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Non-Markovianity in atom-surface dispersion forces
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We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced
interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using
general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such
phenomena with regard to both strength and functional dependencies on system parameters. In particular, we
show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency
behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance
of non-Markovian effects in dispersion interactions.
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I. INTRODUCTION

Prototypical examples of dispersion interactions mediated
by the quantum electromagnetic field are the Casimir-Polder
force on an atom close to a surface [1], and the quantum
frictional force experienced by the same atom as soon as
it starts moving above the surface [2,3]. From a theoretical
standpoint, one must often rely on approximations to model
such interactions and predict the outcome of a specific
experimental setup. One of these is the Markov approximation,
which is also one of the most ubiquitous and successful
approximations used in quantum optics and has provided
reliable predictions for numerous experimental setups. In
Casimir physics, the Markov approximation can be employed
to simplify the equations describing the coupled atom-surface-
radiation dynamics, making them solvable. The key assump-
tion underlying this approximation is that the system’s memory
can be ignored, i.e., the future of its dynamics is only related to
the immediate present. More specifically, the logic behind this
approach finds its justification in the fact that subsystems often
exhibit very different correlation times, so that on average the
fastest dynamics blurs the evolution of the slower subsystem,
effectively erasing its memory [4,5]. Usually, Markovian
dynamics results in an exponential decay of observables, while
non-Markovian effects lead to a more complex behavior (see
Sec. II B below). This simple difference has been used to
discriminate between the two regimes [6,7]. While in recent
years more precise measures of non-Markovianity in quantum
systems have been suggested [6–9], we focus in this work, for
simplicity, on deviations from exponential behavior.

A key result of this paper is that the Markov approxima-
tion fails to provide reliable predictions for nonequilibrium
fluctuation-induced interactions. Surprisingly, depending on
the targeted level of accuracy, it can lead to incorrect results
for systems in equilibrium. Although in some circumstances
non-Markovian effects are known to strongly affect the
dynamics of quantum systems (e.g., nonexponential decay of
excited quantum states for atoms in photonic crystals [10]),
their impact on fluctuation-induced phenomena in and out of
equilibrium has not been thoroughly explored. Our discussion

focuses on the prototypical system consisting of a single atom
(or, in general, a microscopic system with internal degrees
of freedom) interacting with a planar surface (see Figs. 1
and 4). Besides the large interest of modern experiments in
such setups [11], e.g., in infrared near-field microscopy and
hybrid atom-chip systems, these examples lend themselves to
advanced but still not too complex theoretical treatments.

Our paper is organized as follows. In Sec. II we review
the theory of equilibrium atom-surface interactions and derive
the expression for the Casimir-Polder force (see Fig. 1).
The purpose of this part is twofold: On the one hand, it
allows for an exposition of the formalism and the basic
concepts which will be used in the nonequilibrium case.
On the other hand, our approach allows for considerations
beyond standard perturbative techniques [11,12] and the usual
Lifshitz theory of equilibrium phenomena [13]. In particular,
we show that long-time tails in the two-time dipole correlation
(and its corresponding low-frequency behavior) arising from
non-Markovian effects become relevant as soon as one goes
beyond second-order perturbation theory (see Fig. 3). Since
Casimir interactions are a broad-band frequency phenomenon,
a precise description of the behavior at all frequencies is
important for their evaluation. Our final result will formally
take into account the general response of the atomic sys-
tem, and the standard Lifshitz formula is obtained as a
special case.

Section III focuses on quantum friction. Like ordinary
friction, this effect describes a force acting on an object
moving near another one (see Fig. 4). Unlike the classical
case, however, quantum friction is mediated by the interaction
with the electromagnetic field at zero temperature. We argue
that, as for an atom at rest, non-Markovian effects influencing
the low-frequency behavior of the dipole correlator are crucial
for the correct evaluation of this drag force, in particular
its velocity dependency [see Eqs. (28) and (29) below]. In
Sec. IV we discuss quantum friction within lowest-order
perturbation theory, and analyze the impact of intrinsic or
induced dissipation on the drag force. Finally, Sec. V contains
a brief summary and discussion of the key results of this work.

2469-9926/2016/94(4)/042114(16) 042114-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.042114


INTRAVAIA, BEHUNIN, HENKEL, BUSCH, AND DALVIT PHYSICAL REVIEW A 94, 042114 (2016)

virtual photons

vacuum
Casimir-Polder

force

atom’s image

C

atom’s imaage

Casimir-P
force

C

nsphotouauauauauauauauauauauauauaaal puuuuuuvirtui

FIG. 1. Schematic of an atom above a surface experiencing the
Casimir-Polder force. The presence of the correlation tensor in the
expression of the force Eq. (4) can be qualitatively understood as
stemming from the interaction of the atom with its image within the
material.

II. NON-MARKOVIAN EFFECTS WITHIN THE
CASIMIR-POLDER INTERACTION

Let us start by considering the familiar Casimir-Polder
interaction between an atom located at position ra above a
semi-infinite planar medium (see Fig. 1). In our description, the
atom is represented by the dipole operator d̂(t). For symmetry
reasons, the force acting on the atom is oriented normal to the
planar interface (which we denote as the z direction). At any
given time t , it is given by

FCP(t) = 〈d̂(t) · ∂za
Ê(ra,t)

〉
, (1)

where Ê(r,t) is the electric-field operator. This expression
for the atom-surface force can be derived from the Lorentz
force on the atom [12]. It is important to stress that the time
dependence of the operators in Eq. (1) is the full time evolution
dictated by the total system and, therefore, it includes the effect
of the interactions between the different subsystems (atom,
field, and matter).

Using the Maxwell equations, the electric-field operator can
be written as Ê(r,t) = Ê(+)(r,t) + H.c., where

Ê(+)(r,t) = Ê(+)
0 (r,t) + i

π

∫ ∞

0
dω

∫ t

ti

dt ′e−iω(t−t ′)

× GI (r,ra,ω) · d̂(t ′), (2)

with ti being some initial time. Here, Ê(+)
0 is the positive-

frequency part (related to the annihilation operators) of the
electromagnetic field in the absence of the atom but in the pres-
ence of the dissipative medium, and G(r,r′,ω) is the Green
tensor of the half space associated with the surface. To derive
Eq. (2) we used the Kramers-Kronig relations for the Green
tensor (see Appendix A). Hereafter we adopt the subscripts
“I” and “R” to, respectively, indicate the imaginary and the
real part of a quantity (componentwise for tensorial objects).
Because the dipole and the field (positive- and negative-
frequency parts separately) operators commute at equal times,
by normal ordering we can write

FCP(t) = 〈d̂(t) · ∂za
Ê(+)(ra,t)

〉+ H.c.

= 2Re
〈
d̂(t) · ∂za

Ê(+)(ra,t)
〉
. (3)

The final result cannot depend on the ordering we choose,
as long as this ordering is consistently used throughout the
entire derivation. However, as will appear in the following,
this specific choice of ordering is convenient for our
calculations. Physically it has the implication of attributing
the force exclusively to the radiation reaction in the atom
dynamics [14], while the contribution of the vacuum field
related to the operator Ê0 seemingly disappears. However, this
does not mean that the quantum properties Ê0 are irrelevant: In
this approach they are “hidden” in the expression for the time-
dependent dipole operator and they will explicitly appear again
when we consider, for example, dipole correlation functions.
For other choices, such as symmetric ordering [15], both the
dipole and the field itself contribute to the force and the term
containing Ê0 must consistently be kept throughout the
calculation.

To evaluate the force, let us assume an initially factorized
state ρ̂(ti) = ρ̂a(ti)

⊗
ρ̂f/m(ti), where ρ̂a(ti) is the atom’s initial

density matrix and ρ̂f/m(ti) represents the state of the coupled
field plus matter system. Both subsystems are assumed to be
initially in their respective ground states, which implies that
〈d̂(t) · ∂za

Ê(+)
0 (ra,t)〉 = tr[d̂(t) · ∂za

Ê(+)
0 (ra,t)ρ̂(ti)] = 0 for all

times (here, the symbol “tr” traces over the quantum states).
This means that the contribution coming from the vacuum state
of field plus medium subsystem drops out of the calculation.
Note that, although both subsystems are initially in their
respective ground states, in general, the state ρ̂(ti) is not the
ground state of the composite system [16,17]. During the
course of the time evolution, the atom subsystem becomes
entangled with the field plus matter subsystem, undergoing
the well-known “dressing” process [18].

