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Detecting dimensional crossover and finite Hilbert space through entanglement entropies
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(Received 11 February 2016; published 19 October 2016)

The information content of the two-particle one- and two-dimensional Calogero model is studied by using
the von Neumann and Rényi entropies. The one-dimensional model is shown to have nonmonotonic entropies
with finite values in the large-interaction-strength limit. On the other hand, the von Neumann entropy of the
two-dimensional model with isotropic confinement is a monotone increasing function of the interaction strength
which diverges logarithmically. By considering an anisotropic confinement in the two-dimensional case we show
that the one-dimensional behavior is eventually reached when the anisotropy increases. The crossover from two
to one dimensions is demonstrated by using the harmonic approximation and it is shown that the von Neumann
divergence only occurs in the isotropic case. The Rényi entropies are used to highlight the structure of the model
spectrum. In particular, it is shown that these entropies have a nonmonotonic and nonanalytical behavior in
the neighborhood of the interaction strength parameter values where the Hilbert space and, consequently, the
spectrum of the reduced density matrix are both finite.
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I. INTRODUCTION

In the last few years there has been a growing interest
in models of many interacting particles with continuous
variables [1,2]. This interest is fueled by, on one hand, some
unexpected physical traits shown by the models and, on the
other hand, that they can be analytically treated to a great
extent providing exact solutions based on which one can assess
approximate ones [3].

Among the unexpected physical traits can be mentioned the
closeness between the occupation numbers of systems formed
by bosons or fermions in the appropriate regime [4]. In this
context, the occupation number of a natural orbital refers to the
eigenvalue and corresponding eigenvector of a given reduced
density matrix associated with the quantum state of the system.
We identify natural occupation numbers with the eigenvalues
of a reduced density matrix since they only differ in a constant
multiplicative factor: the number of particles that constitute
the system.

Even for those models with continuous variables where the
spectrum, the ground state and, in some cases, the excited
states of an N -particle system are exactly known, the reduced
density matrices that describe the quantum state of a subset of
p particles are rather difficult to calculate.

If N − p particles are traced out from the density matrix
associated with a quantum system with N particles, the matrix
obtained is usually called a p-reduced density matrix, or
p-RDM. The p-RDM allows us to study a number of physical
quantities as the natural orbital with its occupation numbers
as well as different kinds of quantum entropies. Unfortu-
nately, situations where exact p-RDM can be obtained [4–8]
are even more scarce than those where exact spectrum or
eigenstates are available. The cases where a p-RDM can be
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obtained exactly, like the Moshinsky [9], Calogero [10], and
Calogero–Sutherland [11] models, show clearly the difficulties
involved.

The Calogero model, its eigenstates and spectrum, were
known to be related to many other problems in physics, a
trademark recognized from the very beginning of the subject.
In this respect, the pioneering work of Sutherland pointed out
that the probability distribution of the ground-state function
for the N -particle model was identical to the joint probability
density function for the eigenvalues of random ensembles.
In particular, by changing the interaction parameter it was
possible to recover the orthogonal, unitary, and symplectic
ensemble density functions [11]. This result was first explained
as merely arising from the Jastrow factor present in the ground-
state function, but the relationship was demonstrated to be
deeper than what was originally thought—see Ref. [12] where
it is shown that the correspondence can be extended to response
functions or correlations of the density of states of a quantum
chaotic system [13].

At the same time, the relationship of the Calogero
model with the fractionary quantum Hall effect was well
established—see, for instance, the work by Azuma and
Iso [14]. It was also understood that the Calogero particles
are basically free but obey generalized fractional exclusion
statistics [15]. So, when referring to bosons or fermions
in the one- or two-dimensional Calogero model, it is the
symmetry of the eigenfunctions that dictates the terminology
since the permutation group in two dimensions allows more
possibilities to the particles. This argument explains why
the interaction-strength parameter is sometimes termed the
“statistics parameter.”

Following the terminology used by Polychronakos [16], the
freezing trick is the bridge between the Calogero model and
lattice integrable systems of the Haldane–Shastry type [17]. It
is worth mentioning that the trick, which is essentially a large
interaction-strength limit, works well when the particles have
well-defined isolated classical equilibrium positions, as is the
case of the one-dimensional Calogero model with or without
periodic boundary conditions.
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Summarizing, the Calogero model has been widely studied
from condensed-matter physics through group theory and has
experienced several revivals, which is why looking for new
physics in it seems always tempting and is rewarding, as we
will see.

More recently, the availability of exact p-RDM [4] or very
good checkable approximations to it [7,18] has constituted a
significant tool to shed some light over the behavior of natural
occupation numbers in fermion systems and their relationship
with some generalizations of the exclusion principle [19,20].

The number of nonzero occupation numbers and how fast
they become negligible are excellent quantifiers to evaluate if
an approximate method which involves an expansion over a
finite functional basis has a good chance to succeed. Of course,
it is in general impossible to know a priori how many (if any)
natural occupation numbers (NONs) become zero for a given
multipartite Hamiltonian. Moreover, it is widely accepted that
the presence of Coulomb “cusps” leads, inevitably, to an
infinite set of nonzero NONs [21].

Furthermore, the same availability of exact p-RDMs
develops some unexpected features. As has been said above,
fermion systems usually have an infinite number of nontrivial
NONs. But, as some of us found quite recently, the Calogero
model in one dimension has a finite number of nonzero NONs
for a discrete set of values of the interaction parameter [4]. To
obtain this result it is crucial to realize that the p-RDM of a
system of N particles described by the Calogero model can be
written exactly as a finite matrix whose entries can be obtained
analytically. The dimension of the matrix depends on p, N ,
the interaction parameter, and if the particles are fermions or
bosons.

Another feature found in Ref. [4] is related to the behavior
of the von Neumann entropy (vNE) obtained from the NONs of
one-dimensional systems with different numbers of particles.
In all cases, the vNE was found to be a nonmonotonic function
of the interaction strength, showing a maximum for some finite
value of the interaction strength.

