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The quantum character of Josephson junctions is ordinarily revealed through the analysis of the switching
currents, i.e., the current at which a finite voltage appears: A sharp rise of the voltage signals the passage (tunnel)
from a trapped state (the zero voltage solution) to a running state (the finite voltage solution). In this context, we
investigate the probability distribution of the Josephson-junction switching current taking into account the effect
of the bias sweeping rate and introducing a simple nonideal quantum measurement scheme. The measurements
are modeled as repeated voltage samplings at discrete time intervals, that is, with repeated projections of the
time-dependent quantum solutions on the static or the running states, to retrieve the probability distribution of
the switching currents. The distribution appears to be immune to the quantum Zeno effect, and it is close to,
but distinguishable from, the Wentzel-Kramers-Brillouin approximation. For energy barriers comparable to the
quantum fundamental energy state and in the fast bias current ramp rate the difference is neat, and remains sizable
in the asymptotic slow rate limit. This behavior is a consequence of the quantum character of the system that
confirms the presence of a backreaction of quantum measurements on the outcome of mesoscopic Josephson
junctions.
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I. INTRODUCTION

Josephson junctions (JJs) are a well-established playground
for macroscopic quantum tunneling [1–7] and a prominent
field where the basic concepts of quantum mechanics have
been successfully demonstrated in a mesoscopic system,
with potential technological implications in quantum com-
puting [8]. The subject is of interest per se as an application
of quantum dynamics to a macroscopic object (analogous, for
example, to the particlelike dynamics of fluxons described by
collective coordinates [2] or to the motion of the end masses of
advanced gravitational wave detectors working near the quan-
tum limit [9]) and to validate nonideal quantum measurement
models [10]. On the mathematical side, the quantum dynamics
associated to unbounded potentials, as the cubic approxima-
tion [11,12], is an open problem; possible approaches are the
Wentzel-Kramers-Brillouin (WKB) approximation [1,13], the
semiclassical approach [14], or the time-dependent imaginary
potential [10]. On the experimental side, the quantum character
of the dynamics of Josephson devices has been investigated in
pioneering works that have shown the occurrence of a tunnel,
or the passage across a barrier higher than the available system
energy [1]. The quantum nature of the phase difference is in
fact uncovered by showing that no matter how cold is the
junction the phase difference can overcame a finite barrier
energy and move from the zero to the finite voltage state.
The experiments are delicate, and the mere appearance of a
switch event (a sudden appearance of a finite voltage) at a
temperature where it is unlikely is not a definitive proof. In
fact one could conceive that the environment noise enters the
system bearing an effective temperature that is higher than the
thermodynamic temperature. When escapes can be ascribed
to stochastic activation, it is difficult to discern between
thermal activation [15,16] and the quantum tunnel [1,3–7],
in as much as several quantum effects, as resonance with
level quantization [17] and Rabi oscillations [18], have been

reproduced in classical activated JJs. It is therefore important
to pinpoint effects that are unique for quantum systems, and
could not possibly be confused with the classical analog. In
this work we propose to consider the effect of nonideal (non
von Neumann) quantum measurements [19], as the influence
of measurements on the system is a peculiar feature of
quantum mechanics, without a classical counterpart. Repeated
measurements on a quantum system (monitoring) require that
a detector reveals the position, and that such determination
affects the subsequent dynamics of the system, in as much
as the quantum track associated to the measurements pro-
cess entails a sequence of evolution and projections on the
appropriate subspace [20–22]. In this context, we apply a
discrete time scheme, where measurements only take place
at discrete, predetermined (by the observer) time intervals. We
choose discrete time measurements also to avoid the problems
connected with continuous time monitoring of a quantum
system [20,21,23] and the quantum Zeno effect [24,25].
Discrete measurements allow us to investigate whether this
extra degree of freedom, the frequency of the measurements,
has an impact [26] on quantities experimentally accessible for
JJs, namely, the switching currents. Our investigation points
toward a qualitative effect of the measurements frequency: the
peak of the probability distribution of the exit currents moves
to lower values.

