)s〈x|0〉Ad〈0|x〉|x〉Ad〈x| ⊗ |N − s〉Bd〈N − s|

]
,

where

P (x) = Tr[|x〉A,det〈x|ρ ′|x〉A,det〈x|]

= 1

2

[∑
s

(
N

N − s

)
(ηa)N−s(1 − ηa)s |〈x|N − s〉|2 +

∑
s

(
N

N − s

)
(ηb)N−s(1 − ηb)s |〈x|0〉|2

]
. (D2)

Here we are using the following notation for the modes: Ad ≡ A,det and Bd ≡ B,det. In order to compute �2(P N
b |x) and

�2(XN
b |x), we trace out the A,det mode to get the reduced density operator for B,det mode:

ρred,det,x = T rA,det
(
ρ ′′)

= 1

2P (x)

[∑
s

(
N

N − s

)
(ηa)N−s(1 − ηa)s〈x|N − s〉Ad〈N − s|x〉|0〉Bd〈0|

+ (
√

ηaηb)Ne−iφ 〈x|N〉Ad〈0|x〉|0〉Bd〈N | + (
√

ηaηb)Neiφ 〈x|0〉Ad〈N |x〉|N〉Bd〈0|

+
∑

s

(
N

N − s

)
(ηb)N−s(1 − ηb)s〈x|0〉Ad〈0|x〉|N − s〉Bd〈N − s|

]
. (D3)
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The inferred variances are defined as

�2
(
XN

b

∣∣x) = 〈(
XN

b

)2∣∣x〉 − 〈
XN

b

∣∣x〉2
, �2

(
P N

b

∣∣x) = 〈(
P N

b

)2∣∣x〉 − 〈
P N

b

∣∣x〉2
. (D4)

Next we evaluate 〈Xn
b |x〉 = Tr[ρred,det,xX

n
b ] and 〈P n

b |x〉 = Tr[ρred,det,xP
n
b ] using the density operator given in Eq. (D3) obtaining

〈
Xn

b

∣∣x〉 = 1

2P (x)

[∑
s

(
N

N − s

)
(ηa)N−s(1 − ηa)s〈x|N − s〉Ad〈N − s|x〉

∫
xn

B〈0|xB〉〈xB |0〉 dxB

+ (
√

ηaηb)Ne−iφ〈x|N〉Ad〈0|x〉
∫

xn
B〈N |xB〉〈xB |0〉dxB + (

√
ηaηb)Neiφ〈x|0〉Ad〈N |x〉

∫
xn

B〈0|xB〉〈xB |N〉dxB

+
∑

s

(
N

N − s

)
(ηb)N−s(1 − ηb)s 〈x|0〉Ad〈0|x〉

∫
xn

B〈N − s|xB〉〈xB |N − s〉 dxB

]
, (D5)

〈P n〉inf,x = 1

2P (x)

[∑
s

(
N

N − s

)
(ηa)N−s(1 − ηa)s〈x|N − s〉A,det〈N − s|x〉

∫
pn

B〈0|pB〉〈pB |0〉 dpB

+ (
√

ηaηb)Ne−iφ〈x|N〉Ad〈0|x〉
∫

pn
B〈N |pB〉〈pB |0〉dpB + (

√
ηaηb)Neiφ〈x|0〉Ad〈N |x〉

∫
pn

B〈0|pB〉〈pB |N〉 dpB

+
∑

s

(
N

N − s

)
(ηb)N−s(1 − ηb)s〈x|0〉A,det〈0|x〉

∫
pn

B〈N − s|pB〉〈pB |N − s〉 dpB

]
. (D6)

The value of the corresponding variances for �2(XN
b |x) and �2(P N

b |x) of Eqs. (D4) is evaluated using the expressions given
in Eqs. (D5) and (D6) considering n = N or n = 2N .

2. Inferred variances �2
inf (nb) including losses

�2
inf(nb) is the inferred variance of nb due to a measurement in na . In order to evaluate this variance we will consider that the

outcome in na is m. We define P (m) as the probability for obtaining the result m for na . Next, we evaluate the reduced density
operator ρm for the modes A,det and B,det given that the outcome is m:

ρm = 1

P (m)
[|m〉Ad〈m|ρ ′|m〉Ad〈m|]

=
[(

N

m

)
ηm

a (1 − ηa)N−m|m〉Ad〈m| ⊗ |0〉Bd〈0| +
∑

s

(
N

N − s

)
ηN−s

b (1 − ηb)s |0〉Ad〈0| ⊗ |N − s〉Bd〈N − s|
]/

[2P (m)],

where

P (m) = Tr[|m〉A,det〈m|ρ ′|m〉A,det〈m|] = 1

2

(
N

m

)
ηm

a (1 − ηa)N−m + 1

2
. (D7)

In order to write the last line we have used that
∑N

s ( N

N − s)η
N−s
b (1 − ηb)s = 1.