There are numerous examples which show that different
entanglement entropies associated with p-RDM obtained from
ground-state wave functions of two- and three-dimensional
problems are monotonic functions of the interaction strength
between the particles [22,23]. Moreover, the closely related
entanglement properties of fractional quantum Hall liquids
obtained from the Laughlin wave function also support the
monotonic behavior. This has been studied in the works by
Zeng et al. [24], Iblisdir et al. [25], and Haque et al. [26]. Let
us remember that the Laughlin wave function for n particles
and 1/m filling factor has exactly the same form as the
ground-state function of the one-dimensional Calogero model
for n particles in one dimension with interaction strength
m(m − 1). Anyway, it is prudent not get carried away by the
similarities, since the partition made to obtain the p-RDM
will determine between which subsystems the entanglement is
calculated and a partition between Calogero particles in one
or two dimensions is not equivalent to a partition between
particles described by the Laughlin wave function.

The aim of the present work is to study a few entanglement
entropies as functions of interaction strength for the one- and
two-dimensional two-particle Calogero model. We consider
a continuous interaction-strength parameter, in this way the

ground-state wave function is exact but the one-particle
reduced density matrix (1-RDM) and its spectrum are not
necessarily so. The large interaction limit will allow us to
show that the one-dimensional model has always a finite
entanglement entropy in contradistinction to the divergent be-
havior observed in two or larger dimensions. In particular, we
show that the change from one- to two-dimensional behavior
can be characterized as a crossover or, more precisely, the
entanglement entropy of anisotropic Calogero systems in two
dimensions behaves as one-dimensional or two-dimensional
according to the amount of anisotropy and the interaction
strength. It is also shown that the Rényi entanglement entropies
are able to detect that the system has finite and exact solutions
for some particular values of the interaction-strength parameter
where the effective Hilbert space of the systems is also finite,
a fact that is completely overlooked by the von Neumann
entropy. We also discuss some inadequacy of the so-called
linear entropy to study continuous variable systems in one or
two dimensions.

The paper is organized as follows: In Sec. II we give
some definitions and basic results for the Calogero model
and entanglement entropies. In Sec. III, we calculate the
spectrum and von Neumann entropy of the one-dimensional
1-RDM. Section IV is devoted to the Rényi entropies. The
two-dimensional isotropic case is studied in Sec. V, while in
Sec. VI the anisotropic case is treated in the large-interaction
limit. We discuss the one- to two-dimensional crossover in
Sec. VII. Finally, we discuss our findings and conclude in
Sec. VIII.

II. PRELIMINARIES

The information content of a given bipartite pure quantum
state |ψAB〉 can be studied by using different entanglement
entropies, which are obtained from the reduced density matrix
ρA = TrB(|ψAB〉〈ψAB |).

In the case of a two-particle wave function �(�x1,�x2), where
�x1, �x2 are the position vectors of the particles, the 1-RDM can
be constructed by tracing out one of the particles:

ρ(�x; �y) =
∫

��(�x,�z)�(�y,�z)d�z. (1)

Its eigenvalues λk are given by the following integral equation:∫
ρ(�x; �y)φk(�y)d �y = λkφk(�x), k = 1,2,3, . . . . (2)

One of the possible entanglement measure is the von
Neumann entropy SvN , which is given by

SvN (ρ) = −Tr(ρ log2 ρ) = −
∑

k

λk log2 λk. (3)

It is important to emphasize that it is not the only
entanglement measure at our disposal. Another possible tool
widely used to study entanglement in many-body or extended
systems is the Rényi entropy

Sα(ρ) = 1

1 − α
log2 Trρα = 1

1 − α
log2

(∑
k

λα
k

)
. (4)
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This entanglement measure finds its natural place in
information theory as a generalization of several other en-
tropies (Shannon’s, collision, etc.) which can be recovered for
particular values of the parameter α. It is worth mentioning
that, for a given probability distribution, the Rényi entropies
defined as in Eq. (4) constitute a monoparametric family of
convex functions for different choices of the parameter α.

The study of Rényi entanglement entropies has resulted in
a better understanding of the entanglement in one-dimensional
gases and spin chains [27–29]. There are a number of reasons
to use the quantum Rényi entropies; the main two are (a) the
vNE can be obtained as a limiting case when the parameter
α → 1, and (b) the calculation of the Rényi entropies for
many different values of the parameter α provides a better
understanding of the distribution of the entanglement spectrum
of a system than that obtained by considering only the von
Neumann entropy.

Many authors also use the so-called linear entropy (LE) Sle,

Sle = 1 − Trρ2, (5)

which is mainly motivated by its ease of computation: for
continuous variable systems the calculation of Trρ2 is reduced
to just an integral. However, there are some reasons to suspect
the quality of information provided by the linear entropy. For
instance, no matter how entangled or how many particles are
considered, in the large-interaction limit the linear entropy of
the Calogero model always converges to unity, as in the case
of the Moshinsky model [8,22].

The Calogero model

The two-particle Calogero Hamiltonian in dimension
D [10] can be written as

H = h(1) + h(2) + ν(ν − 1)
1

r2
12

, (6)

where �r12 = �x1 − �x2 denotes the relative separation between
the particles, �x1 and �x2 are the positions of the particles,
and ν(ν − 1) denotes the interaction strength as introduced
by Sutherland [11]. The one-particle harmonic Hamiltonians
have the following form:

h(i) = − 1
2∇2

i + 1
2 r2

i , i = 1,2, (7)

where units defined by � = 1, m = 1, and ω = 1 are used
through the present work.

1. One-dimensional case

For two bosons the totally symmetric ground-state wave
function and energy are given by

E = (ν + 1), ψb
0 (x1,x2) = Cb

1,ν�νe
− 1

2 (x2
1 +x2

2 ), (8)

where �ν is the Jastrow factor

�ν = |x1 − x2|ν, (9)

while for two spinless fermions we have an antisymmetrical
wave function

ψ
f

0 (x1,x2) = C
f

1,νsign(x1 − x2)�νe
− 1

2 (x2
1 +x2

2 ), (10)

where Cb
1,ν and C

f

1,ν are normalization constants [30].

