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Few strongly interacting ultracold fermions in one-dimensional traps of different shapes
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The ground-state properties of a few spin-1/2 fermions with different masses and interacting via short-range
contact forces are studied within an exact diagonalization approach. It is shown that, depending on the shape of
the external confinement, different scenarios of the spatial separation between components manifested by specific
shapes of the density profiles can be obtained in the strong interaction limit. We find that the ground-state of the
system undergoes a specific transition between orderings when the confinement is changed adiabatically from a
uniform box to a harmonic oscillator shape. We study the properties of this transition in the framework of the

finite-size scaling method adopted to few-body systems.
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I. INTRODUCTION

With recent experiments on several particles confined
in a one-dimensional optical trap (for fermions as well as
for bosons), quantum engineering has entered a completely
new, so far unexplored, area of strongly correlated quantum
systems [1-4]. In these extremely sophisticated experiments
it is possible to control the total number of particles, their
mutual interactions, and the shape of external potential with
very high accuracies [3—7]. As a consequence, a deep analysis
of many properties of one-dimensional few-body systems is
performed experimentally. For example, fermionization of
distinguishable particles [8], pairing for attractive forces [9],
ground-state properties in double-well schemes [10], or the
formation of the Fermi Sea [11,12] have been observed already.
In parallel, on a theoretical level many interesting results have
been obtained under the assumption that particles are confined
in a harmonic trap [13-31]. They are awaiting experimental
confirmations. Some results also for other confinements, like
the double-well potential, have been discussed recently [32,33]
and the dynamical properties of such systems have been
analyzed.

Apart from a few exceptions [34—41], it has commonly been
assumed that particles of different kinds have the same mass
and the main impact on properties of the system comes from
an imbalance of the number of particles. However, recently
it was shown that for particles confined in a harmonic trap,
the mass difference between different fermionic components
leads to their spatial separation if interactions are strong
enough [42]. The mechanism was shown to be universal with
respect to the number of particles and also very robust to
external perturbations. A remaining open question concerns
the properties when different shapes of the trap are considered.
This question is interesting also from an experimental point
of view, since shape-manipulation is one of the standard
experimental methods that are well controlled in laboratories.
Recently, it was even possible to perform the first Bose-
Einstein condensation in a purely uniform box confine-
ment [7]. Motivated by this background, here we explore the
properties of a spatial separation mechanism for a two-flavored
mixture of fermions confined in a one-dimensional trap with
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a tunable shape. We show that, depending on the shape, in the
strong interaction limit spatial separation in the many-body
ground-state may occur for either the lighter or the heavier
component. Moreover, the system undergoes a kind of critical
transition that is induced by an adiabatic change of the external
potential. This mechanism appears to be very general and it
is present always whenever fermions of different mass are
being considered. We believe that our results may shed some
light on the quantum magnetism [43-50] and the role of mass
imbalance in spatial separation of the density profiles [51,52].

The article is organized as follows. In an introductory Sec. II
we describe the system to be studied and we define the tunable
shape of the external trap that will be considered in further
analysis. Then, in Sec. Il we briefly summarize the exact
diagonalization method—our main tool for studying different
properties of few-body problems. The spectral properties of
the few-body Hamiltonian from the point of view of different
mass components as well as different trap shapes are studied
in Sec. IV. Subsequently, in Sec. V we focus on properties
of the ground-state of the system and we discuss the spatial
separation of density profiles induced by different masses
in a uniform box potential. We also outline the similarities
and differences in comparison to harmonic confinement.
Section VI emphasizes the fundamental differences regarding
single-particle densities between systems with the same and
with different masses of the components. In this section,
based on numerical results, we also postulate that for any
confinement one of two types of separation will always occur
in the system when particles of different flavors have different
masses. This observation leads us to make a numerical study of
the transition between different density orderings in Sec. VII,
in which we adopt the well-known finite-size scaling method
to a few-body system. Finally, we conclude in Sec. VIIIL.