Using the decomposition in Eq. (2) and the symmetry
properties of the Green tensor, Gij (r,r′,ω) = Gji(r′,r,ω) (we
consider only reciprocal media), we can rewrite the atom-
surface force as

FCP(t) = Re

(
2i

π

∫ ∞

0
dω

∫ t−ti

0
dτe−iωτ

× Tr
[
C(t,t − τ ) · ∂zGI (ra,r,ω)|r=ra

])
, (4)

where “Tr” traces over tensor indices and we have set τ =
t − t ′ > 0. The tensor C is the (nonsymmetrically ordered)
two-time dipole correlator,

Cij (t,t − τ ) = 〈d̂i(t)d̂j (t − τ )〉, (5)

which plays a key role in what follows. Although it is in
general highly nontrivial, the coupled equations of motion for
the atom, field, and matter can be solved (e.g., numerically
or using the Born-Markov approximation [12]) to obtain the
dynamic evolution of the two-time dipole correlator and the
time-dependent atom-surface force.

A natural question that arises is whether non-Markovian
effects are relevant in the dynamics of the dipole correlator
and, consequently, in the force FCP(t). In order to address this
question, we will consider the limit of large times in which the
entire system of atom, field, and matter evolves to a stationary
state. In this case, the correlator depends only on the time dif-
ference τ , i.e., Cij (t,t − τ ) → Cij (τ ) = tr[d̂i(τ )d̂j (0)ρ̂(∞)],
where ρ̂(∞) represents the stationary density matrix of the full
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system. In this limit the atom-surface force reaches the constant
value FCP ≡ limt→∞ FCP(t), which should coincide with the
expression of the well-known Casimir-Polder interaction [1].
In order to evaluate Eq. (4) for large times, it is convenient
to introduce the dipole power spectrum tensor S(ω), which is
defined in terms of the correlator as

S(ω) = 1

2π

∫ ∞

−∞
dτeiωτC(τ ). (6)

As C†(τ ) = C(−τ ), the power spectrum is Hermitian S†(ω) =
S(ω) and its real part SR(ω) is a symmetric matrix, while its
imaginary part SI (ω) is antisymmetric. Using these properties,
the stationary Casimir-Polder force can be written as

FCP = 2

π

∫ ∞

0
dω

∫ ∞

−∞
dν

×P

(
Tr
[
SR(ν) · ∂zGI (ra,r,ω)|r=ra

]
ω + ν

)
, (7)

where P denotes the principal value and we have used that the
matrix ∂zGI (ra,r,ω)|r=ra

is symmetric (see Appendix A), and
trace orthogonal to any antisymmetric matrix.

As we will show below, depending on the approach and
the approximations used to compute the stationary dipole-
dipole power spectrum, one obtains different expressions for
the stationary Casimir-Polder interaction.

A. Using the fluctuation-dissipation theorem

At large times one can invoke equilibrium considerations
to determine the stationary density matrix. We assume that the
full system thermally equilibrates to a Gibbs state [5,19–21]
and appeal to the fluctuation-dissipation theorem (FDT) [22].
This theorem of equilibrium thermodynamics establishes
a connection between the power spectrum and the linear
response of the system to a small external perturbation. At zero
temperature (T = 0) and for a nonsymmetrized correlator, the
FDT takes the form [20]

S(ω) = �

π
θ (ω) α�(ω), (8)

where θ (ω) denotes the Heaviside function, and α�(ω) =
[α(ω) − α†(ω)]/(2i) = αs

I (ω) − iαas
R (ω) (the superscripts “s”

and “as” indicate the symmetric and the antisymmetric part
of the tensor). Further, α(ω) represents the atom’s complex
susceptibility (polarizability) tensor, i.e., the Fourier transform
of Kubo’s formula in the case of linear response, i.e.,

αij (τ ) = i

�
θ (τ )tr{[d̂i(τ ),d̂j (0)]ρ̂(∞)}. (9)

As any susceptibility (including the Green tensor), α(ω) is
analytic in the upper part of the complex ω plane and satisfies
the crossing relation α(−ω∗) = α∗(ω). It follows that the
real (imaginary) part of the polarizability is an even (odd)
function of frequency. Using these properties in combination
with the FDT and the Kramers-Kronig relations, and following
a procedure similar to that of Ref. [23], we may rewrite Eq. (7)
as

FCP = �

π

∫ ∞

0
dξ Tr

[
α(iξ,ra) · ∂zG(ra,r,iξ )|r=ra

]
. (10)

Here, we exploited the analytic properties of α(ω,r) and
G(r,r′,ω) in the complex ω plane to express the final result as
an integral along the positive imaginary-frequency axis (Wick
rotation). In the above expression, we have explicitly indicated
the position dependence of the atom’s polarizability to stress
that the dressing is depending on the system’s geometry. Notice
that because of the symmetries of the Green tensor, only the
symmetric part of the polarizability, αs(ω,r), is relevant in
Eq. (10).

As a final remark of this subsection, we want to em-
phasize that, despite certain formal similarities, Eq. (10)
differs from standard formulas found in the literature for the
atom-surface dispersive interaction. Indeed, Eq. (10) contains
the exact atomic polarizability, while standard expressions
are special cases of this formula, e.g., the Lifshitz formula
for linear systems [13], and perturbative expansions in the
atom-field coupling strength [1,23,24]. For further details, see
Appendix B.

B. Using the quantum regression theorem

In quantum optics, one of the most widely used tools
to evaluate two-time correlators is the quantum regression
theorem (QRT) [12,25,26]. Often considered as the quantum
extension of Onsager’s regression conjecture [27,28], the QRT
finds its justification within the framework of master equations.
Using the Born approximation, it is possible to show that the
equations of motion for the correlations are the same as those
for the mean values [25].

Mathematically, this can be formulated in the following
terms. Given a generic subsystem coupled to a stationary
environment, by using only the Born approximation one can
write (see Appendix C)

∂τC
nm
B (t,τ ) =

∑
ij

[−iωij δ
nm
ij − Lnm

ij (τ )
]
C

ij

B (t,τ ). (11)

Here Cnm
B (t,τ ) = Tr[Âmn(t + τ )B̂(t)ρ(0)] (τ > 0) with B̂ a

generic operator and Âmn = |Em〉〈En|, where |En〉 is an
eigenvector the of the subsystem’s (isolated) Hamiltonian. In
addition we have defined ωij = (Ei − Ej )/�, δnm

ij = δniδmj ,

and Lnm
ij (τ ) = TrS[Â†

nmL(τ )Âij ] where L(τ ) is the Liouvillian
describing the subsystem’s reduced dynamics stemming from
the interaction with the environment [4,5]. Depending on
the chosen approach this superoperator is either a functional
describing the convolution with a kernel function (time
nonlocality) or an infinite series involving the generalized
cumulants of the interaction Hamiltonian [4,5]. If B̂ is the
identity Eq. (11) describes the evolution of the mean value of
Âmn. For B̂ = Ân′m′ , the same equation describes the evolution
of the correlation 〈Âmn(t + τ )Ân′m′ (t)〉.

Usually, the equations of motion (11) can only be solved
by using the Markov approximation (time local approach, no
memory effects). In this approximation Lnm

ij (τ ) becomes a
constant number, and Eq. (11) takes the form ∂τC

nm
B (t,τ ) =

−∑ij Mnm
ij C

ij

B (t,τ ), which can be solved by diagonalizing
the matrix Mnm

ij . The solution can be expressed as a sum
of exponentials exp[−(iω̃μ + γμ)τ ], where ω̃μ and γμ > 0
are the shifted transition frequencies (related to ωnm) and
decay rates induced by the environment [4,5,29]. In the usual
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master equation framework it is expected that, in the absence
of any external driving force and at large times, the reduced
density matrix of the subsystem should relax to its equilibrium
state [5,12]. In particular, at zero temperature this reduced
density matrix should relax to the subsystem’s ground state
and therefore 〈Âmm′(t → ∞)〉 = δmgδm′g [30]. Although the
QRT provides expressions for correlators that are often more
explicit than those in the FDT, the approximations on which it
relies limit its validity to the limit of weak coupling and to a
narrow range of frequencies close to a resonance [31–35].