It has recently been shown that, for the boson (fermion)
wave function with ν = 2n (ν = 2n − 1), n ∈ N, the absolute
value in Eq. (9) [Eq. (10)] can be ignored and the only integrals
needed to find 1-RDM are Gaussian integrals with even (odd)
powers in the Jastrow factor. Moreover, the 1-RDM (1) is
then a Gaussian function times a multinomial expression of
(x,y). In those cases, the general expression for ρ

(p)
N , which is

quite cumbersome to obtain, can be written as a finite sum of
Hermite functions [4].

2. Two and higher dimensions

In dimensions higher than two the exact ground-state wave
function of bosons

�b
0 = Cb

D,ν |�x1 − �x2|μbe− 1
2 (r2

1 +r2
2 ), (11)

and fermions

�
f

0 = C
f

D,ν |�x1 − �x2|μf ψSe
− 1

2 (r2
1 +r2

2 ), (12)

are quite similar to the one-dimensional ones [31]. In Eqs. (11)
and (12), the exponents μb and μf are functions of the
interaction strength and the dimension D, and ψS is one of the
2 × 2 Slater determinants which are the N = 2 noninteracting
fermion ground-state wave functions [31].

As in the one-dimensional case, the exact ground-state wave
function for bosons and fermions cannot be obtained for the
same set of parameters since

μb = 1
2

(√
(D − 2)2 + 4ν(ν − 1) − (D − 2)

)
, (13)

and

μf = 1
2

(√
D2 + 4ν(ν − 1) − D

)
, (14)

are integer numbers for different values of ν.The ψS factor
ensures that the wave function (12) is totally antisymmetric
with respect to the interchange of particles. For D = 2 there
are two such determinants that are linearly independent and
can be chosen such that they are both eigenfunctions of the
angular-momentum operator:

ψ±
S =

{
(x1 − x2) + i(y1 − y2)
(x1 − x2) − i(y1 − y2)

Lzψ
±
S = ±ψ±

S . (15)

Ground-state wave functions can be constructed by us-
ing linear combinations of ψ±

S , but this does not imply
that their corresponding reduced density matrices have the
same entanglement entropies, as we show in the following
sections.

III. NATURAL OCCUPATION NUMBERS AND VON
NEUMANN ENTROPY: ONE-DIMENSIONAL CASE

The one-dimensional case was thoroughly analyzed in
Ref. [4] for those values of ν that are compatible with an
exact calculation of the p-RDM and its eigenvalues, i.e., for
ν = 2n (bosons) and ν = 2n + 1 (fermions), with n a natural
number.

In the present work we consider ν as a continuous variable
and calculate by using the Rayleigh–Ritz variational method,
the eigenvalues of the reduced density matrix (2). How to use
the variational method to calculate an approximate spectrum
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FIG. 1. Eigenvalues of the 1-RDM for the ground state of a one-
dimensional Calogero model from a variational calculation, using 50
one-particle basis functions. Panel (a) shows the results for fermions
and panel (b) shows those for bosons. The abrupt drop to zero of
the eigenvalues at certain integer values (odd for fermions, even for
bosons) indicate that the number of natural orbitals is finite. In panel
(a), each eigenvalue is doubly degenerate.

for a reduced density matrix has been described elsewhere—
see Refs. [21,23,32]. The natural choice of basis set is the
Hermite functions used to obtain the exact eigenvalues of the
finite 1-RDM matrix for integer values of ν [4].

The eigenvalues calculated by using the variational method
for bosons and fermions are shown in a log - log plot in Fig. 1.
The most salient feature of both sets of curves is the abrupt way
in which most eigenvalues drop to zero at the integer values of
ν (see Sec. II).

In the fermion case, since all the eigenvalues are doubly
degenerate [33], there are only four eigenvalues—the larger
ones—that never become null. For ν = 2n + 1, there are only
2n + 2 nonzero eigenvalues [4]. The numerical error of the
variational eigenvalues for integer values of ν is O(εm) where
εm ≈ 2 × 10−15 is the machine precision.

For large values of the interaction parameter ν(ν − 1), the
NONs of bosons and fermions become equal, as can be seen
in Fig. 2(a). As a consequence, the von Neumann entropy for
both statistics turns out to be the same in the large-interaction
limit—see Fig. 2(b). It is important to mention that, in this
limit, vNE converges to a finite value that can be calculated
analytically [4,34].

1 10 30
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10-1

100

λ

(a)

2 3 4 5 6 7 8 9 10
 ν

1.19

1.2

1.21

1.22

1.23

SvN

(b)

FIG. 2. (a) Bosons (red line) and fermions (blue dashed line)
larger eigenvalues of the 1-RDM and (b) von Neumann entropy for
the two-particle ground state of a one-dimensional Calogero model
from a variational calculation using 50 one-particle basis functions.
Note that the eigenvalues of fermions and bosons become degenerate
in the large-interaction limit.

As can be seen in Fig. 2(b), the vNE shows a maximum
around ν = 5 for both cases. The appearance of a maximum
in the vNE is, at some extent, unexpected since in systems
with continuous variables the vNE is known to have a
behavior that is strongly correlated to the derivative of the
energy with respect to the interaction parameter (see, for
example, Refs. [32,35]). For bound states, it is observed that
the vNE increases when the derivative of the energy with
respect to the interaction strength diminishes. In our case
the derivative increases monotonically but the vNE is not a
monotonic function, in contradistinction with what is observed
in three-dimensional atom-like systems.

Usually, a nonmonotonic behavior of an information-
content quantifier, as an entanglement measure or an entropy, is
related to changes in the analyticity of the ground-state energy,
as happens in a quantum phase transition [36]. Another reason
might be changes in the relative weight between states with
different entanglement as happens when the temperature is
varied in some thermal mixes [37]. The ground-state energy
and totally symmetric or antisymmetric wave function Eqs. (8)
and (10) are analytical with respect to the parameter ν.
Moreover, the 1-RDM eigenvalues, which are directly related
to the vNE, are shown to be analytical around integer ν by using
the variational eigenvalues and finite-size scaling for quantum
mechanics techniques (see Supplemental Material [38]).