II. THE SYSTEM UNDER STUDY

In this paper we consider a two-flavor mixture of sev-
eral ultracold fermionic atoms confined in an effectively
one-dimensional external potential. Experimentally, a one-
dimensional geometry is obtained by applying a very strong
harmonic confinement in the two remaining spatial direc-
tions [6,8,12]. Depending on the experimental realization,
atoms in the two flavors can have the same or different masses.
The latter system is realized simply by trapping different
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chemical elements. The most promising fermionic mixture
of this type is the lithium-potassium combination. Obtaining a
mixture of fermions of the same mass is a more sophisticated
procedure and can be achieved when two different nuclear
spin projections of the same element are under control. A
typical example is the mixture of two different °Li atoms
with total atomic spin belonging to the spin-3/2 and spin-1/2
representations, respectively. Regardless of the situation, in
both scenarios particles of different flavors can be treated
as fundamentally distinguishable, i.e., each fermion always
belongs to one of the two flavors and during the whole
experiment its nature cannot be changed [6]. This is a kind
of superselection principle originating in the observation that
interactions between atoms can change neither the mass of the
atoms nor the spin projection of their nuclei.

It is a very good approximation to assume that ultracold
fermions of different kinds interact only via spherically sym-
metric forces modeled by a zero-range §-like potential [53].
In this approximation, fermions belonging to the same flavor
do not interact at all due to the antisymmetry of the wave
function when written in terms of relative positions. In this
approximation the Hamiltonian of the system reads

Lol R
= ——— +V,(x;,A
n 2]:[ 2m, ax2 T )}
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where V,(x,)) is an external potential acting on fermions o.
We model the external potential as follows:

{%xmaaﬂxz if x| < L

Vo(x,A) =
(r.1) if x| > L,
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where A is a dimensionless geometric parameter that deter-
mines the shape of the trap. For clearness, we use different
letters for positions of particles belonging to different compo-
nents.

The confinement reproduces a uniform box potential of
length 2L in the limit of A — 0 and a cropped harmonic
oscillator trap of frequency w in the limit of A — 1. Of course,
in the latter case hard walls affect and modify the single-
particle eigenstates of the Hamiltonian. However, for low
excited states and for a large enough L, the difference between
an exact harmonic oscillator potential and one modeled by
Vy(x,1) can be neglected. This conclusion comes from the
observation that the wave functions of the harmonic oscillator
decay exponentially and do not penetrate the regions in the
vicinity of the hard walls of the uniform box [54].

In Fig. 1 we schematically show the shape of the external
potential for different values of A in natural units of a given
flavor. It is worth noticing that potential Eq. (2) seems to be
quite natural from an experimental point of view. It resembles
the technique of turning off a harmonic oscillator potential
in the presence of an additional uniform potential with hard
walls [7]. Nevertheless, we have also checked a few other
scenarios of crossover from an uniform box to a harmonic
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FIG. 1. The shape of the potentials V, (x,)) for different values
of the parameter A in natural units of a given flavor. For A =0 a
uniform box potential is restored. For increasing A, the confinement
transforms to the standard harmonic oscillator.

trap and found that the results described here do not depend
qualitatively on these details.

The effective interaction coupling strength gp is related
to its three-dimensional counterpart and can be obtained by
integrating out two remaining degrees of motion [55]. From
the point of view of our model the important information is
that the interaction strength can be tuned experimentally over
the whole range of its possible values, i.e., from minus to plus
infinity [56-58]. Note that in contrast to higher dimensions, in
a one-dimensional case, the Dirac § function is a well-defined
self-adjoint Hermitian operator and can be used without any
regularization [59].

For a given shape of the confinement A, we numerically
find single-particle states ¢,(1)(‘,)(x) and corresponding energies
E,(,’}T) with a direct diagonalization of the single-particle
Hamiltonian:

n? d?

W __ - =
HY = . A + Vy(x,M). 3)
The diagonalization is performed in the position domain on a
dense grid with spacing §x. In this representation any single-
particle Hamiltonian has a simple tridiagonal form. Therefore,
a diagonalization is straightforward with standard numerical
recipes [60]. It is quite obvious that along with decreasing 8x,
eigenstates and their eigenenergies converge to exact values.
Here, to make numerical analysis possible, we assume that
convergence is achieved when the relative numerical error of
a number n¢yofr Of the lowest states is smaller than 1%. The
states ) (x) serve as the basis for further many-body analysis.

