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Lindblad decoherence in atomic clocks
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It is shown how possible corrections to ordinary quantum mechanics described by the Lindblad equation might
be detected by exploiting the great precision of atomic clocks.
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In searching for an interpretation of quantum mechanics
we seem to be faced with nothing but bad choices [1]. To
avoid both the dualism of the Copenhagen interpretation
and the endless creation of inconceivably many branches
of history of the many-worlds approach, while at the same
time holding on to a realist description of the evolution
of physical states from moment to moment, we may try
to modify quantum mechanics so that during measurement
the density matrix of even an isolated system undergoes a
collapse of the sort called for by the Copenhagen interpretation.
The idea is that this collapse is rapid in systems containing
macroscopic elements, such as apparatus or physicists, while
the corrections to quantum mechanics are very small in purely
microscopic systems such as atoms. A collapse of the density
matrix has already been described theoretically in interesting
modifications of quantum mechanics [2]. Here we wish to
explore the possibility of observing small departures from
quantum mechanics by exploiting the great precision of atomic
clocks. Apart from this aim, the formalism developed here may
prove useful in describing limits on the precision of atomic
clocks in ordinary quantum mechanics due to their interaction
with the environment.

First, a reminder of the time dependence to be expected
both in modified versions of quantum mechanics and in open
systems. To avoid instantaneous communication at a distance
[3], the density matrix at time t ′ is assumed to depend only
on the density matrix at any earlier time t , but not otherwise
on the state vector at earlier times. Following the rules for
composition of probabilities, we take this to be a linear
relation. We require that this relation preserves the trace and
the Hermiticity of the density matrix, and satisfies a condition
of complete positivity [4]. It is well known that under these
assumptions the time dependence of the density matrix is given
by a first-order differential equation, the Lindblad equation [5]:

ρ̇(t) = −i[H,ρ(t)] +
∑

α

[
Lα ρ(t) L†

α

− 1

2
L†

α Lα ρ(t) − 1

2
ρ(t) L†

α Lα

]
. (1)

We are here considering only a Hilbert space of finite
dimensionality d, which is adequate for the application we
have in mind. (We ignore the translational degree of freedom
of atoms.) In Eq. (1), H is a d × d Hermitian matrix that
can be identified with the Hamiltonian of ordinary quantum
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mechanics, and the sum runs over not more than d2 − 1
matrices Lα , which represent the departure from ordinary
quantum mechanics. We use units with � = 1.

The form of Eq. (1) also assumes time-translation invari-
ance, in which case the relation between ρ(t) and ρ(t ′) depends
only on t ′ − t , and the matrices H and Lα are time independent.
This is of course not the case throughout the history of
atoms in an atomic clock, which are intermittently exposed
to external electromagnetic radiation. But atomic clocks rely
on a “Ramsey trick” [6], in which atoms are exposed to
electromagnetic radiation only in two relatively short bursts,
separated by a much longer interval in which they are free
of external fields. It is this long time interval between bursts
that gives the atomic wave function a chance to get out of
phase with the electromagnetic wave, and so leads to the high
precision with which the frequency of the wave can be tuned to
that of the atomic transition, and it is also during this field-free
period that the small effects due to the corrections to ordinary
quantum mechanics have a chance to build up. So to deal with
atomic clocks we shall first consider the field-free case, with
time dependence prescribed by the time-independent Eq. (1),
and then return to the clocks.

We will simplify our task here by assuming (in agreement
with observation) that the states |m〉 with which we have to
deal are stable, aside from radiative transitions that are slow
enough to be ignored. We shall also assume that Eq. (1) does
not allow a decrease in the von Neumann entropy −Tr(ρ ln ρ)
for any ρ. It follows then that the stable states are eigenstates
of Lα , L†

α , and H , with eigenvalues that we shall call �αm, �∗
αm,

and Em.
Here is the proof [7]. If |m〉 is stable then the right-hand side

of Eq. (1) must vanish if we take ρ to be the projection operator
�m = |m〉〈m| on such a state. Multiplying this equation on the
left with �m and taking the trace, with a little rearrangement
we have

0 = Tr

{∑
α

[Lα,�m]†[Lα,�m]

}

+ Tr

{
�m

∑
α

(L†
αLα − LαL†

α)

}
. (2)