IV. RÉNYI ENTROPIES AND FINITE SUPPORT
OF THE REDUCED DENSITY MATRICES

The smooth behavior of the von Neumann entropy fails to
manifest the structure of the 1-RDM spectrum as a function of
the strength parameter ν. No relevant features are observed at
the isolated values of ν for which the 1-RDM has only a finite
set of nonzero eigenvalues and the support of the 1-RDM
becomes finite, i.e., the Hilbert space where the system is
described becomes finite. As we will show below, the smooth
behavior is imposed by the analyticity of the eigenvalues
with ν.

Nevertheless, the structure of the spectrum can be put in
evidence by the Rényi entropies, defined in Eq. (4). As has
been pointed out the Rényi entropies allow us to probe different
regions of the spectrum because changing α assigns different
weights to the eigenvalues.

The eigenvalues of the 1-RDM are analytical functions
of ν (see Supplemental Material [38]). We develop here the
boson case (the fermion case is similar) for νn = 2n, where the
1-RDM has only 2n + 1 nonzero eigenvalues.

The following results will only rely on the analyticity of
the eigenvalues around isolated points in the parameter space
where the spectrum is finite. As such, they will be valid for
any system having this property. We then assume

λi(ν) ∼

⎧⎪⎨
⎪⎩

λi(νn) + λ
(1)
i (ν − νn) if i � 2n + 1

for ν →νn

λ
(2)
i (ν − νn)2ki,n if i > 2n + 1,

(16)

042115-4



DETECTING DIMENSIONAL CROSSOVER AND FINITE . . . PHYSICAL REVIEW A 94, 042115 (2016)

where λ
(1)
i ,λ

(2)
i are constants, and ki,n � 1 is an integer.

Equation (4) can be written as

Sα(ν) = 1

1 − α
log2

(
2n+1∑
i=1

λα
i (ν) +

∞∑
i=2n+2

λα
i (ν)

)

= 1

1 − α

[
log2

(
2n+1∑
i=1

λα
i (ν)

)

+ log2

(
1 +

∑∞
i=2n+2 λα

i (ν)∑2n+1
i=1 λα

i (ν)

)]

∼
ν→νn

1

1 − α

[
log2

(
2n+1∑
i=1

λα
i (ν)

)
+

∑∞
i=2n+2 λα

i (ν)

ln 2
∑2n+1

i=1 λα
i (ν)

]

= Sα
n (ν) + sα

n (ν). (17)

Note that Sα
n (νn) = Sα(νn), and sα

n (νn) = 0. We can evaluate
the derivative of the Rényi entropy at ν = νn,

∂Sα(ν)

∂ν

∣∣∣∣
ν=νn

= ∂Sα
n (ν)

∂ν

∣∣∣∣
ν=νn

+ α

ln 2(1 − α)

(∑∞
i=2n+2 λα−1

i (ν)∂νλi(ν)∑2n+1
i=1 λα

i (ν)

−
∑∞

i=2n+2 λα
i (ν)

∑2n+1
i=1 λα−1

i (ν)∂νλi(ν)( ∑2n+1
i=1 λα

i (ν)
)2

)
ν=νn

. (18)

The first term in Eq. (18) is a well-defined constant and the
third one is zero. As a result of this, the derivative is dominated
by the second term. By using the analytic expansion of the
eigenvalues, Eq. (16), and assuming that km is the minimum
value of ki,n, the leading asymptotic behavior of sα

n is

sα
n (ν) ∼

ν→νn

Cn[(ν − νn)2km ]α = Cn|ν − νn|δkm, (19)

where δ = 2α, which implies that

∂sα
n (ν)

∂ν
∼

ν→νn

δkmCn|ν − νn|δkm−1sign(ν − νn). (20)

This equation gives

∂Sα(ν)

∂ν

∣∣∣∣
ν=νn

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−sign(Cn) × ∞ for ν → ν−
n

sign(Cn) × ∞ for ν → ν+
n

}
if kmδ < 1

∂νS
α
n (νn) − C for ν → ν−

n

∂νS
α
n (νn) + C for ν → ν+

n

}
if kmδ = 1

∂νS
α
n (νn) if kmδ � 1.

(21)

Even though the derivative of Sα is continuous for kmδ � 1,
it is straightforward to see from the eigenvalue asymptotics,
Eq. (16), that the second derivative diverges for 1 < kmδ < 2
but is analytical for kmδ = 2, i.e., the kink at kmδ = 1 is
smoothed until it disappears at kmδ = 2.

All our numerical evidence indicates that, in the case of the
one-dimensional Calogero model, km = 1 for all values of i

2 4 6 8 10
 ν

1

2

3

Sα

 α = 0.1

 α = 2

FIG. 3. One-dimensional bosonic von Neumann entropy (black
full line) and Rényi entropies as a function of the interaction parameter
ν, for α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 2 in red, dark green, blue,
orange, magenta, light green, and cyan full line, respectively. The
exact values of the entropies for ν = 2n are depicted as gray points.

and n (see Supplemental Material [38]). The Rényi entropy
will then present critical points with infinite derivative for
α < 1/2, a kink for α = 1/2 which continuously disappears
for increasing α until the value 1 is reached. The vNE which
can be obtained as the Rényi entropy with α → 1 is then an
analytical function of ν.

The nonanalytical behavior of the Rényi entropies predicted
by Eq. (21) are a consequence of the eigenvalues analyticity
assumption; Eq. (16). This salient feature is easily recognizable
for ν = 2n in Fig. 3, where the variational Rényi entropies for
the one-dimensional bosonic Calogero system are shown as a
function of the interaction strength parameter for several values
of α. This figure also shows the exact Rényi entropies for those
values of ν for which the 1-RDM has finite support, ν = 2n.
It is worth mentioning that the Rényi entropies are decreasing
functions of α, so the top curve being plotted corresponds to
the smaller value chosen for α, and that they are bounded
from below by the one-dimensional min-entropy S∞

x value
[see Eq. (51)].