The work is organized as follows. In Sec. II we set the stage
for the analysis of quantum measurements, first describing in
Sec. II A the basic equations and the appropriate boundary
conditions to hinder spurious reflections, then in Sec. II B
we describe a procedure to project the two outcomes of
the measurements (either zero or nonzero voltage) for the
calculation of the probability distribution of the switching
currents. In Sec. III we detail the effect of the measurements
on the zero voltage solution. Section IV contains the main
outcome of the approach: the effect of the measurement
frequency and of the bias current ramp time on the probability
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distribution of the switching currents. After the conclusions
of Sec. V, the Appendix details the dependence of the
distribution upon the sweep bias time in the adiabatic, WKB
approximation.

II. THE MODEL

In this section we describe the basic equations, including the
treatment of boundary conditions in Sec. II A. The procedure
to retrieve the probability distribution of the switching currents
from the projection procedure is in Sec. II B.

A. Basic equations

The quantum dynamics governing the gauge-invariant
phase difference ϕ between two superconductors is given by
a probability distribution ψ(ϕ,t ′), as results from the solution
of a Schrödinger equation:

i�
∂ψ

∂t ′
=

[
− �

2

2M

∂2

∂ϕ2
− EJ

(
cos(ϕ) + γ (t ′)ϕ

)]
ψ. (1)

In normalized units [10,13] it reads

i
∂ψ

∂t
=

[
−1

2

∂2

∂ϕ2
− V0(cos (ϕ) + γ (t)ϕ)

]
ψ. (2)

Here time is normalized to �/M , where for a small JJ the
mass reads M = C(�0/2π )2, where C is the junction capac-
itance and �0 = h/2e denotes the magnetic flux quantum.
The dimensionless parameter V0 = EJ /EC is the normalized
maximum-energy barrier that results from the ratio between
the Josephson energy EJ = I0�0/2π and the Coulomb energy
EC = �

2/[C(�0/2π )]2, where I0 is the critical current of
the JJ. Normalizing the bias current with respect to I0, the
time-dependent applied current I (t) reads γ (t) = I (t)/I0, that
is ramped in a time T from γ (0) = 0 to γ (T ) = 1. To increase
the normalized bias current γ amounts to tilt the potential

U = −V0[cos(ϕ) + γ ϕ] (3)

associated to Eq. (2), while the corresponding barrier (normal-
ized with respect to EC)

�U = 2V0[
√

1 − γ − γ arccos γ ] (4)

decreases and eventually, close to γ = 1, becomes small
enough to make the tunnel probability current sizable. The
process is initiated for γ = 0 when the Hamiltonian (2) is
periodic; at this initial point it is appropriate to use the
eigenfunctions:

ψ(ϕ,0) = 1√
2π

ce0[(ϕ + π )/2,4V0], (5)

where ce2n are ce Mathieu’s cosine elliptic functions [27,28].
For any subsequent time, even after a negligible lag, the bias
current breaks the symmetry and destroys the periodicity.
Consequently, the wave function collapses into the truncated
equation:

ψ(ϕ,0+) = θ (ϕ + π ) − θ (ϕ − π )√
2π

ce0[(ϕ + π )/2,4V0]. (6)

Here θ is the Heaviside step function. The boundary conditions
for the zero current case are periodic, ψ(−π,0) = ψ(π,0),

while for any finite current the appropriate boundary condi-
tions

∀t > 0 : lim
ϕ→±∞ ψ(ϕ,t) = 0 (7)

are such that the wave function vanishes at ±∞. The limit
at −∞ is physically ensured, for the increasing potential
forbids propagation. More care is necessary at the edge at
+∞, for the potential unbounded from below requires an
absorbing condition that determines a net probability flux at
infinity. In principle the integration extends indefinitely in
space, but for numerical simulations, that we perform with
a Cranck-Nicholson method [29], it is of course necessary
to truncate the domain. This truncation is problematic, in as
much as an abrupt discontinuity generates spurious reflections
that are incompatible with a running state towards infinity. We
have therefore inserted a perfect matched layer [30,31] that
acts as an absorber at a finite distance and avoids unphysical
backwards reflections from the finite distance boundary. We
denote with P (ϕ < ∞,t) the probability to locate the solution
in any finite position of the integration domain, that is
not conserved in the presence of a perfect matched layer
boundary [32]. The missed probability corresponds to the
absorbed norm radiated towards infinity.