In the limiting case of the harmonic oscillator (A — 1), the
single-particle eigenfunctions of both flavors are related by the
following scaling: @,}(x) = (my/m)/* @\ (\/my/m | x).
This means that the wave functions of the heavier particles
are more localized in the center of the trap. In this case,
the eigenenergies do not depend on the mass of the particle
and they depend linearly on the main quantum number n =
1,2,3,...:

E,(ll) = ha)(n — %) 4
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Note that for consistence of the whole analysis, we enumerate
the single-particle states in such a way that the ground state
is denoted by n = 1 and not by n = 0 as usually used in
the literature for the harmonic oscillator problem. It is also
worth noticing that for a high enough excitation n, corrections
from the hard-wall constraints become relevant. As explained
before, to avoid this problem in our numerical approach, we
set the size of the hard-wall box large enough to assure that
the single-particle states that are appreciably occupied are not
disturbed. We have checked that for our choice of L, the results
of a pure harmonic oscillator confinement are restored for
A = 1. Therefore, in the following we will treat A =1 as a
pure harmonic oscillator confinement.

In the opposing case of a uniform box potential (A = 0),
the shapes of the wave functions do not depend on the mass
and they have the well-known form

Ox) = @ sin [%} )

However, in this case, the single-particle eigenenergies depend
on mass and the quantum number n = 1,2,3, ...

222
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In what follows we will express all quantities in harmonic
oscillator units of the spin-| particles, i.e., all lengths are
measured in units of /h/(m ), energies in ~Aw, momenta
in units of \/Aim w, etc. We also introduce the dimensionless
mass ratio parameter u = m4/m . Thisis substantially greater
than unity for the lithium-potassium mixture, u = 40/6. In
these units, the single-particle Hamiltonians Eq. (3) have the
form

x n?. (6)

To make the later analysis clear, we fix the size of the system
in such a way that the single-particle spectra of the extreme
Hamiltonians (i.e., those for a box trap and for a harmonic
oscillator potential) have energy gaps of the same order of
magnitude, i.e., Egi) - Eﬁ) A Eél) —-E 51), which corresponds
to the following condition:

_ 3hm?
8m wlL?
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This condition determines an appropriate size of the system for
numerics, 2L ~ 3.9,/h/(m w). To make sure that the walls do
not noticeably affect the single-particle densities in the case
of the cropped harmonic potential, we set the position of the
walls to alarger value, 2L = 7,/h/(m ). With this condition,
the energy gaps are still of the same order of magnitude.

For our numerical purposes it is convenient to rewrite the
Hamiltonian Eq. (1) in a dimensionless form in the second
quantization formalism as follows:

L
H= Z/_L dx WT () HMW, (x)

L . ~ ~
+g f dx Wl W] (0¥ () B4 (x), )
—L
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where the dimensionless interaction strength is g =
gipy/m /(wh?). All integrations are performed over the whole
space where the particles could be present, i.e., in the
region between the walls (—L,L). The field operator W, (x)
annihilates fermions of spin ¢ at a position x. The quantum
fields obey canonical anticommutation relations for same spin
particles {¥, (x), ¥ (x")} = 8(x — x’) and {¥, (x), ¥, (x")} =
0. In contrast, due to the fundamental distinguishability of
opposite spin fermions explained before, the final result
and the values of calculated observables do not depend
on the choice of the commutation relations for opposite
spin operators [61]. However, as commonly used for dis-
tinguishable particles, we assume commutation of the field
operators in this case, [@T(x),\ill(x/)] = [\i%(x),lili(x/)] =0.
Note that in the Hamiltonian Eq. (9) there are no terms
that change the number of particles of a given flavor. As a
consequence, the total number of fermions of a given flavor,
N, = ffL Ui (x)W, (x)dx, commutes with the many-body
Hamiltonian Eq. (9). This property of the model corresponds to
realistic experimental situations where the number of particles
can be controlled with an extreme precision [6,12]. From the
numerical point of view, it enables one to perform a complete
analysis of the Hamiltonian independently in each of the
subspaces corresponding to a given number of particles.

III. EXACT DIAGONALIZATION APPROACH

The ground-state properties of the system are studied
straightforwardly within an exact diagonalization approach
for the many-body Hamiltonian. Recently, the method has
been successfully used for equal mass fermions confined in a
harmonic trap [13,62,63] as well as for fermions of different
masses [42]. First we decompose the field operators W, (x)
into the basis of the eigenfunctions of the corresponding
single-particle Hamiltonians Eq. (3),

Wy () = Y ¢\ (¥)ao (10)

where an operator &,, annihilates a fermion of the o-type in
level n, i.e., a fermion in a single-particle state described by
the wave function ¢*)(x). Note that for simplicity we omit the
superscript A in the definition of an annihilation operator since
it should not lead to any confusion.