The Rényi entropy and its derivative as a function of the
interaction-strength parameter near ν = 4 are depicted for
α = 0.4, 0.5, 0.6 in Fig. 4. The figure supports all the predic-
tions described above. It shows that the Rényi entropy presents
a critical point with infinite derivative for α = 0.4, a kink
with discontinuous derivative for α = 1/2 and a continuous
derivative for α = 0.6 with an infinite second derivative.

Summarizing, the Rényi entropies expose the values of
ν which give a 1-RDM with finite support and this makes
them excellent witnesses to detect such a hallmark. Similar
features were also seen by Amico and coworkers for spin-1/2
chains [39–42].

V. NATURAL OCCUPATION NUMBERS AND VON
NEUMANN ENTROPY: TWO-DIMENSIONAL CASE

The wave function of the two-particle two-dimensional
Calogero model is known for all values of ν [see Eqs. (11)
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FIG. 4. One-dimensional bosonic Rényi entropies (upper panels) and their derivatives (lower panels) as a function of the interaction
parameter near ν = 4, for α = 0.4, 0.5, 0.6 from top to bottom.

and (12)]. On the other hand, the 1-RDM, its eigenval-
ues, and other related quantities are obtained numerically
by means of the Rayleigh–Ritz variational method. The
behavior of the vNE is shown in Fig. 5(a) for the boson
and fermion cases. In this figure, the continuous red line
corresponds to the boson case, and the dashed lines corre-
spond to fermions. The green dashed line corresponds to
ψS = ψ+

S = (x1 − x2) + i(y1 − y2), while the blue dashed

FIG. 5. (a) The von Neumann entropy as a function of the
interaction strength ν for the rotationally invariant fermion wave
function ψ+

S (green line) and for the fermion wave function ψx
S =

(x1 − x2) (blue line). Note the logarithmic divergence for large
interaction strength. Any point in the gray shaded area is a (ν,
SvN ) pair, which can be obtained from a particular choice of the
linear combination parameter β defined in Eq. (23). The inset shows
that the vNE for the rotationally-invariant-fermion case (green line)
is asymptotically equal to the vNE for bosons (red line). (b) The
fermion vNE of ψlc(β) as a function of β2 across the shaded region
for two values of the interacting parameter, ν = 2 (orange-dashed
line) and ν = (1 + √

33)/2 (black-dashed line). The horizontal lines
correspond to the vNE of ψ+

S , ψx
S .

line corresponds to ψS = ψx
S = 1√

2
(ψ+

S + ψ−
S ). From the

obtained lines in a log scale it can be seen that the three
sets of data are consistent with a logarithmic divergence of the
vNE when the parameter ν increases, as we explain in the next
section.

With the above definition of ψx
S and by defining

ψ
y

S = 1√
2
(ψ+

S − ψ−
S ), one can construct the related fermion

ground-state functions �
f +
0 , �

f −
0 , �

f x

0 , and �
fy

0 by substi-
tuting ψ+

S , ψ−
S , ψx

S , and ψ
y

S in Eq. (12). It can then be shown
that ∣∣�b

0 [ν(ν − 1) + 1]
∣∣2 = ∣∣�f ±

0 [ν(ν − 1)]
∣∣2

= 1
2

∣∣�f x

0 [ν(ν − 1)]
∣∣2

+ 1
2

∣∣�fy

0 [ν(ν − 1)]
∣∣2

, (22)

where the argument between square brackets is the interaction
strength in Eq. (6) for which the ground-state function must
be calculated.

The first two terms in the equality obtained ensures that,
for large enough values of ν, the von Neumann entropies
for bosons and fermions are asymptotically the same if the
corresponding states are eigenfunctions of Lz. So far, we have
not found how to translate the relationship between the square
modulus of the wave functions in Eq. (22) to a relationship
between the NONs of their respective 1-RDM.

The availability of degenerate fermion ground-state func-
tions allows us to study the von Neumann entropy for different
linear combinations of orthogonal states. In particular, we
studied the vNE of different ground-state wave functions
obtained by replacing ψS in Eq. (12) with the following
expression:

ψlc(β) = βψ+
S +

√
1 − β2ψ−

S , β ∈ [0,1]. (23)
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The vNEs for the previously defined states, ψlc(β), ψx
S ,

and �b
0 , are shown in Fig. 5. There is a number of interesting

features in Fig. 5(a) which are noteworthy. The vNEs for
all the states defined by Eq. (23) diverge logarithmically in
the large-interaction-strength limit. For a given ν value, the
entropies of ψ±

S (β = 0, β = 1) are maximal while those of
ψ

x,y

S (β = ± 1√
2
) are minimal over SvN [ψlc(β)], the shaded

region corresponds to all other possible values of β. Also, in
the large-interaction-strength limit, the vNEs of both fermion
states ψ±

S and the boson ground state are asymptotically equal
[see the inset in Fig. 5(a)]. Figure 5(b) shows the behavior of
the vNE calculated for the ground states constructed by using
Eq. (23) as a function of β2, for ν = 2 (numerical) and for
μf = 2 ⇒ ν = (1 + √

33)/2 (exact).
The linear entropy shows a different behavior; it converges

monotonically to unity in the large-interaction-strength limit.
This behavior has been reported previously for a number of
systems and is usually associated with the competing nature
of the potentials in the Hamiltonian [22,43]; for example, in
Eqs. (6) and (7) the harmonic term keeps the particles near the
origin of coordinates, while the repulsive term tries to keep
them as far as possible, especially when ν → ∞.

Logarithmic divergences are always elusive to pinpoint
when based only in numerical data. The reason is that it is
quite cumbersome to study large values of ν because of the
huge number of base functions needed (that scales as ν2) to put
in evidence the logarithmic divergence. Nevertheless, we have
been able to obtain the vNE for values up to ν = 80. To support
the numerical evidence shown in Fig. 5 we then proceed
to study an analytical approximation to the two-dimensional
problem.