B. Switching-current probability distribution

The wave function ψ(ϕ,t) exhibits the special features of a
quantum solution, for instance it can tunnel through an energy
barrier [1], or stay at discrete metastable energy levels [1], or
show Rabi oscillations [3], to name a few examples among
many [4,5,7]. These quantum effects are macroscopic, for the
phase ϕ is linked to the macroscopic current γ and voltage v

through the celebrated Josephson equations:

γ = sin ϕ, (8)

v = dϕ

dt
. (9)

It is the connection between the phase ϕ and the accessible
quantities γ and v that allows us to detect tunnel events. In
fact, the experiments to ascertain the quantum nature of the JJ
are based on the analysis of the distribution of the passages,
or switchings (as often named in JJ jargon), to the finite
voltage state [1,3], for the direct observation of the quantum
phase difference is not possible. To illustrate the meaning of
switching current, we refer to Fig. 1. The phase described by
the wave function ψ1(ϕ,t) just before the voltage measurement
(denoted by a dashed line in Fig. 1) is assumed to tunnel across
the potential barrier if it is found in region II. If found in
the region ϕ > ϕ∗ the representative point runs downhill: the
phase suddenly increases and a voltage spike appears, as per
Eq. (9). It is therefore possible to ascertain if a tunnel event
(the passage from region I to region II) has occurred measuring
a voltage.

To include the effect of the measurements at precise time
intervals, we use the following simple model of nonideal
quantum measurements. Let us assume that in the ramp time
T one performs N repeated measurements of the voltage at
each instant t = nT/N, n = 1,2,...,N . When a measurement
occurs, the two possible outcomes are (i) a finite voltage
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FIG. 1. Sketch of the measurement process at the time t = nT/N .
The red (thin, light gray) solid curve sketches, in arbitrary units,
the washboard potential, Eq. (3). The vertical line denoted by ϕ∗

corresponds to the separation between the trapped state (region I)
and the running state (region II). The dashed black curve (also
reported in the inset), except for a normalization constant, is the
square modulus of the wave function, just after the measurement,
|ψ2(ϕ,t)|2; see Eq. (6). The solid curve represents its evolution, as
per Eq. (2), after 103 normalized units: |ψ2(ϕ,t + 103)|2. The presence
of a finite probability in region II behind the energy barrier limited by
ϕ∗ corresponds to the possibility of escapes, i.e., to tunnel towards
nonzero voltage solutions. The nonzero current of probability at the
boundary demonstrates that the perfect matched layer [32] gives the
expected decaying towards infinity.

has been measured (switching) or (ii) no voltage is detected
(zero voltage state). We identify the switching probability
p(t = nT/N ) of outcome (i) with the probability to localize
the wave function ψ1(ϕ,t) behind the maximum of the
potential, ϕ > ϕ∗:

p(t = nT/N ) ≡
∫ ∞

ϕ∗
|ψ1(ϕ,t)|2dϕ. (10)

Quantum mechanics dictates to model the effect of the
measurement process on the wave function. Following the
standard von Neumann interpretation of measurements, one
should project the state on the two corresponding subsets.
Unfortunately, the operator associated to the projections on the
two measurement outcomes is not easily defined [10] (the same
difficulty that affects arrival time quantum problems [21]).
To model the effect on the wave function ψ1(ϕ,t) of a
voltage detector that discriminates between static (v = 0)
and dynamics (v 	= 0) we introduce a nonideal quantum
measurement scheme as follows. If the JJ has moved from
the supercurrent to the finite voltage (a voltage is detected),
we assume that the function has collapsed into a state from
which it cannot go back to zero [10]. In the opposite case,
in which the voltage has not appeared, after the measurement
we modify the wave function ψ1(ϕ,t) to obtain the measured

wave function ψ2(ϕ,t) located inside the potential well, region
I of Fig. 1:

ψ2(ϕ,t) =
√

1

1 − p(t = nT/N )
θ [ϕ∗ − ϕ]ψ1(ϕ,t). (11)

Here the prefactor [1 − p(t = nT/N )]−1/2 ensures the
correct normalization. In the end, at each nth measurement
at the time t = nT/N we retrieve both a probability of
a voltage switch p(t = nT/N ) given by Eq. (10) and an
initial wave function given by Eq. (11). The latter function is
inserted into the time-dependent Schrödinger equation (2) and
integrated for a time interval T/N , while ramping the current,
to reconstruct a discrete time history (in the language of
quantum measurements [20]). The purpose of the calculations
is to determine the probability distribution function (PDF) of
the switching currents, that we name Pγsw (γ ) [33].