To show how this affects the Casimir-Polder interaction, we
now evaluate the two-time dipole correlation tensor introduced
at the beginning of this section using the Born-Markov
approximation and the QRT approach. For simplicity, let
us model the atom as a two-state system (ground state
|g〉, excited state |e〉) and introduce the transition operator
Âge = |g〉〈e| and its conjugate. We write the dipole operator
as d̂(t) = d(|g〉〈e| + |e〉〈g|), where d denotes the (real) dipole
vector [36,37]. (Similar results can be obtained by modeling
the dipole operator in terms of a harmonic oscillator.) Accord-
ing to the QRT, the stationary (t → ∞) two-time correlation
tensor C(τ ) [Eq. (5)] evolves as a single exponential [5,12,26]

Cij (τ ) = didj e−iω̃a (ra )τ−γa (ra )|τ |, (12)

where ω̃a ≡ ω̃eg and γa ≡ γeg and we have used the symmetry
property C†(τ ) = C(−τ ) [see after Eq. (6)] to extend the result
to negative τ . This implies that the stationary limit of Eq. (4)
is given by

F
QRT
CP = Re

[
2

π

∫ ∞

0
dω

Tr
[
dd · ∂zGI (ra,r,ω)|r=ra

]
ω + ω̃a(ra) − iγa(ra)

]
. (13)

Using the symmetry properties of the Green tensor, we can
rewrite Eq. (13) as an integral along the imaginary axis (see
Appendix D),

F
QRT
CP = �

π

∫ ∞

0
dξ Tr

[(
α(2)(iξ,ra) + α(2)(−iξ,ra)

2

)

·∂zG(ra,r,iξ )|r=ra

]
, (14)

where

α(2)(ω,ra) = dd
�

2ω̃a(ra)

ω̃2
a(ra) − [ω + iγa(ra)]2

(15)

denotes the standard atomic polarizability tensor for a
two-level atom computed in fourth-order perturbation the-
ory [12,38–40]. To some extent, α(2)(ω,ra) can be regarded as
a generalization to higher orders of perturbation theory of the
corresponding (second order in d) bare polarizability α(0)(ω) =
(2ωa/�)dd[ω2

a − (ω + i0+)2]
−1

(the small imaginary part in
the denominator is introduced in order to enforce causality).
Equation (14) was derived in Ref. [12] using the QRT
approach.

Upon comparing the expression for the Casimir-Polder
force obtained with the QRT, Eq. (14), with that obtained using
the FDT, Eq. (10), we note that they only coincide at the lowest
order in perturbation theory, or, equivalently, when the polar-
izabilities in both equations are replaced by the bare polariz-
ability. At higher orders they clearly differ because of the dras-
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FIG. 2. Non-Markovian correction to the Casimir-Polder force as
a function of the atom-surface separation, estimated as the difference
between the QRT and the FDT approach (see main text). The two
curves correspond to different values of the atom-field coupling: The
lower (blue) curve refers to 87Rb, for which the ratio between the free-
space linewidth and frequency is γ free

a /ωa = 5 × 10−8 (ωa ≈ 2.4 ×
1015 rad/s) [42]; the upper (red) curve is the result for γ free

a /ωa = 1/3,
typical of fullerene (for C60 ωa ≈ 8.9 × 1015 rad/s, see Ref. [41]). The
behavior at large separations is associated with the oscillations of the
decay rates in the retarded regime zac/ωa � 1. The planar surface
is modeled as a metallic half space whose constituent material is
described by the Drude model ε(ω) = 1 − ω2

p[ω(ω + i�)]−1 with
parameters that are typical for gold: ωp = 9 eV and �/ωp = 5 ×
10−3. The distance is measured in units of the plasma wavelength
λp = 2πc/ωp (∼140 nm).

tically distinct methods used to calculate the stationary two-
point dipole correlation tensor C(τ ). The first and most evident
difference is in the dependence of FCP on the spectral linewidth
of the polarizability: Compared to the result in Eq. (10), with
α(ω,ra) ≈ α(2)(ω,ra), the force resulting from Eq. (14) is
less sensitive to the radiative decay rate and its magnitude
only slightly deviates from the result obtained using the bare
polarizability. The application of the QRT results in a force
whose magnitude is larger than that obtained via the FDT, and
the difference is more pronounced for atoms with larger dipole
moment (stronger atom-field coupling) [41]. We depict this
behavior in Fig. 2, where we compare the FDT- and QRT-based
predictions using the polarizability in Eq. (15) (for simplicity
we neglected the surface-induced frequency shift). We want
to stress that while the approach using the QRT requires the
Born-Markov approximation, only the Markov approximation
is responsible for the exponential behavior of the correlation
function. In the next section we show how this point is relevant
to understand the difference with respect to the FDT approach.

C. Relation between the FDT and the QRT

The results of the previous two subsections demonstrate
that the use of two of the most popular approaches for
calculating quantum correlators lead to different results for the
Casimir-Polder force beyond leading order. It is important to
emphasize that while the FDT is an exact theorem, the QRT is
based on approximations. It has already been pointed out that,
because of the Born-Markov approximation, the QRT may lead
to results that are incompatible with the statistical mechanics
of quantum systems when treated beyond the weak-coupling
approximation or perturbed far away from resonance [31,32].
The quantum-regression theorem has proven to be remarkably
successful for driven quantum optical systems, where its range

042114-4



NON-MARKOVIANITY IN ATOM-SURFACE DISPERSION . . . PHYSICAL REVIEW A 94, 042114 (2016)

of validity, near resonance, is not an impediment [33–35].
However, because of the broadband nature of electromagnetic
fluctuation-induced interactions, this limited range of validity
makes the QRT in general inadequate to treat such interactions.
An inappropriate description of any part of the spectrum can
lead to erroneous results.

Notice that, recently, in an attempt to quantify the dynamical
properties of an open quantum system [6,7], the failure of the
QRT has also been proposed and investigated as a measure of
the system’s degree of non-Markovianity [43–45]. As seen
above, the exponential behavior in the correlator obtained
by applying the QRT is a direct consequence of the Markov
approximation. It is well known, however, that this behavior
is incorrect at large times, where the exponential decay of
the correlations transforms to power-law decay [46,47]. This
difference has already been investigated in other contexts of
quantum optics, e.g., the dynamics of the quantum harmonic
oscillator [32] or the spontaneous decay of an excited atom
in the electromagnetic vacuum [46,48–50]. This phenomenon
is related to the limitations of the Wigner-Weisskopf approx-
imation [51,52], which, in turn, is equivalent to the Markov
approximation [46,47]. On the other hand, it is also known
that for short times the decay process starts quadratically in τ

instead of the linear behavior associated with an exponential
law [53]. Consequently, when one goes from the time to the
frequency domain, the Fourier transform of the correlator
obtained using the QRT becomes imprecise both at low and
high frequencies [32].

To further understand how non-Markovian effects (mani-
festing as a deviation from the large-time exponential decay of
the correlator) are responsible for the difference between the
two expressions for the Casimir-Polder force, it is convenient
to examine with some detail the two-time correlator C(τ ) in
the limit of large times. According to Eq. (4) and the FDT, the
relevant (symmetric) part of this quantity for FCP is given by
(τ > 0)

Cs(τ ) = �

π

∫ ∞

0
dωe−iωτ αs

I (ω)

= −�

∑
μ

Res[αs(�μ)]e−i�μτ

− i
�

π

∫ ∞

0
dξe−ξτ

[
αs

I (ω)
]
|ω=−iξ+0+ , (16)

where, for simplicity, we have suppressed the dependence
of the polarizability on ra . The second line is obtained by
computing the ω integral using a contour in the lower right
quadrant of the complex frequency plane. Here, “Res” denotes
the residue, and �μ = �μ(ra) are the complex poles of the
polarizability. As these poles are located in the lower right
quadrant, we can write �μ = ωμ(ra) − iγμ(ra), where ωμ(ra)
and γμ(ra) are two real and positive functions which are related
to the eigenvalues of the matrix Mnm

ij defined at the beginning
of Sec. II B. At this point, we would like to note that, for
simplicity, we have assumed that the polarizability has no
other discontinuity but isolated poles in the complex plane.
If this were not the case, e.g., when branch cuts are present,
they must be added to Eq. (16). For the present case of simple
poles, we see that the stationary dipole correlation, as given

by the FDT, contains a decaying exponential behavior just like
the QRT [first term in Eq. (16)], plus an extra term which is
ultimately responsible for the difference between Eqs. (10)
and (14). Upon an analytical continuation, one has[

αs
I (ω)

]
|ω=−iξ+0+ = −αs(iξ ) − αs(−iξ )

2i
. (17)

This expression yields the terms that are missing in Eq. (14)
in order to recover Eq. (10) (see Appendix D). While the
exponential terms exp[−i�μτ ] in Eq. (16) are sensitive to the
details of the polarizability for frequencies around the poles
�μ, the last integral in Eq. (16), when τ → ∞, is sensitive to
the behavior of the polarizability at low frequencies, |ω| ∼ 0.
From the crossing relation, we know that αs

I (ω) is odd in
frequency, which means that its form is αs

I (ω) ≈ a2m+1ω
2m+1

(m = 0,1,2, . . . ). As a result, for times τ for which the
exponentially decaying terms have died out, i.e., when τ �
1/min(γi), the stationary correlation behaves as

Cs(τ ) ≈ �

π
a2m+1(−1)m+1 (2m + 1)!