VI. ANALYTICAL TREATMENT OF ANISOTROPIC
TWO-DIMENSIONAL CALOGERO MODEL IN

LARGE-INTERACTION-STRENGTH LIMIT

The argument stated some paragraphs above about the
competing nature of the potentials involved in the Calogero
model has been useful to develop a method dedicated to
obtain analytical approximations to the eigenfunctions and
eigenvalues of Hamiltonians. The method is based on the
calculation of the minima of the potential and the harmonic
approximation consistent with those minima [34,44]. Of
course for two- or three-dimensional problems those minima
are not necessarily given by a set of isolated points. There is a
rather simple way to circumvent the arising difficulties when
the minima set is not discrete: the potential is “deformed” to
obtain a finite number of minima [43]. The deformation breaks
the symmetry between the coordinates. For example, in the
two-dimensional Hamiltonian, we can take yi �→ εyi . Within
this framework it is possible to study the two-dimensional
isotropic system as a limiting case of the deformed one’
therefore, we consider a two-dimensional anisotropic Calogero
model

H = −1

2

(∇2
1 + ∇2

2

) + 1

2

{(
x2

1 + x2
2

) + ε2
(
y2

1 + y2
2

)}
+ ν(ν − 1)

r2
12

. (24)

Introducing the center of mass �R = 1
2 (�x1 + �x2) = (X,Y )

and relative coordinates �r = �x2 − �x1 = (x,y), the Hamilto-
nian (24) may be written as H = HR + Hr , where

HR = − 1
4∇2

R + (X2 + ε2Y 2), (25)

Hr = −∇2
r + 1

4
(x2 + ε2y2 + ν(ν − 1)

(x2 + y2)
. (26)

The wave function is then the product of the center-of-
mass (CM) wave function and the relative wave function
�(X,Y,x,y) = ψR(X,Y )ψr (x,y), and the Schrödinger equa-
tion separates into two equations:

HRψR( �R) = ERψR( �R), (27)

Hrψr (�r ) = Erψr (�r ). (28)

The solutions of the CM Eq. (27) have the following form:

ψR
n,m( �R) = e−X2

Hn(
√

2X)e−εY 2
Hm(

√
2εY ), (29)

with energies

ER
n,m = (

n + 1
2

) + ε
(
m + 1

2

)
. (30)

With the aim of solving the relative Schrödinger equa-
tion (28) in the large-interaction-strength limit we use the har-
monic approximation (HA) [44,45]. The classical minima of
the potential terms are given by �rmin = ( ± √

2[ν(ν − 1)]
1
4 ,0).

In this approximation the Hamiltonian is

Hr
HA = −∇2

r + 1
2

{
2(x − x0)2 + 1

2 (ε2 − 1)y2
}
, (31)

where x0 = √
2[ν(ν − 1)]

1
4 .

The solutions to Eq. (28) are

ψr
n,m(�r) = e− (x−x0)2

2 Hn(x − x0)e−
√

ε2−1
4 y2

Hm

[(
ε2 − 1

4

)1/4

y

]
,

(32)

with eigenvalues

Er
n,m = 2

(
n + 1

2

) +
√

ε2 − 1
(
m + 1

2

)
. (33)

From Eqs. (29) and (32), the total normalized symmetric
ground-state wave function can be obtained,

�( �r1, �r2) = Ce−ε
(y1+y2)2

4 e−√
ε2−1 (y2−y1)2

4 e− (x̃1+x̃2)2

4
{
e− (x̃2−x̃1)2

2

+ e− (x̃1−x̃2)2

2
}
, (34)

where x̃1 = x1 + x0
2 and x̃2 = x2 − x0

2 , and the normalization
constant

C =
( √

ε
√

ε2 − 1√
2π2(1 + e−2

√
ν(ν−1))

) 1
2

. (35)

The wave function (34) is separable in the x and y coordi-
nates and can be written as �( �r1, �r2) = Cψx(x̃1,x̃2)ψy(y1,y2).

Since we are interested in the occupancies of the natural
orbitals, we must solve the integral equation (2). The iterated
kernel of a symmetric kernel has the same eigenfunctions as the
kernel, and the iterated eigenvalues are the squared eigenvalues
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of the kernel [21,46], that is, instead of solving Eq. (2) one can
solve ∫

�(�r1,�r2)φk(�r2)d�r2 = �kφk(�r1). (36)

The solution to this eigenvalue problem is equivalent to
find the Schmidt decomposition of the functions ψx(x̃1,x̃2)
and ψy(y1,y2) given by

ψx(x̃1,x̃2) = q(x̃1,x̃2) + q(x̃2,x̃1), (37)

where

q(x̃1,x̃2) = e− 3
4 (x̃2

1 +x̃2
2 )+ 1

2 x̃1x̃2 , (38)

and

ψy(y1,y2) = e− ε+
√

ε2−1
4 (y2

1 +y2
2 )− ε−

√
ε2−1

2 y1y2 . (39)

By using Mehler’s formula

e
−(u2+v2) y2

1−y2 +uv
2y

1−y2 =
∞∑

k=0

√
1 − y2

(
y

2

)
Hk(u)Hk(v)

k!
, (40)

it is possible to find the decomposition of Eqs. (38) and (39),

ψ(u,v) =
∞∑

k=0

�kφk(u)φk(v). (41)

After performing some algebra one gets the eigenvalues
of the 1-RDM in the limit of large interaction-strength
parameter ν,

λk,k′ = 2
(
3
√

2 − 4
)
[1 − ξ (ε)]ξ (ε)k

(
17 − 12

√
2
)k′

, (42)

where

ξ (ε) =
(

(ε2 − 1)
1
4 − √

ε

(ε2 − 1)
1
4 + √

ε

)2

. (43)

Knowing the eigenvalues it is easy to calculate the LE (5):

Sle = 1 −
(

3
√

2 − 4

9 − 6
√

2

)
1 − ξ (ε)

1 + ξ (ε)
. (44)

Since the wave function is separable, the von Neumann
entropy presents the form

SvN = Sx + Sy(ε), (45)

where each one of the terms in the sum has the form of the
one-dimensional vNE [34], i.e.,