We start noticing that Eq. (10) for n = 1 describes the
probability that a switch occurs at the current γ (t). The initial
state at t = 0 (n = 0) is surely a static, nonswitched state; in
fact for γ = 0 the periodic boundary conditions of Eq. (2)
forbid tunneling. Thus, for the first time interval, n = 1,
the connection between the switching-current distribution
Pγsw (γ ) and the probability p(t = T/N) of a switch reads
p(t = T/N) = Pγsw (1/N). For the subsequent measurements,
the probability of a switch is conditioned by the probability
that a switch has not occurred in all previous measurements,
that gives the following rule for n � 2:

Pγsw (n/N ) = p(t = nT/N )
n−1∏
k=1

[1 − p(kT /N)]. (12)

The distribution of switching-current probability Pγsw (n/N )
is the quantity that can be promptly compared with exper-
iments [1,3–7] and it reproduces the qualitative features of
the macroscopic quantum tunnel in JJs: the appearance of a
peak, or a most probable switching current when the potential
energy is comparable to the quantum fluctuations [13]. For a
detailed comparison with tunnel theory we consider the WKB
approximation for the normalized rate 
:


(γ ) = ωp(γ )

2π

√
120π

7.2�U (γ )

ωp(γ )
× exp

[
−7.2�U (γ )

ωp(γ )

]
,

(13)

where ωp = (1 − γ 2)
1/4

V
1/2

0 is the normalized plasma fre-
quency. The corresponding probability distribution of the
switching currents reads

Pγsw (γ ) = N T 
(γ ) × exp

[
−T

∫ γ

0

(x)dx

]
. (14)

Here N = 1 − exp [−T
∫ 1

0 
(x)dx] is the normalizing factor;
the details of the derivation are in the Appendix. Equation (14)
represents the connection between the WKB tunnel rate
expression and the effect of the measurements at time intervals
T/N .
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III. DYNAMICS OF THE STATE AFTER QUANTUM
MEASUREMENTS

In this section we describe the behavior of the quantum
wave function after a measurement. We only distinguish two
outcomes of a voltage measurement in JJs: (i) a running state
in the ϕ > ϕ∗ region at finite voltage and (ii) a state localized
in the ϕ < ϕ∗ region at zero voltage. In the former case (i) the
current is registered as a switch, the procedure is completed,
and it is not necessary to know the further evolution of the
device. In the latter case (ii) the information obtained by the
measurement has modified the wave function, as described
by Eq. (11). The dynamics of the absorbed norm just after
a measurement is shown in Fig. 2(a), where the effect at
infinity of the radiative boundary conditions is displayed in two
different cases. The dashed red (light gray) line is the behavior
of a purely resonant fundamental state, while the solid black
curve refers to the decay of the fundamental resonance state
after a measurement has been performed on it. It can be seen
that the change in the wave function due to the measurement
first causes the appearance of a finite relaxation time, about
20 in Fig. 2(a). After this time interval a radiative decaying
starts to sets in, with a slope coefficient close to the coefficient
computed for the nonmeasured fundamental state.

Further, in Fig. 2(b) we report the asymptotic slope of
decaying dynamics of the absorbed norm, that clearly depends
upon the bias current. This is so in as much as the higher the
bias the lower the energy barrier, and therefore the steeper the
decay.

In Fig. 3 we plot the theoretical decay rate 
 as per Eq. (13)
compared to the numerical decay rates after a quantum mea-
surement, given by the solid line in Fig. 2(a). We observe that,
apart from the constant relaxation time shown in Fig. 2(a), the
observed decay rate after a measurement well agrees with the
theoretical WKB prediction. Put in another way, the quantum
measurement leaves unchanged the rate and only causes an
initial relaxation time. This time depends essentially on the
value of barrier height coefficient V0 as elucidated by Fig. 4,
where different norm absorption dynamics are displayed for
the same WKB rate (computed for V0 = 4 and γ = 0.4). The
behavior in Fig. 3 demonstrates that the escape rate weakly
depends upon the bias current far from the critical current
(1 in these normalized units). Thus, to measure switching
currents it is necessary to approach the critical current, since
JJs are fast devices and the ramp time T is very long in usual
measurement setups. The quantum measurements’ effect on
switching current should be enhanced for relatively fast ramp
time and low V0 barrier coefficient. This is also reflected in the
fact that large changes in the rate cause small changes of the
peak of the switching-current distribution.