τ 2(m+1)
. (18)

The above discussion shows that for large τ the equilibrium
correlation function predicted by the FDT exhibits a power-law
decay instead of an exponential behavior (as would result from
the QRT [see Eq. (12)]).

Alternatively one can also look at the behavior of S(ω). The
power spectrum obtained from the QRT dipole correlation in
Eq. (12),

SQRT(ω) = dd
πω̃a

γaω̃a

(ω̃a − ω)2 + γ 2
a

, (19)

does not satisfy the FDT at low frequencies: It does not vanish
for ω � 0 unlike the FDT power spectrum [Eqs. (8) and (15)].
In Fig. 3 we compare SQRT(ω) with the corresponding FDT
power spectrum. We see that the largest difference occurs in the
region ω ∼ 0, while around the resonance the two expressions

0.5 0.0 0.5 1.0 1.5
0.00

0.05

0.10

0.15

0.20

ω ωa

s
ω

0.10 0.05 0.00 0.05 0.10

γa ωa

γa
2

a
2

FDT

QRT

FIG. 3. Comparison of the normalized power spectra s(ω) = S ·
(dd/πω̃a)−1 predicted by the FDT (blue line) and the QRT (red line)
for the polarizability of Eq. (15) (dissipation is set to γa/ω̃a = 10−2).
While the two results are indistinguishable near resonance, they differ
at low and negative frequencies. This is clearly visible in the inset,
which provides a close up around ω = 0. While the power spectrum
given by the FDT vanishes for ω � 0, that obtained from the QRT is
nonzero.
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overlap. Notice that the impact of this inaccurate description
and the resulting discrepancies only appear for evaluations at
orders higher than the second, i.e., when radiative damping
induced by the interaction with electromagnetic field is
nonzero (see inset of Fig. 3).

In the next section, we will discuss the quantum frictional
force experienced by an atom flying parallel to the surface. We
will see how the above discussion about the FDT vs the QRT
will play an even more relevant role in determining the correct
expression for this force.

III. NON-MARKOVIAN EFFECTS IN
QUANTUM FRICTION

In the previous section we have shown how non-
Markovianity impacts the static atom-surface dispersive in-
teraction. In this section we generalize our analysis to an atom
moving with constant velocity v parallel to a planar surface.
The atom then experiences a frictional force parallel to the
surface that slows down its motion. Our goal is to evaluate the
impact of non-Markovian effects on this force. For simplicity
we will consider the case T = 0, i.e., quantum friction.

A. Derivation of the quantum frictional force

Let us consider a prescribed trajectory ra(t) for the atom.
For simplicity, we focus again on an internal dynamics
involving only the electric dipole moment and we neglect
the magnetic moment which is a good approximation in the
near field (nonretarded) region when the atom-surface distance
is smaller than the relevant transition wavelengths [54].
Assuming that the surface lies in the plane z = 0 and that the
motion takes place at a constant distance za from the surface
(see Fig. 4), the equation of motion for the atom’s center
of mass is mr̈a(t) = Fext + Ffric(t), where Fext is a constant
external classical force and

Ffric(t) =
∑

i

〈d̂i(t)∇‖Êi(ra(t),t)〉. (20)

Here, ∇‖ ≡ (∂x,∂y) is the gradient parallel to the surface. Even-
tually, when Fext + Ffric(t) = 0, the system reaches a nonequi-
librium steady state (NESS) given by ra(t) = (Ra + vt,za)
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FIG. 4. Schematic of quantum friction on an atom moving
at constant velocity parallel to a surface. As in the static case,
the presence of the correlation tensor in the expression of the
frictional force can be qualitatively understood as stemming from the
interaction of the atom with its delayed image within the material.

(for a discussion of the influence of the boost on a perturbative
calculation of quantum friction, we refer to [55,56]).

Once again, similar to Eq. (2), the total field exhibits a
component Ê0 that is only related to the dissipative medium.
In the dynamical case, however, due to the Doppler shift,
this field mixes positive and negative frequency components
when evaluated along the atom’s trajectory. A splitting into
annihilation and creation operators, defined in the rest frame of
the surface, is still possible and we therefore write Ê0(r(t),t) =
Ê⊕

0 (r(t),t) + H.c. [55,57], where

Ê⊕
0 (r(t),t) =

∫ ∞

0

dω

2π

∫
d2k

(2π )2
Ê0(k,za; ω)ei[k·Ra (t)−ωt].

(21)
For ω > 0, the function Ê0(k,za; ω) contains the same an-
nihilation operators as in the static case. Applying the same
arguments as in the previous section, the contribution of Ê⊕

0
vanishes identically [55,57], and we arrive at the following
expression for the frictional force [see also Eq. (3)]:

Ffric(t) = Re

(
2i

π

∫ ∞

0
dω

∫ t−ti

0
dτe−iωτ

∫
d2k

(2π )2
ik

×Tr
[
C(t,t − τ ) · GT

�(k,za,ω)
]
eik·[Ra (t)−Ra (t−τ )]

)
.

(22)

Here, we have defined G�(k,z,ω) = [G(k,z,ω) −
G†(k,z,ω)]/(2i) = Gs

I (k,z,ω) − iGas
R (k,z,ω). From the

properties of the Green tensor (see Appendix A), we can also
deduce that the symmetric part of the Green tensor is even in
k, while the antisymmetric part is odd in k.

Owing to the dissipative properties of the system, we
expect that it has a finite memory time τc, so that the
largest contributions in the τ integral in Eq. (22) stem from
times τ = t − t ′ � τc. In particular, this means that in the
limit of large times t → ∞ which we will consider below,
we are allowed to replace R(t) by Ra + vt , and R(t − τ )
can be approximated by Ra + v(t − τ ). One of the main
differences with respect to the static case is that now the
stationary correlation tensor depends on the final velocity v
through the state of the atom: C(τ ) = limt→∞〈d̂(t)d̂(t − τ )〉 =
tr[d̂i(τ )d̂j (0)ρ̂NESS] ≡ C(τ ; v). Owing to the stationarity of the
process, the correlation tensor depends once again only on the
time difference τ . In the NESS, the frictional force becomes
constant Ffric(t → ∞) = Ffric, and takes the form

Ffric = −Re

(
2

π

∫ ∞

0
dω

∫
d2k

(2π )2
k
∫ ∞

0
dτe−i(ω−k·v)τ

×Tr
[
C(τ ; v) · GT

�(k,za,ω)
])

. (23)

In analogy with the static case, we define the power spectrum
tensor

S(ω; v) = 1

2π

∫ ∞

−∞
dτeiωτC(τ ; v). (24)

Since C†(τ ; v) = C(−τ ; v), the power spectrum is still a
Hermitean tensor S†(ω; v) = S(ω; v) indicating once again that
its real part is a symmetric tensor and its imaginary part is an
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antisymmetric tensor. Using these symmetry properties of the
power spectrum, together with those of G�, we can rewrite
Eq. (23) as the sum of two contributions, Ffric = F(1)

fric + F(2)
fric,

where

F(1)
fric = − 2

∫ ∞

0
dω

∫
d2k

(2π )2
k

× Tr
[
SR(k · v − ω; v) · Gs

I (k,za,ω)
]
, (25)

and

F(2)
fric =2

∫ ∞

0
dω

∫
d2k

(2π )2
k

× Tr
[
SI (k · v − ω; v) · Gas

R (k,za,ω)
]
. (26)

For simplicity, we model the dipole operator as d̂(t) = dq̂(t).
In this case Cij (τ ; v) = didj 〈q̂(τ )q̂(0)〉NESS, resulting in a
symmetric power spectrum and hence SI (ω; v) = 0. This
implies that for this model F(2)

fric = 0. The physical meaning
of the term F(2)

fric will be discussed in a more general context in
a future work.