Sx = 1.197 371 889, (46)

Sy(ε) = − ln
(
[1 − ξ (ε)]2[1−ξ (ε)]ξ (ε)2ξ (ε)

)
ln(4)[1 − ξ (ε)]

. (47)

The Rényi entropy Eq. (4) in the large interaction limit can
be written as

Sα = Sα
x + Sα

y , (48)

where

Sα
x = 1

1 − α
log2

(
(6

√
2 − 8)α

[1 − (17 − 12
√

2)α]

)
+ 1, (49)

and

Sα
y = 1

1 − α
log2

(
[1 − ξ (ε)]α

[1 − ξ (ε)α]

)
. (50)

The isotropic model can be recovered taking ε → 1+. In
this limit ξ (ε) → 1, all the eigenvalues go to zero and the vNE
diverges logarithmically while the LE goes to one. For any
other values of ε the vNE is finite and the LE remains below
one. It is important to emphasize that the previous analysis can
be generalized to dimension D, deforming the isotropic po-
tential in D − 1 dimensions. The one-dimensional problem is
recovered for large anisotropy parameter, ε � 1, case in which
ξ (ε) → 0 and consequently Sle → 1 −

√
2

3 and SvN → Sx .
The Rényi entropy as a function of the anisotropy pa-

rameter shows the same behavior as the vNE: it diverges
logarithmically for ε → 1+ and for ε � 1 it reaches the one-
dimensional value Sα

x . It is worth noticing that, from Eq. (49),
it is straightforward to demonstrate that the one-dimensional
min-entropy S∞

x has the following form:

S∞
x = lim

α→∞ Sα
x = log2

(
1 + 3

2
√

2

)
. (51)

VII. TWO- TO ONE-DIMENSIONAL CROSSOVER

As pointed out in Sec. VI, the one-dimensional vNE and
LE in the large-interaction-strength limit are exactly recovered
from the two-dimensional model harmonic approximation
for large anisotropy parameter. This immediately raises the
question of how the two- to one-dimensional crossover is
manifested in the entropies and whether there is also a similar
feature for finite values of the interaction parameter ν. Let us
first look at the large-interaction limit and then compare it to
the numerical results for finite ν.

The exact vNE of the anisotropic two-dimensional har-
monic approximation [Eq. (45)] is depicted in magenta dot-
dashed line in Fig. 6. Albeit there is not a clear-cut criterion
to detect the change from two- to one-dimensional behavior,
or crossover, one can notice that the one-dimensional limit is
reached for ε � 1.5. Moreover, the vNE is finite for any value
of ε > 1 as it is in the one-dimensional case.

Calculating the first derivative of Eq. (47) it is straightfor-
ward to demonstrate that

SvN ∼ − log(ε − 1)

log 16
for ε ∼ 1+, (52)

this behavior is depicted in Fig. 6 as a yellow dashed line
which makes the logarithmic divergence of the vNE for
ε → 1+ evident.

The entropies obtained by adding up the contributions of a
finite number of exact eigenvalues [Eq. (42)] are also shown in
Fig. 6. The plot reveals that, no matter how many eigenvalues
are used to evaluate the vNE, there is always a value of ε for
which the vNE reaches a maximum and decays for smaller
values of the parameter. In other words, the more isotropic the
system is, the larger the number of NONs that are needed to
correctly describe the problem. This is precisely the reason that
makes the identification of a logarithmic divergence so diffi-
cult, since using a finite numerical approach only provides a
finite number of approximate eigenvalues to calculate the vNE.
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FIG. 6. von Neumann (vNE) and linear entropy (LE) in the
large-interaction limit computed by using finite sums of the exact
eigenvalues (full lines) and the exact vNE (magenta dot-dashed line)
as a function of the anisotropy parameter ε [Eq. (45)]. The number
of included eigenvalues [Eq. (42)] are 50 (black), 100 (red), 150
(green), and 200 (blue) respectively. The leading term of the exact
vNE, Eq. (52), is depicted as a yellow dashed line (shifted to make it
visible).

Let us now compare the harmonic approximation to the
finite-interaction-strength results. In Sec. V we argued that the
vNE shown in Fig. 5(a) grows logarithmically. The divergence
for ε → 1+ in the large interaction limit proves that the vNE
of the isotropic Calogero model is infinite and reinforces what
was numerically inferred: the growth is sustained and it is a
logarithmic divergence.

More evidence of the convergence of the finite-ν behavior
to the one observed in the isotropic harmonic approximation
can be obtained by studying the ground-state energy of
the deformed Hamiltonian. The eigenvalues of the relative
Hamiltonian, Eq. (33), depend in a nonanalytical fashion on
the deformation parameter in the large-interaction limit. We
will then compare the ground-state energy of the harmonic
approximation [Er

00(ε)] to the one obtained from a varia-
tional approach in Hamiltonian (26) for finite ν at different
anisotropies parameter ε [Evar

00 (ν,ε)]. We define E∞
00 as

E∞
00 (ν,ε) = Evar

00 (ν,ε)

Er
00(ε) − 1

. (53)

Figure 7(a) shows how E∞
00 (ν,ε) approaches the nonana-

lytical behavior of the function (ε2 − 1)1/2 for large enough
values of ν. Notice that, for large enough anisotropy ε, the
system, no matter how small the interaction strength ν is,
reaches the one-dimensional limit. This observation implies
that an anisotropic system should behave as a two-dimensional
or one-dimensional one depending on the interplay between
the parameters ν and ε.