Next we evaluate 〈nB〉inf,m = Tr[ρmnB] and 〈n2
B〉inf,m = Tr[ρmn2

B] obtaining

〈nB〉inf,m = 1

2

∑
s

(
N

N − s

)
ηb(1 − ηb)sδm,0(N − s)

P (nA = m)
,

〈
n2

B

〉
inf,m = 1

2

∑
s

(
N

N − s

)
ηb(1 − ηb)sδm,0(N − s)2

P (nA = m)
.

Since nA = m = 0 is the only nonzero contribution for the statistical moments we obtain

〈nB〉inf,0 = 1

2

Nηb

P (nA = 0)
,

〈
n2

B

〉
inf,0 = 1

2

ηb(N − Nηb + N2ηb)

P (nA = 0)
, P (nA = 0) = 1

2
[(1 − ηa)N + 1].

Using the above results we evaluate the inferred variance for m = 0, which we denote by �2
infnb,0:

�2
infnb,0 = ηb(N − Nηb) + Nηb(1 − ηa)N (1 − ηb + Nηb)

[(1 − ηa)N + 1]2
.

In order to evaluate the variance of the inferred value nB , we sum over all possible values of m obtaining

�2ninf =
N∑
m

P (nA = 0)�2ninf,m=0 = ηb(N − Nηb) + N (1 − ηa)N
(
ηb − η2

b + Nη2
b

)
2[(1 − ηa)N + 1]

. (D8)
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3. Evaluation of |〈[nb,X N
b ]〉|inf and |〈[nb,P N

b ]〉|inf

Full evaluation of the terms |〈[nb,X
N
b ]〉|inf and |〈[nb,P

N
b ]〉|inf [given by Eqs. (16) and (18)] reveals that for the lossy system

and for N � 5: ∣∣〈[nb,X
N
b

]〉∣∣
inf = N | − 〈bN 〉 + 〈b†N 〉|inf,

∣∣〈[nb,P
N
b

]〉∣∣
inf = N |〈bN 〉 + (−1)N+1〈b†N 〉|inf .

We evaluate 〈bN 〉 = Tr[ρred,det,xb
N ] and 〈b†N 〉 = Tr[ρred,det,x(b†)

N
] using the reduced density matrix given in Eq. (D3) and

performing the corresponding trace, we obtain

〈bN 〉inf,x = 1

2P (x)
(
√

ηaηb)Neiφ〈x|N〉〈0|x〉
√

N !

and 〈(b†)N 〉inf,x = (〈bN 〉inf,x)∗. Thus the expressions obtained are identical to (C2) and (C3) but replacing
√

N ! with
Cη = √

N !(
√

ηaηb)N .

APPENDIX E: PROOF OF Nth-ORDER QUANTUM COHERENCE AND ENTANGLEMENT

The question is how to prove experimentally that the system is indeed in a superposition of the two number states |N〉|0〉 and
|0〉|N〉 that are distinct by N quanta in each mode. For such a state, the density matrix ρ has a nonzero off-diagonal element:

〈0|〈N |ρ|0〉|N〉 �= 0. (E1)

We refer to the nonzero term (E1) as an N th-order quantum coherence. The presence of this term distinguishes the superposition
of the two states |N〉|0〉, |0〉|N〉 from a classical mixture of the two states.

In the ideal scenario, the experiment generates only outcomes zero or N for the number measurements na or nb. It is then
straightforward to show that any violation of an EPR steering inequality is also a signature of an N th-order quantum coherence
(E1). The objective is to construct the density operator ρ for the system and to prove that necessarily (E1) holds. Since there
are only two outcomes for each mode, any viable two-mode density operator could be written in terms of four basis states
|0〉|0〉,|0〉|N〉,|N〉|0〉,|N〉|N〉. Supposing an EPR steering inequality to be violated, this will negate the LHS model given by (8)
and therefore also any fully separable quantum model

ρ =
∑
R

PRρaρb, (E2)

where ρa and ρb are density matrices for the single modes a and b [22]. Thus the system cannot be in any mixture of the
basis states |0〉|0〉,|0〉|N〉,|N〉|0〉,|N〉|N〉, which are separable states. There are only certain remaining possibilities for ρ and
these require nonzero off-diagonal elements. For example, for the NOON state the results for number measurements n̂ would
be either zero or N in one mode, correlated with N or zero in the other mode. Assuming that there is a nonzero probability for
the outcome for |0〉|N〉 and |N〉|0〉, this ensures that the off-diagonal term 〈0|〈N |ρ|0〉|N〉 is nonzero. Also, the failure of the
separable model (E2) ensures the system cannot be in the product state (|N〉 + |0〉)(|N〉 + |0〉)/2. This implies the system is the
entangled superposition of states |0〉|N〉 and |N〉|0〉.