The necessary and sufficient condition for the nondecrease
of entropy is the vanishing of the sum over α in the second
term [8], leaving us here with the vanishing of the first term,
and hence with the vanishing of [Lα,�m] for all α. The adjoint
shows that also [L†

α,�m] vanishes for all α. Then the vanishing
of the right-hand side of Eq. (1) where ρ = �m requires also
that [H,�m] = 0. Letting these vanishing commutators act on
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|m〉 shows immediately that |m〉 is an eigenstate of Lα , L†
α ,

and H , as was to be proved.
Note that we have not had to assume that the discrete stable

states form a complete set. Indeed, we only need to assume
stability for the two states involved in the clock transition.
To digress a bit, if we had assumed that the stable states
form a complete set, then we could have concluded from
the above that these states would form a basis in which Lα ,
L†

α , and H are all diagonal, so that they would all commute
with each other, and so energy would be conserved—not a
surprising conclusion, though it could not have been reached
here without our further assumption of nondecreasing entropy.
The conservation of energy by the Lindblad equation might
raise problems with locality and Lorentz invariance [9], though
this is uncertain [10].

In accordance with this theorem, Eq. (1) gives the density
matrix the time dependence:

ρmn(t) ∝ exp[−i(Em − En)t − λmnt], (3)

where |m〉 and |n〉 are any two stable states and

λmn =
∑

α

[
1

2
|�αm|2 + 1

2
|�αn|2 − �αm�∗

αn

]

=
∑

α

[
−i Im(�αm�∗

αn) + 1

2
|�αm − �αn|2

]
. (4)

We note that Reλmn � 0, so all elements of the density matrix
decay except for those with Reλmn = 0. Also, λmm = 0, so
the diagonal elements ρmm(t), and typically only the diagonal
elements, are time independent.

Now let us see what this implies for the tuning of the fre-
quency of an electromagnetic wave to the transition frequency
Ee − Eg between stable states |g〉 and |e〉 in an atomic clock.
(The labels e and g are conventional, standing for “excited
state” and “ground state,” though g and e can be any two stable
states of the atom.) Each atom is exposed twice for periods
each lasting a relatively short time τ to an oscillating external
electromagnetic field, which adds to the Hamiltonian a term
H ′ exp(−iωt) + H ′† exp(iωt), and can drive the transition
g → e when the real frequency ω is tuned to a value near
Ee − Eg . We will work with an “interaction picture” density
matrix ρI

mn(t) ≡ exp (i(Em − En)t)ρmn(t). We assume that the
exposure period τ is short enough so that τ |λmn| 	 1, and
hence during this period changes in ρI arise only from the
oscillating external field. We make the usual assumptions
that τ |Ee − Em| 
 1 for m �= e, τ |Eg − Em| 
 1 for m �= g

and τ |ω| 
 1, which allows us to drop rapidly oscillating
terms in the equation for ρ̇I and keep only those terms
with time dependence proportional to exp(±i	ωt), where
	ω ≡ ω − Ee + Eg . We also suppose that as usual in atomic
clocks the frequency of the external field has been tuned so that
|	ω| 	 |H ′

eg|, and hence the frequency of Rabi oscillations is

/2 = |H ′

eg|. Under these assumptions, the density matrices
at times t and t + τ are related by

ρI (t + τ ) = U (t + τ,t)ρI (t)U †(t + τ,t), (5)

where

Uee(t + τ,t) = Ugg(t + τ,t) = cos(
τ/2),

Ueg(t + τ,t) = U ∗
ge(t + τ,t) = −iei	ω t sin(
τ/2). (6)

(We are choosing the relative phase of the states e and g so
that H ′

eg is real and positive, and hence equal to 
/2.)
If an atom starts at t = 0 in the pure state g, then at time

t = τ its density matrix ρI (t) = U (τ,0)ρI (0)U †(τ,0) will have
components

ρI
ee(τ ) = sin2(
τ/2), ρI

gg(τ ) = cos2(
τ/2),

ρI
eg(τ ) = ρI∗

ge (τ ) = ie−i	ωτ cos(
τ/2) sin(
τ/2), (7)

which of course still represents a pure state.
Then for a Ramsey time T 
 τ the atom travels through

field-free space, so the only time dependence of the density
matrix ρI in this period arises from the Lindblad term in Eq.
(1). In accordance with Eq. (3), the density matrix at the end
of this period is