Another quantity that also shows the crossover can be
defined as

�Evar
00 (ε) =

√
ε2 − 1

(
Evar

00 (ε + �ε) − Evar
00 (ε − �ε)

2�ε

)
, (54)

and is displayed in Fig. 7(b). Due to the dependence of the
relative ground-state energy, in the large-interaction-strength

FIG. 7. (a) The data corresponds to the ratio between the varia-
tional energy and the energy of the relative Hamiltonian in the large-
interaction limit, E∞

00 [see Eq. (53)]. The variational energies were cal-
culated for, from bottom to top, ν(ν − 1) = 20, 50, 100, 500, 2000.
The black dashed line corresponds to the exact limit. (b) The
numerical derivative of the variational ground-state energy times
(ε2 − 1)1/2 vs ε; see Eq. (55) for the precise definition of the
function �Evar

00 . This function was chosen to show the derivative
of the ground-state energy of the relative Hamiltonian in the limit
ν → ∞ as the black dashed straight line with slope one-half. The
other curves correspond to the data shown in panel (a) using the same
color convention for the different values of ν(ν − 1).

limit, the following relationship is satisfied:√
ε2 − 1

dEr
00

dε
= ε

2
. (55)

Figure 7(b) shows how the variational data, Eq. (54), ap-
proaches a straight line with slope one-half, which corresponds
to the large-interaction limit in Eq. (55).

Summarizing, all the previous analyses indicate a two-
to one-dimensional crossover. Moreover, the vNE diverges
logarithmically for the two-dimensional isotropic system,
while it remains finite in the anisotropic cases.

VIII. DISCUSSION AND CONCLUSIONS

In the present work, we study the von Neumann and
Rényi entropies for the two-particle one- and two-dimensional
Calogero model. We found that the von Neumann entropy
of the two-dimensional model with isotropic confinement is
a monotonic increasing function of the interaction strength
that diverges logarithmically for large-interaction-strength
values, while it remains finite in the anisotropic case as
well as in the one-dimensional model. We also show that
the one-dimensional behavior is eventually reached when the
anisotropy of a two-dimensional system is increased. By using
the framework of the harmonic approximation, the crossover
from two to one dimensions is demonstrated, and it is shown
that the von Neumann divergence only occurs in the isotropic
case.

On the other hand, we found that the Rényi entropies expose
those values of ν which give a one-particle reduced density
matrix with finite support. Amico and coworkers have found
nonanalytical behavior for spin-1/2 chains at the critical values
of the Hamiltonian interaction parameters [39–42].

Let us now discuss the physical implications of the results
summarized above. The logarithmic divergence of the von
Neumann entropy of the two-dimensional Calogero model is,
somewhat, to be expected, since the von Neumann entropy
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of the Laughlin wave function diverges for decreasing filling
factors [25]. However, the connection is not direct since
the bipartition considered in the work of Iblisdir et al. [25]
differs from the one chosen in the present work. Even more,
the three-dimensional continuous variable systems studied
in the literature support the idea that, if the ground-state
energy of the Hamiltonian is an analytical and monotonic
function of some interaction parameter, so is the von Neumann
entropy. These arguments highlight the singularity of the
one-dimensional case.

The fact that an anisotropic two-dimensional case behaves
like a one-dimensional system, in what concerns its von
Neumann entropy, supports the idea that the nonmonotonic
behavior is owed to the restriction of the problem to a
“truncated” Hilbert space.

In the same sense, the Rényi entropies for small-enough
α have a nonmonotonic and nonanalytical behavior in the
neighborhood of the interaction-strength-parameter values
where the support of the reduced density matrix is finite. It is
important to emphasize that the deduction of the nonanalytical
behavior of the derivatives of the Rényi entropies is completely
general, the only features that are unique to the Calogero
model are that the values of ν where the 1-RDM has a finite
entanglement spectrum and the number of nonzero eigenvalues
for each one are exactly known. Consequently, the Rényi
entropies seems to be a handy tool to detect parameters
where a given system possess an exact and finite entanglement
spectrum.

The entanglement entropies features commented above
are independent of the exchange symmetry. Nevertheless,
when some particular symmetry is chosen there are several
aspects that need further discussion. We use bosons and
fermions in the sense that the eigenfunctions are symmetrical
or antisymmetrical with respect to coordinate interchange, but
in two dimensions the permutation group actually corresponds
to the more diverse braid group.

The eigenvalues of the reduced density matrix for the
one-dimensional case for both bosons and fermions show two
well-defined regimes. In one regime a given eigenvalue λm

becomes null for some values of ν; in the other one it is fairly
independent of ν and λm seems to obey λm ∼ am with a > 0.
Besides, in the second regime, the natural occupation numbers
of bosons and fermions have the same asymptotic values in the
large-interaction limit. Both features (the power law and the

asymptotic degeneracy) have already been noted by Schilling
in his analysis of the one-dimensional harmonium [7].

In two-dimensional models the natural occupation numbers
of bosons and fermions show the same scenario described
in the previous paragraph. However, the two-dimensional
case presents a fundamental difference with respect to the
one-dimensional model because the fermion ground state is
twofold degenerate. So, any function in this two-dimensional
functional space, Eq. (23), is a ground state with a particular
value of the von Neumann entropy. Our results indicate
a remarkable physical trait: the fermion states whose von
Neumann entropy asymptotically approaches the boson’s von
Neumann entropy are those that are also eigenstates of the
angular momentum. Moreover, the von Neumann entropy is
maximal for these states, as shown in Fig. 5(b).

The analysis of Fig. 5 has led us to think that they can
be a particular example of a very general result concerning
the von Neumann entropy of degenerate states. We guess
that states with more symmetry, as those as ψ±

S with respect
to ψ

x,y

S , will always have larger von Neumann entropies
than those with less symmetry irrespective of the number
of particles and particular features of the Hamiltonian. More
precisely, if O is an observable which commutes with the
Hamiltonian, [H,O] = 0, and ψk,l , with l = 1, . . . ,L are
degenerate eigenfunctions of the Hamiltonian,

Hψk,l = Ekψk,l, (56)

and eigenfunctions of

Oψk,l = θlψk,l, (57)

then SvN [ψk,1] = · · · = SvN [ψk,L] and is a maximum over
SvN [ψ] with ψ ∈ B = span{ψk,l}. Moreover, the minima
correspond to the set of equally weighted superpositions

ψmin = 1√
L

L∑
l=1

eiϕl ψk,l . (58)

The propositions stated above are valid for all the systems
we analyzed using numerical methods, prompting us to work
on a proof along these lines.
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