APPENDIX F: PROOF OF INEQUALITY (41)

First we prove the the uncertainty relation

(�n̂b)2
(
�infP̂

N
b

)2 � 1
4 |〈Ĉb〉|2inf, (F1)

which holds for any two-mode state. We follow the methods used in Refs. [41]. The variance is defined as (�n̂b)2 =∑
nb

P (nb)(nb − 〈nb〉)2 (denoting the outcomes of n̂b by nb). We can consider marginals and joint distributions for
the measurements on both modes a and b. Thus we write (�n̂b)2 = ∑

nb,pa
P (nb,pa)(nb − 〈nb〉)2 and then (�n̂b)2 =∑

nb,pa
P (nb|pa)P (pa)(nb − 〈nb〉)2. Thus

(�n̂b)2 =
∑
pa

P (pa)
∑
nb

P (nb|pa)(nb − 〈nb〉)2 �
∑
pa

P (pa)
∑
na

P (nb|pa)(nb − 〈nb〉pa
)2 =

∑
pa

P (pa)(�(nb|pa))2,

where (�(nb|pa))2 = ∑
na

P (nb|pa)(nb − 〈nb〉pa
)2 and 〈nb〉pa

is the mean of the conditional distribution P (nb|pa). For each
pa we have defined the distribution P (nb|pa) as Ppa

(nb) and we see that the quantity
∑

nb
Ppa

(nb)(nb − X)2, where X is any
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constant, is minimized by the choice X = 〈nb〉pa
= ∑

nb
Ppa

(nb)nb. Next, we write

(�n̂b)2(�infP̂
N
b

)2 �
{∑

pa

P (pa)(�(nb|pa))2

}{∑
pa

P (pa)
(
�

(
P N

b

∣∣pa

))2

}

�
∣∣∣∣∣
∑
pa

P (pa)�(nb|pa)�
(
P N

b

∣∣pa

)∣∣∣∣∣
2

� 1

4

∣∣∣∣∣
∑
pa

P (pa)|〈Cb〉pa
|
∣∣∣∣∣
2

= 1

4
|〈Ĉb〉|2inf,

where we apply the Cauchy-Schwarz inequality and use the uncertainty relation (2) that holds for the state of b conditioned on
the measurement result pa of mode a. This proves (F1). Then we can say that for the mixture ρab of (42) [using that for a mixture
it is true that [46] (�O)2

ρ �
∑

i Pi(�O)2
i where O is any quantum observable, and also true that (�infP

N
b )2 �

∑
i Pi(�infP

N
b )2

i

[47]]:{∑
i

Pi(�n̂b)2
i

}(
�infP̂

N
b

)2 �
{∑

i

Pi(�nb)2
i

}{∑
i

Pi

(
�infP

N
b

)2
i

}
�

∣∣∣∣∣
∑

i

Pi(�nb)i
(
�infP

N
b

)
i

∣∣∣∣∣
2

� 1

4

∣∣∣∣∣
∑

i

Pi |〈Ĉb〉|inf,i

∣∣∣∣∣
2

,

(F2)

where we use the Cauchy-Schwarz inequality and that the uncertainty relation (2) holds for each ρab
i . Now we see that∑

pa
P (pa)|〈Cb〉pa

| = ∑
pa

P (pa)| ∑cb
CbP (Cb|pa)|. If the system is described by the mixture ρab then

〈Cb〉pa
=

∑
cb

CbP (Cb|pa) =
∑
Cb

Cb

P (Cb,pa)

P (pa)
=

∑
Cb

Cb

∑
i

Pi

Pi(Cb,pa)

P (pa)
=

∑
i

Pi

∑
Cb

Cb

Pi(pa)

P (pa)
Pi(Cb|pa), (F3)

where the subscript i denotes the probabilities for the component ρab
i . We can write∣∣∣∣∣∣

∑
i

Pi

∑
Cb

Cb

Pi(pa)

P (pa)
Pi(Cb|pa)

∣∣∣∣∣∣ �
∑

i

Pi

Pi(pa)

P (pa)

∣∣∣∣∣∣
∑
Cb

CbPi(Cb|pa)

∣∣∣∣∣∣.
Thus from (F3)

∑
pa

P (pa)|〈Cb〉pa
| �

∑
i

Pi

∑
pa

Pi(pa)

∣∣∣∣∣∣
∑
Cb

CbPi(Cb|pa)

∣∣∣∣∣∣ =
∑

i

Pi |〈Ĉb〉|inf,i ,

where |〈Ĉb〉|inf,i = ∑
pa

Pi(pa)| ∑Cb
CbPi(Cb|pa)|. Thus we have proved that

∑
i Pi |〈Ĉb〉|inf,i �

∑
pa

P (pa)|〈Cb〉pa
|. Hence we

can write from (F2):{∑
i

Pi(�nb)2
i

}(
�infP

N
b

)2 � 1

4

∣∣∣∣∣
∑

i

Pi

∣∣∣∣∣〈Ĉb〉|inf,i |2 � 1

4

∣∣∣∣∣
∑
pa

P (pa)

∣∣∣∣∣〈Cb〉pa
||2 = 1

4
|〈Ĉb〉|inf|2.

This proves the inequality (41). �
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