ρI
ee(τ + T ) = sin2(
τ/2), ρI

gg(τ ) = cos2(
τ/2),

ρI
eg(τ + T ) = ρI∗

ge (τ + T )

= ie−i	ωτ e−λegT cos(
τ/2) sin(
τ/2). (8)

Then in a second period of duration τ the atom is again
exposed to the same external electromagnetic field, and the
density matrix is changed to

ρI (2τ + T ) = U (2τ + T ,τ + T )ρI (τ + T )U †

× (2τ + T ,τ + T ). (9)

A straightforward calculation gives the probability Pe that the
atom will wind up in the excited state:

Pe = ρI
ee(2τ + T ) = 1

2 sin2 
τ {1 + e−�T cos[(ω − Ee

+Eg − E)T ]} , (10)

where we write λge = � − iE with � and E real, and hence
according to Eq. (4)

� = 1

2

∑
α

|�αg − �αe|2, (11)

E = −
∑

α

Im{�αg�
∗
αe}. (12)

In using atomic clocks the excitation probability Pe is
measured as a function of frequency ω by repeating the
observation of the fraction of atoms excited for various chosen
frequencies ω. Then ω is tuned to maximize Pe, so that ω will
then normally be expected to equal the reference frequency
Ee − Eg within an uncertainty of order 1/T .

If there were corrections to ordinary quantum mechanics in
Eq. (10) with � of order 1/T or greater, the shape of the curve
of Pe versus ω would be grossly altered. For instance, for �T =
1, the ratio of the minimum value of Pe to its maximum value
would be 0.46 instead of zero, and the ratio of the value of Pe

where it is most rapidly varying with frequency to its maximum
value would be 0.73 instead of 0.5. Seeing such a departure
from expectations would be a good sign of a departure from or-
dinary quantum mechanics. A change in the form of Pe versus
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ω this drastic would generally have been seen in atomic clocks
and has not been seen [11], so it seems safe to conclude that
� is less than the values of 1/T encountered in atomic clocks.

Unfortunately we have no idea of what target value of � we
should aim at, or even how � might vary from one transition
to another. We can distinguish two extreme cases.

If � has similar values for all transitions, then we should
look at clocks for which the Ramsey time T is as long as
possible. Modern atomic clocks typically have T of the order
of seconds, but a clock [12] using a microwave-frequency
transition in trapped 171Yb+ ions has operated with T > 600 s.
Hence we can conclude that in this transition � < 10−18 eV.
This upper limit shows that environmental effects make it
hopeless to look for departures from quantum mechanics on
macroscopic scales, where the energy of interaction with
the environment is presumably always much greater than
10−18 eV. On the other hand, this upper bound is enormous
compared with the difference between energies of discrete
states of macroscopic objects that are free from all external
influences. For instance, according to quantum mechanics, the
successive energy eigenstates of a pointer of mass 1 g and
length 1 cm that swivels freely in two dimensions is about
10−42 eV. Thus departures from ordinary quantum mechanics
with � less than the limit 10−18 eV derived from atomic clocks
might still have a powerful effect on the quantum states of
macroscopic systems if they could somehow be isolated from
their environment.

If instead � somehow scaled with the transition frequency
Ee − Eg , then we would want to set a limit on �/(Ee − Eg),

rather than on � itself. For this purpose it would be more
useful to look at clocks for which the fractional imprecision
1/T (Ee − Eg) is as small as possible. For optical clocks with
T of the order of 1 s this is 10−15, but a clock using 37Al ions
achieved a value of about 3 × 10−17 [13], so we can conclude
that at least for these transitions �/(Ee − Eg) < 3 × 10−17.

In addition to a change in the shape of the curve of Pe versus
ω, Eq. (10) also entails a shift in the frequency at the maximum
value of Pe, from Ee − Eg to Ee − Eg + E . Detecting this
frequency shift is impossible in a two-state system if we do not
have independent information about the uncorrected frequency
Ee − Eg . The prospects are brighter if it is possible to drive
transitions among three different energy levels, because actual
energy differences trivially obey the relation

(E1 − E2) + (E2 − E3) + (E3 − E1) = 0

while there is no reason to expect the frequency shifts Eij to
obey the corresponding relation

E12 + E23 + E31 = 0.

It remains to be seen if there is a three-level system suitable
for this purpose.
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