The expansion Eq. (10) is exact provided the sum runs over
all n. In practice, to perform numerical calculations we cut the
summation at a value 7, chosen in such a way that the final
results do not change significantly when . is increased. Of
course, for stronger interactions g, more single-particle levels
should be taken into account to achieve the convergence. For
example, for g =4, N, =2, and Ny = 3, we use 12 single-
particle eigenstates for each component, i.e., the dimension of
the many-body Hilbert space is 14 520.

With the expansion Eq. (10) the Hamiltonian Eq. (9) can be
rewritten in the form

A At W At At A A
H= Z Z EMal a,, + Z Ui(j,(),a,-TTa;ﬂk¢a1m (11)
o n ijkl
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where E*) is a single-particle energy. The interaction energy
has the form

=g / dx ¢ )} () e (). (12)

The Hamiltonian Eq. (11) is represented using all its matrix
elements between states belonging to the Fock space of all
the possible many-body configurations of Ny and N particles
occupying the first ngyof single-particle orbitals. Finally, an
exact diagonalization of the matrix obtained is performed using
the implicitly restarted Arnoldi method [64], available in the
ARPACK Fortran library. This allows us to find the many-body
ground-state of the system |Gy), several excited states |G;), and
their eigenenergies &;. In this way, complete information about
the structure of the many-body ground-state (and excited states
if necessary) can be obtained. In what follows, we concentrate
on the simplest quantity that can be measured experimentally
in a straightforward way, namely the single-particle density
profile (normalized to the number of particles in a given flavor):

o (x) = (Go| W (x) W, (x)|Go). (13)

IV. MANY-BODY SPECTRAL PROPERTIES

First let us study how the spectral properties of the many-
body Hamiltonian are affected by the shape of the external
potential A and mass ratio p. The results for a harmonic
oscillator (shown in the upper panels of Fig. 2) were recently
discussed with all details in Ref. [42]. There it was shown that
along with an increasing mass ratio u the quasidegeneracy

w=1 u = 40/6
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FIG. 2. Spectra of the system consisting of N, =3 and N} =1
fermions as a function of the dimensionless interaction strength g. The
top row corresponds to a harmonic oscillator potential and the bottom
row to a box trap potential. Quasidegenerate energy bands seen in
the left column split up when mass imbalance p # 1 is introduced

(right column). The energy is given in the natural units of harmonic
oscillator, hw.
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of the many-body spectrum is split in the limit of strong
interactions. This is caused by the lifting of some global
symmetries of the Hamiltonian that are present only in equal
mass systems. As a consequence, separation between spin
components appears in the ground-state of the system for
strong enough interactions, i.e., the heavier particles always
concentrate in the middle of the trap and the cloud of light
particles is divided into two parts and pushed out from the
center. It was noticed that the separation of the density profile
induced by a mass imbalance always displays the same features
regardless of the number of particles in both flavors.

The situation is very similar for the case of a uniform
box potential (A = 0). The many-body spectrum becomes
more complicated for strong interactions whenever different
masses of constituents are introduced (bottom right panel of
Fig. 2). The main qualitative difference appears in the limit of
vanishing interactions—in contrast to the case of the harmonic
oscillator, the spectrum of the uniform box with noninteracting
particles changes with w. This is a direct consequence of the
form of the single-particle energies Egs. (4) and (6).

At this point it is also worth noting that for an equal
mass system, and for any confinement, there exist many-body
eigenstates that are absolutely insensitive to the interaction
strength (seen as horizontal lines in the left panels of Fig. 2).
These states, commonly named after Girardeau [66], are
straightforwardly constructed using a single Slater determinant
of Ny + N single-particle orbitals. Such wave functions are
antisymmetric under the exchange of the positions of any two
fermions, regardless of their spin. Thus, they are the eigenstates
of the interaction part of the Hamiltonian. This construction of
completely antisymmetric states can only be adopted for equal
mass systems since only then the single-particle orbitals are
the same for both flavors. This is the reason why the Girardeau
states are not present in the right panels of Fig. 2.