By way of this part, we have noticed that the truncation,
see Eq. (11), due to a null measurement induces a delay in
the tunnel, for the solution is narrowed in a smaller region.
Being a constant time lag, the effect becomes negligible
when measurements are operated at long intervals, i.e., in the
adiabatic regime.

IV. RESULTS

We here collect numerical results and theoretical esti-
mates. The transient dynamics in between two measurements

(a)

(b)

FIG. 2. (a) Radiated probability absorbed by the radiative bound-
ary condition: red (light gray) dashed curve, initial condition, the
fundamental resonance without measurement; black solid line, initial
condition, the fundamental resonance with measurement as per
Eq. (11). (b) The probability that the wave function is found in the
integration domain as a function of the time for different values
of the bias current γ , from γ = 0.45 to 0.6 with step γ = 0.05.
The normalized maximum energy barrier is V0 = 4.

described in Sec. III suggests that two regimes can be
recognized in the quantum escape simulations: (a) small time
intervals between two measurements, i.e., T/N comparable
with the relaxation time; and (b) large time lag between
measurements, when T/N is large and the relaxation time
can be neglected. We treat the two regimes in the following
subsections: In the first case brute force numerical simulations
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FIG. 3. Decay rate of the solution after a quantum measurement
(dots-solid line) compared to the WKB rate, Eq. (13) as a function of
the bias current. The dimensionless energy barrier reads V0 = 4. We
underline that both axes are on a log scale.

are the only means to retrieve the escape rate and the
current distribution. To the contrary, for long time intervals
T/N numerical simulations are difficult, in as much as the
integration time becomes prohibitive. In this regime we resort

FIG. 4. Effect of V0 value on relaxation time. The curves show
the behavior of the absorbed norm at infinity (radiative condition)
computed starting from a quantum measured fundamental resonance
having the same WKB decay rate. The reference rate is displayed
in the dashed line (nonmeasured fundamental state) for V0 = 4 and
γ = 0.4

FIG. 5. The probability distribution Pγsw (n/N ) of the switching
currents for repeated measurements. The ramp time is T = 800;
during this time the number of measurements changes from N = 50
to 3200. The normalized maximum energy barrier is V0 = 4.

to an adiabatic approximation of the dynamics in between two
measurements, as will be discussed in Sec. IV B.

A. Numerical simulations for small T/N

The usual technique to reveal a tunnel in JJs is the
PDF of the switching current, that we have retrieved with
the methods described in Sec. II B and that are displayed
in Fig. 5. Without disturbances, neither classical (intrinsic
thermal fluctuations or external noise) nor quantistic (tunnel)
distribution should amount to a δ function peaked at the critical
current γ = 1. Bell shaped distributions as those displayed
in Fig. 5, exhibiting premature switches before the critical
current, demonstrate the occurrence of a quantum tunnel, if
noise and thermal fluctuations are kept at bay. Several features
of the PDF of Fig. 5 are worth noticing. First, the measurement
scheme that we employ reproduces the typical shape of the
experiments [1,3,5–7,34] and of the WKB theory [13]. Second,
it is evident that the number of measurements N in a given ramp
time (T = 800 in this case) has an effect on the PDF, but does
not lead to the Zeno paradox [24,25]. To sum up the effect of
the measurements, we focus on the peak of the distribution of
the current switches. The behavior is shown in Fig. 6, where the
current γM at which a peak of the switching probability occurs
is displayed, as a function of the ramp time T for different
values of the number of measurements N (for reference, we
also include the WKB approximation). From Fig. 6 it is evident
that the peak γM moves to lower currents when the current
is ramped more slowly. The qualitative agreement with the
WKB approximation (13), (14) is to be expected, as the slower
the ramp the longer it takes the barrier to decrease [34–36].
The new element in the calculations of Fig. 6 is the effect
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FIG. 6. Behavior of the maximum probability of switch as a
function of the current ramp time. For each ramp time we report
the effect of the number of measurements as per Eqs. (2) and (12).
The dashed line represents the WKB approximation given by Eq. (13).
The normalized maximum energy barrier is V0 = 4.