At this point, and within our assumptions, Eq. (25) is
exact. It gives the quantum frictional force on an atom that
asymptotically moves at constant velocity parallel to the
surface. In order to evaluate this force, we need to compute the
nonequilibrium power spectrum tensor S(ω; v). Unfortunately,
this calculation is a complex problem which often can be
addressed only within perturbation theory. In the following,
we describe two different approaches based on the FDT and
the QRT, which yield markedly different predictions for the
quantum friction in the low-velocity limit. This allows us
to assess the impact of non-Markovianity on nonequilibrium
fluctuation-induced interactions.

B. FDT in quantum friction

Strictly speaking, it is not valid to use the FDT for the
problem of a moving atom above a surface since the system’s
steady state is not in equilibrium [58]. Nevertheless, earlier
works [54,59–61] have (implicitly or explicitly) relied on
the FDT to calculate quantum friction, assuming that both
the atom and the surface are locally in thermal equilibrium
(LTE). Although the LTE approximation has been used in
the literature for several nonequilibrium fluctuation-induced
interactions (e.g., radiative heat transfer [62] or static atom-
surface and Casimir forces out-of-thermal equilibrium [63]),
its justification is still a matter of discussion. In Ref. [58] we
proved for a specific system that the local thermal equilibrium
approximation actually fails in the case of quantum friction.
Interestingly, however, we are going to show below that in
the general case it is still possible to draw conclusions on the
low-velocity behavior of the frictional force [64].

For symmetry reasons an expansion of the friction force
for low velocities must contain only odd powers of v. As
Gs

I (k,za,ω) is even in k, the frictional force in Eq. (25)
identically vanishes for v = 0, as it should. Also, as the dipole
power spectrum explicitly depends on the wave vector only
through the Doppler-shifted frequency ω′ = ω − k · v, only
two terms in Eq. (25) can contribute to the drag force in the
small velocity limit. The first term is that in which we set the
explicit v dependence to zero in the Doppler shift and retain
the implicit velocity dependence through the NESS density

matrix, i.e., SR(−ω; v). The second term is that in which we
set v = 0 in the implicit velocity dependence and retain the
Doppler shift, i.e., SR(−ω′; v = 0). The first term does not
contribute to the low-velocity drag force because the integral
over k in Eq. (25) identically vanishes as Gs

I (k,za,ω) is even
in k. The factor SR(−ω′; v = 0) in the second term is identical
to the static power spectrum with negative Doppler-shifted
frequency. Because it effectively corresponds to an equilibrium
situation (v = 0), its contribution to Eq. (25) can be computed
using the corresponding FDT [Eq. (8)],

SR(−ω′; v = 0) = �

π
θ (−ω′) αI (−ω′), (27)

where α is the polarizability tensor for the atom at rest.
Equation (27) is a simplification of Eq. (8) because in our
dipole model the polarizability and the dipole correlator are
symmetric by assumption.

Since the surface is invariant under rotations around the z

axis, in the following we assume without loss of generality
that the surface-parallel motion occurs in the x direction, i.e.,
v = vxx (x is the unit vector along the x direction), which,
considering again the parity properties of the Green tensor and
symmetry of our system, implies that Ffric = Ffricx. Based on
the arguments in the previous paragraph, any linear order in
the velocity is included in

Ffric ≈ −2�

π

∫ ∞

−∞

dky

2π

∫ ∞

0

dkx

2π
kx

∫ kxvx

0
dω

× Tr[αI (kxvx − ω; 0) · GI (k,za,ω)]. (28)

At this point it is important to clarify the role played by the
different terms in the above expression. The cutoff in the ω

integral and the restriction to positive kx is due to the Heaviside
function θ (−ω′) = θ (kxvx − ω) in Eq. (27): this enforces
a vanishing power spectrum for positive Doppler-shifted
frequencies, revealing an important part of the underlying
physics involved in the quantum friction process. When vx =
0, ω′ = ω > 0 and the Heaviside θ (−ω′) function identically
vanishes, explaining why the frictional force is zero at zero
velocity. However, due to the motion, we have that ω′ =
ω − kxvx < 0 in the interval 0 < ω < kxvx , which results in a
nonzero contribution to the integral in Eq. (28). The so-called
anomalous Doppler effect [65,66] occurs in this region, where
part of the kinetic energy of the atom is converted into real
excitations. (This mechanism is very much related to the
physics of the Vavilov-Cherenkov effect [60,67–70].) The
remaining terms in Eq. (28) are connected to the interaction
strength and they essentially describe the density of states
for the atomic system (αI ) and for the electromagnetic field
emitted by the surface (GI ).

Because they are odd functions of the frequency, the
imaginary parts of both susceptibilities vanish at ω = 0, and
since the Green tensor limits the values of wave vectors to
|k| � z−1

a , an expansion at the lowest order in vx gives

Ffric ≈ − 2�v3
x

3(2π )3

∫ ∞

−∞
dky

∫ ∞

0
dkx k4

xTr[α′
I (0) · G′

I (k,za,0)].

(29)
Here, assuming the existence of some inherent form of
dissipation (see also Sec. IV below), we have considered that
the first derivative in ω (indicated by the prime in the above
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expression) of both tensors does not vanish (Ohmic behavior).
Note that when either α′

I (0) or G′
I are zero, higher (odd) orders

in vx appear in the expansion. A more quantitative evaluation
of Eq. (29) requires the atom’s low-frequency polarizability
or dipole spectrum (see for example Fig. 3), which is known
within the limits of perturbation theory [12,38–40] (see also
Sec. IV).

The above arguments demonstrate that, within our de-
scription of the atom, independently of the details of the
internal dynamics (e.g., linear or nonlinear, induced or intrinsic
dissipation), the lowest-order expansion in velocity of the
zero-temperature stationary frictional force on an atom moving
above a planar surface is at least cubic in vx . This outcome is
in agreement with some of the results available in the litera-
ture [2,3], and it is formally equivalent to the application of
the LTE approximation. There are, however, a few points that
distinguish our approach from the use of that approximation.
First, the derivation of Eq. (29) provides a framework and a
plausibility argument for the application of the LTE approach
to the quantum friction problem. Nonetheless, in Eq. (29)
there can be other v3

x contributions to the frictional force
arising from the intrinsic nonequilibrium velocity dependence
of the power spectrum S(ω; v). As shown in Ref. [58], such
additional v3

x contributions do exist for the case of an atom
modeled as a harmonic oscillator, which, as already said
before, demonstrates in this case the failure of the LTE
approximation in quantum friction. Second, the dependence on
v3

x is a consequence of a general property of the polarizability,
the crossing relation, and its behavior at low frequencies.
This shows that, at least for the case of surface-parallel
motion, the low-velocity behavior of quantum friction is not
qualitatively related to the details of the (velocity-modified)
internal dynamics, e.g., velocity dependent damping rates or
level shifts [40,57,71].

C. QRT in quantum friction

We now compute the friction force at low velocities
predicted by the QRT formula. From the previous subsection
and Sec. II C, we may expect a quite different behavior because
of the dependency of the polarizability at low frequencies.