V. SEPARATION OF FLAVORS IN THE UNIFORM BOX

As mentioned previously, in harmonic confinement, the
mass difference between fermions of different flavors leads
to the separation of density profiles of opposite species for
strong enough repulsions. In the case of the uniform box
potential a separation of the density also occurs in the system.
However, in this case, the separation is present always in the
heavier component (see Fig. 3). The direct reason why a mass
difference acts differently for different confinements can be
explained intuitively via energetic arguments. As mentioned
previously, in the uniform box case, the single-particle wave
functions are exactly the same for both components and they
are completely independent of mass difference. Therefore,
the part of the energy cost for exciting a particle to a
higher state that comes from the interaction is independent
of the flavor. The only difference in energies comes from
the single-particle part of the Hamiltonian. The energy cost
for exciting heavier particles is smaller [see Eq. (6)], and
therefore the separation in heavier component is favored. This
argumentation is completely opposite to that in the case of
harmonic confinement (see Ref. [42] for details) and therefore
the separation is governed by an opposite rule.

These intuitive pictures and arguments are confirmed by our
numerical calculations. In Fig. 3, the single-particle density
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FIG. 3. Single-particle densities p;(x) (thick blue line, heavier flavour) and p, (x) (thin red line, lighter flavor) calculated in the ground-state
of the system for different numbers of fermions with © = 40/6 and strong interaction g = 4 confined in a box trap. The black vertical lines
correspond to the walls of the box trap. In contrast to the separation induced by the mass difference for a harmonic potential [42], in this case
the separation always occurs in the heavier fraction, independently of the way the fermions are distributed between flavors. In particular, the
separation is present also for an equal number of fermions Ny = N,. The positions and the densities are measured in units of \/2/(m ) and

Jmyw/h, respectively.

is plotted for a strongly interacting system of two species
characterized by a mass ratio of © = 40/6. We have checked
that the separation occurs in the strong interaction limit for any
number of particles up to seven. From the same calculations
we have seen that for mass ratios u closer to 1, a much stronger
interaction is needed to create the separation in density profiles.
This observation is also in accordance with our intuitive
picture, i.e., for almost equal masses neither component is
favored and much stronger interactions are needed to break
the symmetry and support separation.

For completeness, in Fig. 4 we show a comparison of
separations for the two confinements considered, i.e., the
uniform box (left panels) and the harmonic trap (right panels).
Matching plots are obtained for the same number of particles
in both components and the same interaction strengths. From
this comparison it is obvious that the separation mechanism
induced by a mass imbalance acts completely differently in
the two cases.

VI. COMPARISON TO THE EQUAL MASS SYSTEM

Before we analyze the transition in the ground-state
between the two orderings described above, let us compare
the situation to the case when both flavors have the same mass.

It is known that in this case the separation can be induced
only by a difference in the number of particles, Ny — N|.
This arises directly from the general symmetry under global
exchange of both families of particles. As a consequence,
whenever Ny = N, both flavors have the same single-particle
density profile and no separation of the density profile can be
observed. The situation is modified when the system is slightly
imbalanced in the number of particles. As an example, we
concentrate on the system with Ny = 3 and N| = 2 particles.
As seen in the left panels of Fig. 5, characteristic alternating
oscillations in the densities of the ground state are built in
the limit of very strong repulsions and both components
take on an antiferromagnetic ordering. It is seen that an
alternating ordering is present in the system independently
of the shape of the external potential. This generalizes the
result obtained recently for harmonic confinement for finite
interactions [65] and extends the results obtained for infinite
interactions [67,68].

The situation is very different whenever different masses of
the components are introduced (see the right panels in Fig. 5).
Under harmonic confinement, the heavier particles concentrate
in the middle and the lighter ones are pushed out from the
center. For the case of the uniform box, heavier particles are
located in the vicinity of the walls and lighter ones are in
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FIG. 4. Comparison of different separation scenarios for fermions
with different mass (u = 40/6) driven by different shapes of the
confinement, in the limit of strong interaction g = 4: in the uniform
box (left panels) and cropped harmonic oscillator (right panels). The
thick blue and thin red lines represent the single-particle density
profiles for heavy and light components, respectively. Note that,
independently on the number of particles in a given flavor, the
separation is always present in the heavier (for the uniform box)
or the lighter (for the harmonic oscillator) component. The positions

and the densities are measured in units of \/h/(m w) and \/m w/h,

respectively.
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W= I = 40/6

Position Position

FIG. 5. Single-particle densities p;(x) (thick blue line, heavier
flavor) and p (x) (thinred line, lighter flavor) calculated in the ground-
state of the system of Ny =3 and N, =2 in the limit of strong
interaction, g = 4. The positions and the densities are measured in
units of \/%/(m ) and \/m w/Hh, respectively.