of the number N of discrete measurements along the ramp.
For a given ramp time T the effect of the measurements
is to decrease the current at which a peak of the switching
probability occurs. This is intuitively to be expected, as in the
limit of no measurements the system is not observed, and there-
fore the switching events cannot be registered no matter how
high the current. It is also interesting to notice that the WKB
approximation does not correspond either to the limit of infinite
measurements (N → ∞, continuous measurements, or moni-
toring) or to the case of rare measurements (N → 0). We thus
confirm that the WKB estimate, Eq. (11), that does not include
the effects of the measurements, is notwithstanding a reliable
guess of the tunnel induced switching-current distribution.

B. Numerical simulations for large T/N

We here discuss the method to retrieve the switching-
current distributions for large ratios of the ramp times with
respect to the number of measurements, namely, T/N . In
the limit of long intervals between subsequent measurements,
T/N → ∞, the relaxation time after each measurement
becomes negligible and the consequences of wave-function
collapse become inessential. Figure 7 demonstrates that for
a time interval T/N 
 102 it is possible to appreciate a
difference between the WKB approximation and the numerical
simulations. The discrepancy between WKB theory (that
neglects quantum measurements) and experiments (that of
course do make measurements) can be ascribed to the
perturbation due to the measurements introduced by a finite
time lag (the relaxation time, see Fig. 2). To make a direct
comparison with the available experimental data, we have
performed simulations of the switching currents to elucidate
the convergence towards the WKB approximation keeping

FIG. 7. Cumulative distribution of quantum escape times in the
long T/N regime. The black circles represent the WKB switching-
current cumulative distribution corresponding to the PDF reported
in Eq. (14). Gray squares represent numerical simulations. The
normalized maximum energy barrier is V0 = 4, the number of
measurement reads N = 100, and the ramp time is T = 104.

fixed the number of measurements (N = 100) and increasing
the ramp time in the range T 
 103–104; see Fig. 8.

In this representation it is evident that the peak of the
distribution moves when the ramp time decreases, approaching
the WKB limit. For relatively slow ramp times, namely,
T = 104, there is still a detectable difference with the WKB
approximation that neglects the effect of measurements. The
normalized value 104 corresponds for the typical time scale of
the JJ to an accessible ramp time. Therefore, even if smaller
ramp times are not available, the neat difference between
the standard approach that neglects measurements (the black
circles in Figs. 7 and 8) and the WKB approximation (the gray
curves in Figs. 7 and 8) makes it realistic to reveal the quantum
nature of the measurements.

V. CONCLUSIONS

In conclusion, we have modeled the influence of mea-
surements on Josephson mesoscopic devices with a time-
dependent Schrödinger equation, dealing with the problem of
the boundary conditions with an appropriate analog of a perfect
matched layer. Solving this model, we have studied the effect
of the number of measurements and of the bias current ramp
time on the switching-current distribution. The effect is evident
in the fast ramp time regime, as a consequence of the presence
of a relaxation time, but it is also sizable in the slow ramp time
regime. In the limit of continuous monitoring our approach
reproduces a bell shaped distribution that is compatible with
the standard WKB result. As the number of measurements
increases, the peak of the switching current moves towards
lower values. The effect, in the adiabatic regime, is best
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FIG. 8. The probability distribution Pγsw (n/N ) of the switching
currents for repeated measurements (triangles, squares, and dia-
monds) and the WKB approximation (circles) for T = 104. The
number of measurements is N = 100 while the ramp time changes
from T = 3200 to 10 000. The normalized maximum energy barrier
is V0 = 4.

highlighted when the dimensionless energy barrier V0 is
of the same order of magnitude as the lowest energy level,
while the shift becomes vanishingly small for larger V0 values.
Thus, the main feature of our findings is that the peak of
the switching-current distribution depends on the measure-
ment scheme: increasing the number of measurements, while
keeping the ramp time constant, tunnel events occur at a lower
current. We underline that the change of the switching statistics
as a consequence of measurements is a quantum signature that
has no classical counterpart and cannot be confused with the
effect of undesired noise entering the system.