Our starting point is Eq. (23). Following our discussion
in the previous subsection, in the low-velocity limit one can
approximate the correlator C(τ ; v) by the static correlator
C(τ ; v = 0), and only retain the velocity dependence in the
Doppler shift [the exp[−i(ω − k · v)τ ] factor in Eq. (23)]. As
a result, in order to compute the frictional force Eq. (23), we
need to evaluate the quantity

Re
∫ ∞

0
dτe−i(ω−k·v)τC(τ ; 0)

= �Re
∑

μ

(
iRes[α(�μ)]

�μ + ω − k · v

)
︸ ︷︷ ︸

SQRT(k·v−ω)

−�Re
∑

μ

(
iRes[α(�μ)]

�μ + |ω − k · v|
)

︸ ︷︷ ︸
SnM(k·v−ω)

. (30)

(For simplicity we consider the case where both the correlation
and the polarizability tensors are symmetric.) The static
correlation tensor, computed with the FDT, is given in Eq. (16).
We recall that the first term of the sum in Eq. (16) corresponds
to the exponential decay and is the result one would have
obtained via the QRT expression for the static correlator
[such as Eq. (12) for the two-level system]. After performing
the relevant integral, this term gives rise to the contribution
SQRT(k · v − ω) in Eq. (30). The second contribution in
Eq. (30) arises from the last term of the correlator in Eq. (16),
which contains the non-Markovian (nM) behavior and yields
the long time deviation from the decaying exponential. With
the assumption that the polarizability is a symmetric tensor,
we can formally write α(ω) =∑μ{Res[α(�μ)]/(ω − �μ) −
Res[α(−�∗

μ)]/(ω + �∗
μ)}, from which we obtain

α(iξ ) − α(−iξ )

2i
= −ξ

∑
μ

{
Res[α(�μ)]

ξ 2 + �2
μ

− Res[α(�μ)]∗

ξ 2 + �∗2
μ

}
.

(31)

Performing the relevant integrals in Eqs. (16) and (30), we
obtain SnM(k · v − ω). This analysis reveals that the two terms
SQRT and SnM are very similar, and cancel each other for ω′ =
−(ω − k · v) < 0. We shall see now that both contributions are
relevant for the final expression of the frictional force.

Let us consider the first term SQRT in Eq. (30) and derive the
corresponding QRT form of quantum friction at low velocities.
Using that |k| � z−1

a and again assuming without loss of
generality that the motion is along the x axis, to the lowest
order in vx (vx � min[|�μ|]za), we obtain

F
QRT
fric ≈ − 4�vx

(2π )2

∫ ∞

0
dω

∫ ∞

−∞
dky

∫ ∞

0
dkx k2

x

× Tr

[∑
μ

Re

[
iRes[α(�μ)]

(�μ + ω)2

]
· GI (k,za,ω)

]
. (32)

This means that at low velocities the QRT predicts a frictional
force linear in the velocity of the atom [55,57]. This result
contrasts with the cubic dependence in vx in Eq. (28).

The difference between these two outcomes is due to the
behavior of S(ω) at low frequencies (see Sec. II C and in
particular Fig. 3). Mathematically, this can be understood by
considering the contribution of SnM(k · v − ω) to Eq. (23): A
direct calculation of the frictional force that originates from
this term results in an expression that leads to a linear-in-vx part
which cancels the contribution in Eq. (32) (see Appendix E).
Thus, a higher-order expansion is required and, by symmetry,
the next order to be considered is cubic in vx . Alternatively
one can say that the main effect of SnM(k · v − ω) is to
limit the range of integration over frequency to 0 < ω <

k · v as in Eq. (28). Since SQRT(0) + SnM(0) = 0 and, again,
GI (k,za,0) = 0 any further possible linear-in-vx terms will
vanish and an expansion for low velocities leads to Eq. (29).

IV. QUANTUM FRICTION TO SECOND ORDER
IN PERTURBATION THEORY

For a better understanding of the behavior of the frictional
force, it is instructive to evaluate the interaction within
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second-order perturbation theory in the electric dipole moment
d following the FDT approach [see Eq. (28)]. A special role
is played by dissipation in the particle’s internal dynamics:
the second-order frictional force is different depending on
whether this dissipation is induced or intrinsic. In systems
with induced (i.e., radiative) dissipation (e.g., atoms) at second
order, quantum friction is exponentially suppressed [55,72,73]
at low velocities and the leading contribution requires a
calculation at the fourth order [56,58,64]. In contrast, in
systems with intrinsic dissipation (e.g., nanoparticles), an
approach at second order in the field-dipole coupling provides
the leading contribution. The difference between these two
cases can be once again explained by looking at the low-
frequency behavior of the imaginary part of the polarizability,
which in systems like atoms starts to be accurately described
in an approach beyond second-order perturbation theory.

A. Frictional force on atoms

Within a perturbative framework at second order in
the dipole moment d, the dipole correlator C(τ ; v) and
therefore the nonequilibrium power spectrum entering in
Eq. (25) lose their explicit dependence on the velocity. At
this order, the dipole correlator is calculated starting from
the free evolution of the dipole operator: The system is
decoupled from the electromagnetic field and, therefore, is
locally in thermal equilibrium. This means that the FDT
can be employed, and the frictional force takes the form
of Eq. (28), where the tensor α must be replaced with the
bare polarizability [see discussion after Eq. (15)]. We have
α

(0)
I (ω) = (dd/�)π [δ(ωa − ω) − δ(ωa + ω)] [in this case the

expansion in Eq. (29) does not hold] and inserting it in Eq. (28)
this gives

F
(2)
fric ≈ −2

∫ ∞

−∞

dky

2π

∫ ∞

ωa/vx

dkx

2π
kx

×Tr[dd · GI (k,za,kxvx − ωa)]. (33)

This expression indicates that only wave vectors kx > ωa/vx

contribute to the frictional force. However, since the relevant
part of the Green tensor is proportional to exp[−2kza] <

exp[−2ωaza/c] with k = |k| (see Appendix A), F
(2)
fric ex-

ponentially vanishes in the low velocity limit. To see this
more clearly, we recall that the total Green tensor can be
decomposed as G = G0 + g. Because of Lorentz invariance,
the free-space contribution G0 does not contribute to the
frictional force [73,74]. The scattered part of the Green tensor
g has a symmetric part [the only relevant part in Eq. (33)]
whose imaginary part in the near-field regime (za � c/ω) can
be written as (see Appendix A)

g
I
(k,za; ω) = rI (ω)

2ε0
ke−2kza

(
k2
x

k2
xx + k2

y

k2
yy + zz

)
, (34)

where ε0 is the vacuum permittivity. Further, r(ω) = [ε(ω) −
1]/[ε(ω) + 1] is the quasistatic approximation of the trans-
verse magnetic (TM) reflection coefficient for the planar
surface—here, we recall that in the near-field regime only
the TM polarization matters for dielectric or metallic surfaces,
and we neglect the k dependence of the reflection coefficient.

Also, for simplicity, throughout this paper we neglect spatial
dispersion.

Let us examine the case of a metallic surface described
by the Drude model ε(ω) = 1 − ω2

p[ω(ω + i�)]−1, where ωp

is the plasma frequency and � the metal’s relaxation (dissi-
pation) rate. In the limit of very small dissipation (� → 0)
we have rI (ω) ≈ (πωsp/2)[δ(ω − ωsp) − δ(ω + ωsp)], where
ωsp = ωp/

√
2 is the surface plasmon resonance. The integrals

in Eq. (33) can be evaluated exactly, and the resulting second-
order frictional force is

F
(2)
fric

F0
= ωa/ωsp

12(vx/c)4

(
1 + ωa

ωsp

)3

K(u,ϕ,θ ), (35)

where

K(u,ϕ,θ ) = A0(ϕ,θ )K0(2|u|) + A2(ϕ,θ )K2(2|u|). (36)

In these expressions, u = za(ωsp + ωa)/vx , θ and ϕ

are respectively the polar and azimuthal spherical
angles describing the dipole vector d. In addition,
A0(ϕ,θ ) = (3/2){1 + [3 cos2(ϕ) − 2] sin2(θ )}, A2(ϕ,θ ) =
(3/2)[1 − cos2(ϕ) sin2(θ )], and Kn(x) is the nth order
modified Bessel function of the second kind. Equation (35)
demonstrates that the frictional force depends on the
orientation of the dipole vector of the atom. The largest value
of F