the middle. The middle plot shows a generic situation for an
intermediate confinement shape. It suggests that, in this case,
separation is not present. One should remember, however,
that the plot is obtained for strong but finite interactions.
Our numerical calculations, performed for many different
arrangements (different confinements and different numbers
of particles) show that for an arbitrary confinement in the
range 0 < A < 1 there exists some critical interaction strength
above which one of the two separation types occurs in the
system. One can imagine that for infinite interactions any
few-fermion system with imbalanced mass reveals spatial
separation in single-particle distributions. The only question is
if the separation is built in the heavier or the lighter component.
The answer is directly related to the shape of the confinement.
From the above analysis it follows that the system undergoes
some kind of transition between different separations in the
limit of infinite interactions, which is driven by an adiabatic
change of the potential. As explained below, the properties of
this transition can be understood with methods well known
from the theory of quantum phase transitions.

VII. THE TRANSITION DRIVEN BY THE SHAPE
OF THE TRAP

As explained above, for the two extreme cases of a uniform
box and a harmonic trap, the density separation induced by
the mass imbalance is of an opposite kind. Depending on the
spectrum of the single-particle Hamiltonians, heavier or lighter
particles are pushed out from the center for sufficiently large
repulsions between particles. In the framework of our model it
is possible to study the transition between these two orderings
induced by an adiabatic change of the shape. To make this
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FIG. 6. The second moment o of the magnetization distribution
Eq. (15) as a function of the shape of the confinement for different
interaction strengths (from g = 4 to g = 5). Each plot corresponds
to given numbers of particles in both flavors. Note that in extreme
confinements, o saturates to a well defined value, while it changes
rapidly in the vicinity of the transition point. The second moment o
is given in the natural units of a harmonic oscillator, i/(m w).

analysis not only qualitative but also quantitative one should
introduce some quantity that indicates the kind of ordering.
The choice is obviously not unique, however, it is quite natural
to concentrate on a magnetization-like distribution defined as
follows:

M(x) = pr(x) = py(x). (14)

It is quite natural that this distribution has an opposite behavior
whenever heavier or lighter particles are pushed out from the
center of the trap. Since the distribution is normalized to the
difference of the total number of particles, Ny — N, and also
because it is symmetric under spatial reflections with respect to
x = 0, therefore, the first distinction between the two orderings
being considered is manifested by the value of the second
moment of the distribution:

L
o=/ dx x> M(x). (15)
-L

In Fig. 6 we show the dependence of o on the trap parameter
A for different numbers of particles and different interactions.
It is seen in the two extreme confinements that o saturates to
the two completely distinct values corresponding to the two
different orderings. It means that o plays the role of an order
parameter and can be used as an indicator of a given ordering.
Aslong a given ordering is present in the system, the parameter
o is almost constant. Near the transition point (a point that
is different for different numbers of particles), however, its
value rapidly changes. Moreover, for stronger interactions,
the transition is more sharp. Therefore, one can anticipate

PHYSICAL REVIEW A 94, 042118 (2016)

that for infinitely strong repulsions a characteristic “step-like”
function is obtained. All the above points mean that the
transition between orderings appearing for strong interactions
has many of the properties of a phase transition [69,70] and
it can be analyzed with the methods known from the theory
of quantum phase transitions [71,72]. Here, the roles of the
order parameter and the parameter of control are played by the
second moment of the magnetization-like distribution o, and
the shape of the trap A, respectively. From this point of view,
the thermodynamic limit is mimicked by the limit of infinitely
strong repulsions between particles.