We feel it is important to mention some limitations of
the present work. First, we have neglected fluctuations and
dissipation, that require a different version of the Schrödinger
equation [2,37], as we are chiefly interested in the effect of
measurements, not in the details of the dynamics. Secondly,
although we have considered the voltage as the measured
quantity, we have not projected the states on the voltage
eigenfunctions; we have just used an operational approach
of nonideal quantum measurements to qualitatively reproduce
the experiments. Third, the time scale of experiments on su-
perconducting JJs is much longer than numerical simulations,
for actual experiments occur on a scale of ∼109 normalized
units; to retrieve the effect of realistic ramp time requires a
combination of numerical techniques (to obtain the response
to the measurement perturbation) and analytical techniques (to
extrapolate the tunnel rate). A natural extension of this work is
the use of more refined models, or more extended simulations,
to remove the above limits [32]. However, we speculate that
the shift of the switching-current distribution peak towards

lower values, while increasing the number of measurements
(as shown in Figs. 6), could be a robust result.
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APPENDIX: SWITCHING-CURRENT DISTRIBUTION
IN ADIABATIC APPROXIMATION

The purpose of this Appendix is to apply the adiabatic ap-
proximation for the switching-current distribution in the limit
T/N → ∞. We recall that the PDF of the switching currents
depends upon the bias sweep rate. In the adiabatic approxima-
tion of the quantum evolution of a time-dependent system the
transition occurs between instantaneous resonant states. This
can be done, in our scheme, if the time interval between mea-
surements is greater than the relaxation time. The starting point
is the theory of Fulton and Dunkleberger [35] for the tunnel rate
from a metastable potential [34,36]. We start by noticing that a
bias threshold γ in the range [0,1] is uniquely identified along
the ramp by the instant t when t = γ T . If �γ is an increment
of the bias small enough that the tunnel rate 
 of Eq. (13) can
be considered constant, the following formula holds:

Prob(γsw > γ + �γ ) = exp [−
(γ )�γT ] Prob(γsw > γ ).

(A1)

i.e., the probability to observe a switching current greater than
γ + �γ is equal to the probability to have jointly a switch
above γsw = γ and that no escape has occurred in the tiny
time interval �t = T �γ . The exponential factor assumes that
the effect of the bias change (during the process the bias rises
to 1 in the time T ) is negligible in �t , and is the probability
to have no switching during the small time interval �t =
T �γ . Equation (A1) can be recast in a differential equation
in the limit of infinitesimal �γ introducing CDF (γ ) =
1 − Prob(γsw > γ ). Furthermore we note that Pγsw (γ ) =
d
dγ

CDF (γ ). After straightforward manipulations we have

d

dγ
CDF (γ ) = 
(γ )T [1 − CDF (γ )] (A2)

with the additional condition that PDF should be normalized
to unity. The solution of the previous equation, with the
specified normalization condition, gives for Pγsw (γ ) the
following simple expression:

Pγsw (γ ) = NT 
(γ ) × exp

[
−T

∫ γ

0

(x)dx

]
, (A3)
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FIG. 9. The prefactor relevant for Eq. (A4) taking into account
relaxation time correction to the decaying of measured fundamental
resonance. The barrier height reads V0 = 4.

that is Eq. (14) [34–36]. The normalization constant N =
1 − exp[−T

∫ 1
0 
(x)dx] in the adiabatic regime is, roughly,

N ≈ 1.
In the quantum measurements regime the discrete his-

togram giving the distribution of the N measurements in the
discrete set of switching current {γk = k

N
}Nk=1 can be computed

starting again from Eq. (A1). In particular we can write

Prob(γsw > γk) = F (γk) exp[−
(γk)�γT ]Prob(γsw > γk−1)

(A4)

where, taking into account the result of the intrameasurement
dynamic, we have that

P

(
ϕ < ϕ∗,t = T

N

)
= F (γk) exp[−
(γk)�γT ], (A5)

that is valid in the limit T/N larger than the relaxation time
and in the adiabatic regime. In Eq. (A5), 
(γ ) is the numerical
rate and the prefactor F (γ ) > 1, as shown in Fig. 9, takes into
account the effect of quantum measurements, mainly due to the
appearance of a relaxation time. We use Eq. (A4) as a discrete
recursive formula to compute Pγsw (γk) = Prob(γsw > γk−1) −
Prob(γsw > γk), with the initial condition Prob(γsw > γ0) = 1.
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