(2)
fric is found for dipoles oriented normal to the surface

(θ = 0) or, if tilted with respect to the normal, when the vector
of the dipole moment exhibits a large component along the
direction of the motion φ = 0. The minimum value occurs for
dipoles oriented along the y axis, i.e., when the vector of the
dipole moment is perpendicular to both the surface normal
and the atom’s propagation direction (see inset of Fig. 5).
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FIG. 5. Velocity dependence of the averaged second-order fric-
tional force for a particle without intrinsic dissipation (e.g., an
atom) moving above a metallic surface. The normalization is F0 =
−3�ω5

spα0/(2πε0c
4). The metal is described by the Drude model and

results for various dissipation parameters are depicted: � = 0 [gray
dashed, Eq. (35)], �/ωsp = 10−3 (dark yellow), and �/ωsp = 10−1

(purple). The other parameters are ωa/ωsp = 0.2 and zaωsp/c = 0.05,
corresponding to the near-field regime, and vx/c = 0.04. The inset
depicts the dependence of quantum friction for � = 0, Eq. (35), on
the orientation of the vector of the dipole moment: The value θ = 0
corresponds to a dipole oriented normal to the surface; if tilted, the
force has is largest value is found for a dipole in the xz plane (φ = 0).
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For simplicity, in the following we will consider expressions
averaged over all dipole orientations, hence, Ā0 = Ā2 = 1.
The normalization is F0 = −3�ω5

spα0/(2πε0c
4), where

α0 = 2|d|2/(3�ωa) is the static atomic polarizability. As an
example, using a plasma frequency ωp = 9 eV and a 87Rb
atom (m = 1.44 × 10−25 kg, α0 = 5.26 × 10−39F m2 [42]),
we have F0 ∼ 0.31 fN, corresponding to an acceleration
F0/m ∼ 2.17 × 109 m/s2.

Since Kn(x � 1) ≈ e−x
√

π/2x, the frictional force
Eq. (35) is exponentially small at low velocities vx � zaωa ,
namely

F̄
(2)
fric

F0
≈

√√√√π
(

ωa

12ωsp

)2(
1 + ωa

ωsp

)5
ωspza

c

(
vx

c

)7 e−(1+ωa/ωsp)(2zaωsp/vx ). (37)

In Fig. 5 we display the velocity dependence of the second-
order quantum frictional force for a substrate with vanishingly
small dissipation, Eq. (35). It grows to sensible values only
for velocities vx > zaωa , which follows from the constraint
on the wave vector discussed above. A maximum occurs
for vx ≈ (4/7)(ωa + ωsp)za , i.e., roughly when the Doppler-
shifted surface-plasmon frequency is brought into resonance
with the atomic transition [the imaginary part of reflection
coefficient r(vx/za − ωa) becomes large] [75]. This means
that, at second order, quantum friction is essentially the result
of a resonant process: The velocity must be sufficiently large
(within the nonrelativistic approach used here) so that the
Doppler effect becomes anomalous, and the corresponding
shifted frequencies are sufficiently large in order to include
the (sharp) atomic transition and excite a plasmon. A photon
(plasmon) in the near field is then created and the atom is
temporarily excited. The peak’s width in Fig. 5 is related to
the broad distribution of k vectors in Eq. (34).

When dissipation in the substrate is taken into account (� �=
0), the second-order quantum frictional force still exhibits
resonant behavior at high velocities (vx > zaωa), as discussed
above (see Fig. 5). At low frequencies, however, the imaginary
part of the reflection coefficient behaves in this case as rI (ω) ≈
ω�/ω2

sp. The frictional force at low velocities still decays
exponentially, but acquires a different asymptotic behavior
due to the modification of the electromagnetic density of states
induced by dissipation in the metal. It is described by

F̄
(2)
fric

F0
≈ �

24ωsp

√√√√ (
ωa

ωsp

)7
π
(ωspza

c

)5( vx

c

)3
(

1 + 5vx

2zaωa

)
e−2zaωa/vx ,

(38)
which is clearly visible in Fig. 6 (black dotted curve).

B. Frictional force on nanoparticles

Within the second-order perturbative approach, we can
study the effect of dissipation associated with the particle’s
internal dynamics by considering the case of a system with
intrinsic damping. Interestingly, at this order, the force on
a moving object having intrinsic dissipation (e.g., a metallic
nanoparticle) is qualitatively different from that on the moving
atom. For this kind of system, we take as bare polarizabil-
ity α(0)(ω) = (2dd/�ωa)ω2

a/(ω2
a − ω2 − iγ ω). For the case

of a metallic nanoparticle, ωa = ω
np
p /

√
3 is the resonance

10 5 10 4 10 3 10 2

10 10

10 7

10 4

10 1

102

ωaza c

vx c

F
fr

ic
F

0

0, 0

0, 0

Ffric
ωa

2

vx
3

za
7

FIG. 6. Velocity dependence of the normalized averaged second-
order quantum frictional force for a particle with intrinsic dissipation.
The normalization is F0 = −3�ω5

spα0/(2πε0c
4). The particle has an

internal resonance frequency ωa/ωsp = 0.2 and moves at a distance
zaωsp/c = 0.05 above the surface, corresponding to the near-field
regime. Results for two different values of the intrinsic dissipation
are displayed: γ /ωsp = 10−1 (dark yellow) and γ /ωsp = 10−3 (red).
In both cases, the damping � is set to �/ωsp = 10−1. The purple curve
shows the case for γ = 0 and �/ωsp = 10−1. The black dotted curve
represents the expression in Eq. (38). The thick gray dashed curve is
Eq. (35).

frequency of the localized surface plasmon, and ω
np
p and γ are,

respectively, the plasma frequency and the dissipation rate for
the bulk metal that comprises the particle. For this setup both
the polarizability and the Green tensor have a nonvanishing
first derivative with respect to ω. As demonstrated in Fig. 6,
when both subsystems have finite dissipation (γ �= 0, � �= 0),
at low velocity a further asymptotic appears in the force given
in Eq. (29), and the frictional force is described by

F̄
(2)
fric

F0
≈ 45

16

�

24π

γ

ω2
a

(
c

ωspza

)7(
vx

c

)3

. (39)

Contrary to the previous cases, the second-order quantum
frictional force for systems with intrinsic dissipation does not
exponentially vanish at low velocities, but rather exhibits a
cubic velocity dependence, just as predicted by Eq. (29) on
the basis of general arguments [76]. In Fig. 6 we display
all three cases discussed above. Note that even when both
sources of dissipation are nonzero, the quantum frictional
force approaches the results of the other cases for larger
velocities. Specifically, the case � �= 0, γ → 0 is approached
first and this is followed by approaching the case �, γ → 0.
The three asymptotic expressions for low vx derived above
cannot be obtained from each other by taking γ → 0 or
� → 0, indicating that these limits do not commute and that,
at low velocities, dissipation is very relevant for quantum
frictional processes. This behavior is directly related to
the corresponding increase in the density of states at low
frequencies that is induced by dissipation [cf. the discussion
following Eq. (28)]. Notice that, although we have calculated
the last two asymptotic expressions for a Drude metal, they can
easily be generalized to other media having an Ohmic behavior
at low frequencies, i.e., rI (ω) = 2ε0ρω for ω → 0 where ρ is
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the dc resistivity [for metals described by the Drude model
ρ = �/(ε0ωsp)].

Finally, let us compare Eq. (39) with the expression for the
frictional force one obtains for this same configuration using
the QRT. In the near field [see Eq. (34)] and in the limits
γ /ωa � 1 and �/ωsp � 1, Eq. (32) gives [55,57]

F̄
QRT
fric

F0
≈ 2π

γωaωsp

(ωa + ωsp)3

(
c

2ωspza

)5
vx

c
. (40)

Besides the linear velocity-dependence behavior already dis-
cussed above, we note a distance dependence with a power law
different from that in Eq. (39). Using a simple dimensional
analysis one can show that this feature is connected with the
low-frequency behavior of the polarizability. Equation (40)
also shows that, to leading order, the force does not depend on
the material dissipation. Within the QRT the frictional force
is indeed dominated by a resonant process occurring at the
surface plasmon frequency. In the FDT approach, leading at
low velocities to Eq. (39), this resonant process can only occur
for large velocities, vx ∼ ωspza , due to the limitations set by
the anomalous Doppler effect (see Sec. III B and Figs. 5 and 6).