To characterize the transition between different orderings
one should study not only the behavior of the order parameter
but also its derivatives. Naturally, the most important of these
is the lowest derivative that is divergent at the transition point.
Our numerical results suggest that, in the case studied, the
first derivative of o has this property in the limit of infinite
interactions. In analogy to the physics of phase transitions this
quantity has all the properties of the susceptibility since it
measures changes of magnetization under small changes of
the parameter of control:

do()\)
dr -

We numerically calculate the susceptibility x for different
numbers of particles and for different interactions g (examples
for Ny + N4 = 4 are shown in the left panels of Fig. 7). The
susceptibility calculated in this way has a natural behavior
well known from the theory of phase transitions. Its maximum
grows with interactions along with a small shift of its
position. One can anticipate that for infinitely large interactions
the susceptibility will be divergent at the position of the
transition point. This behavior is a direct consequence of
the sharpening of the o function. The analogy with the
theory of quantum phase transitions is seen to be even closer
when we adopt the well-known finite-size scaling method to
determine the position of the transition point in the limit of
infinite interactions. First we assume that the order parameter
defined by o has some natural scaling in the vicinity of the
transition point XA, i.e., it is a homogeneous function of its
relevant parameters: interaction strength g and the normalized
shape of the trap defined as T = (A — A.)/A.. Consequently,
the same property is shared by all its derivatives. Regarding
the susceptibility, this means that there exists one universal
function ¥ (£) that determines the shapes of all susceptibilities
for different confinements and interaction strengths. To make
the analogy to the theory of quantum phase transitions as close
as possible we assume the following scaling ansatz [69,70]:

x(t.8) =g 7(g"" 1), (17)

where v and y are appropriate critical exponents of the model.
If the assumption of the scaling property of the susceptibility
is correct, then there exists an appropriate choice of critical
exponents for which all numerical data points form the one
universal curve determined by ¥. To show that indeed our
system has this scaling property we performed appropriate
numerical calculations based on the data-collapse method (for
details see, for example, Refs. [69-71]). As the result of this
numerical approach, we obtain the plots shown in the middle
panels of Fig. 7.

x(A) =

(16)
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FIG. 7. Scaling properties of a few-body system. Left panels: Susceptibility x as a function of the shape of the confinement A for different
values of interactions and different number of particles. A characteristic peak of the susceptibility, whose height increases with g, is clearly
visible. The vertical red line corresponds to the critical value A. obtained after extrapolation of the results to infinite repulsion. Middle panels:
Rescaled susceptibility as a function of a rescaled confinement shape parameter obtained after adopting the data-collapse method. Note that
all data points collapse to one well-defined curve. Right panels: The second moment of the distribution o when the same scaling procedure is
performed for the trap shape parameter. The susceptibility x is given in the natural units of a harmonic oscillator, \/A/(m w).

It is clearly visible that after appropriate scaling, all the
curves for a given system collapse to one universal curve for
a large range of normalized potential shapes t. The position
of the transition point X., as well as critical exponents, are
presented in the legend of their corresponding plots. Note
that, depending on the number of particles, different values
of the critical parameters are obtained. Finally, to make the
presentation complete, in the right panels of Fig. 7 we show
the second moment of the distribution o when the same scaling
transformation is performed. It is seen that also in this case all
data points collapse to one universal curve. Together, all these
results suggest that the transition between different orderings
driven by an adiabatic change of the shape of the trap, in the
limit of very strong interactions, has many properties similar
to those known from the theory of quantum phase transitions.
This means that in the limit of infinite interactions, for a given
shape of the trap, the system has a well-established ordering.
In the vicinity of the transition point, the system undergoes
a rapid transition—single-particle densities change to form a
new ordering.

VIII. CONCLUSIONS

To conclude, in this article we have discussed the properties
of several fermions confined in a one-dimensional trap in the
very strong interaction limit. We show that the mass difference

between components, independently of the confinement’s
shape, always leads to a spatial separation between flavors.
However, the nature of the separation depends on the shape,
i.e., for a given shape the density profile of either lighter or
heavier particles is split into two parts and pushed out from the
center of the trap. This observation subsequently led us to the
concept of a transition between orderings driven by the shape
of the trap. We show that this transition has many properties
in common with standard quantum phase transitions, and can
be similarly analyzed within the finite-size scaling framework.
In this way we find critical shape values for different numbers
of particles for which the system undergoes transitions and
we have estimated the relevant critical exponents for these
transitions. It is worth noticing that in the case of one-
dimensional systems, typically smooth crossovers rather than
rapid transitions between different phases are suspected. From
this point of view the transition predicted here is quite a rare
and interesting phenomenon.
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