V. SUMMARY AND DISCUSSION

Using general concepts of quantum statistical mechanics,
we have investigated the impact of the Markov approximation
on fluctuation-induced atom-surface interactions. In the static
case, we have analyzed the failure of this approximation
by comparing the outcomes obtained using the FDT and
the QRT. The FDT has led to a nonperturbative expression
for the zero-temperature Casimir-Polder force, Eq. (10). The
FDT-based result contains the previously known expressions
as special cases (see Appendix B for details). We have shown
that an alternative approach based on the QRT agrees with
the FDT within lowest order in perturbation theory in the
atom-field coupling strength, but differs at higher orders. This
can be intuitively understood by recalling that the QRT relies
on the Born-Markov approximation, which works well for
weak atom-field couplings and in a narrow range of frequencies
close to resonance. This effectively limits the applicability
of the QRT for fluctuation-induced interactions, given the
broadband nature of the latter.

The difference between the FDT and the QRT becomes even
more pronounced in quantum friction. Specifically, the distinct
behavior at large times or low frequencies of the dipole-dipole
correlation function is responsible for the different scaling
laws of quantum friction with regard to atom velocity and
atom-surface separation. We have shown that, when (intrinsic)
Ohmic dissipation is incorporated in both the constituent
material and the atom dynamics, quantum friction scales as
v3

x for low velocities. By contrast, a Markovian approach leads
to a behavior ∝ vx . More generally, the exponent of the power
law at low velocities is strongly related to the low-frequency
behavior of the atomic and the material susceptibilities. This
explains why dissipation is so relevant: quantum friction is
dominated by low frequencies and there damping increases
the density of states, thus opening new interaction channels.

For systems that exhibit intrinsic dissipation (e.g., a
nanoparticle above a surface) a second-order perturbative

calculation is sufficient to compute the leading term of low-
velocity quantum friction (see Sec. IV). However, for systems
exhibiting only radiative damping (e.g., atoms), a consistent
higher-order (fourth at least) calculation is required in order to
accurately describe the quantum frictional process [55,56,58].

The approach presented in this paper is based on stationary
systems and is thus not suitable for the analysis of non-
steady-state configurations, e.g., an excited atom. However,
in the case of atoms it has recently been shown that in the
case of nonstationary quantum friction the salient features of
our results can also be recovered within a time-dependent
perturbative approach to the fourth order in the atom-field
coupling strength [56]. Intuitively, one can understand this
result in terms of the characteristic time τNESS which the system
needs to reach the nonequilibrium steady state—as even within
a time-dependent perturbative scheme, steady-state features
become relevant as soon as we consider t � τNESS.

We conclude with some comments concerning the experi-
mental investigation of the effects discussed above. The cor-
rections to the Casimir-Polder force depend on the linewidth
of the system’s resonance [see Eq. (14)]. Microscopic systems
with large internal dissipation appear to be suitable candidates
to detect the difference between the two approaches. Examples
of such systems include metallic nanoparticles [77,78] or even
large molecules like fullerene for which a difference of about
10% between the QRT and the FDT approaches is predicted
(see Fig. 2). Such accuracy might require a spectroscopic
analysis (see for example [79]). Since in atoms and molecules
the decay rate usually increases with large polarizabilities and
small atom-surface separations, experiments should aim at
short-distance measurements with microscopic objects with
a large electric dipole moment, such as Rydberg atoms.

In the case of quantum friction an experimental detection
is more difficult due to the small value of the drag force.
For example, for a metallic nanoparticle with radius R = 2
nm (α0 = 4πε0R

3), ωa = 4 eV and γ = 70 meV, moving at
vx = 340 m/s, at a distance za = 10 nm away from a silicon
surface (ρ = 6.4 × 102 � m) we have that within the FDT
approach F̄

(2)
fric = 2.43 × 10−23 N. As a comparison, for the

same configuration, choosing ωsp ∼ 7 eV for silicon, the QRT
force in Eq. (40) leads to a value which is 5 × 103 larger.
A alternative approach for measuring the frictional force
might rely on atom interferometry [80]: When two arms of
the interferometer are placed at different distances from a
surface, the friction on atoms moving along them would lead
to a different phase accumulation which, in turn, would be
detectable as an interference pattern [81].
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APPENDIX A: PROPERTIES OF THE GREEN TENSOR

The electromagnetic Green tensor is the solution of[
∇ × ∇ × −ω2

c2
ε(r,ω)

]
G(r,r′,ω) = ω2

ε0c2
δ(r − r′), (A1)

subjected to appropriate boundary conditions. Some useful
properties of the Green tensor are GT(r1,r2,ω) = G(r2,r1,ω)
(the superscript T indicates the transposed matrix) and
G(r,r′,ω) = G∗(r,r′, − ω) which are, respectively, conse-
quences of reciprocity and the fact that in the time domain
its elements are real. Further, the Green tensor represents a
susceptibility and, therefore, it is analytic in the upper half of
the complex frequency plane and its real and imaginary parts
satisfy Kramers-Kronig relations [82]. As a consequence, we
have that (τ > 0)∫ ∞

−∞

dω

2π
G(r1,r2,ω)e−iωτ

=
∫ ∞

−∞

dω

2π

[
P

∫ ∞

−∞

dν

π

GI (r1,r2,ν)

ν − ω

+ iGI (r1,r2,ω)

]
e−iωτ

= 2i

∫ ∞

−∞

dω

2π
GI (r1,r2,ω)e−iωτ . (A2)

In the first line we have used the Kramers-Kronig relations for
the real part of the Green tensor, and in the second line we
have employed the identity P

∫∞
−∞

dω
π

e−iωt

ν−ω
= ie−iνt .

In the main text we often encounter the spatial Fourier
transform

G(r1,r2,τ ) =
∫ ∞

−∞

dω

2π

∫
d2k

(2π )2

×G(k,z,ω)ei[k·(R1−R2)−ωτ ], (A3)

where k = (kx,ky) denotes the in-plane wave vector and
the position vectors r1 = (R1,z) and r2 = (R2,z) feature
the same z coordinate. From the reality and reciprocity
of the Green tensor, one gets GT(k,z,ω) = G(−k,z; ω),
G∗(k,z,ω) = G(−k,z, − ω), and therefore G†(k,z; ω) =
G(k,z, − ω). Based on these properties one can also deduce
that the symmetric part of the Green tensor Gs(k,z,ω) is even
in k, while the antisymmetric part Gas(k,z,ω) is odd in k. We
can then write

GI (r,r′,ω) =
∫

d2k
(2π )2

G�(k,z,ω)eik·(R−R′), (A4)

where we have defined the tensor

G�(k,z,ω) = G(k,z,ω) − G†(k,z,ω)

2i

= Gs
I (k,z,ω) − iGas

R (k,z,ω). (A5)

As explained in the main text, the total Green tensor can
be decomposed as G = G0 + g, where G0 is the vacuum

contribution and g is the scattered part. For a planar surface,
we have (z > 0)

g(k,z,ω) = κ

2ε0

(
rp[ω,k]p+p− + ω2

c2κ2
rs[ω,k]ss

)
e−2κz,

(A6)

where κ =
√

k2 − ω2/c2 (k = |k|, Re[κ] > 0, and Im[κ] <

0), ε0 is the vacuum permittivity, and rσ [ω,k] are the
polarization dependent (σ = s,p) reflection coefficients of
the surface. Furthermore, in the above expressions, we have
defined the polarization vectors [23]

s = k
k

× z p± = k

κ
z ∓ i

k
k
. (A7)

The corresponding dyadic tensors can be written as

ss =

⎛
⎜⎝

k2
y

k2 − kykx

k2 0

− kykx

k2
k2
x

k2 0
0 0 0

⎞
⎟⎠,

p+p− =

⎛
⎜⎝

k2
x

k2
kykx

k2 −i k
κ

kx

k
kykx

k2

k2
y

k2 −i k
κ

ky

k

i k
κ

kx

k
i k

κ

ky

k
k2

κ2

⎞
⎟⎠. (A8)

APPENDIX B: COMPARING VARIOUS EXPRESSIONS
FOR THE CASIMIR-POLDER FORCE

Following the procedure described in Sec. II A, by employ-
ing the fluctuation-dissipation theorem one can show that the
static Casimir-Polder force can be written as

FCP = �

π
Im
∫ ∞

0
dω Tr

[
α(ω,ra) · ∂zG(ra,r,ω)|r=ra

]
. (B1)

Despite formal similarities, Eq. (B1) differs from the stan-
dard formulas found in the literature for the atom-surface
interaction. Our derivation of Eq. (B1) is different from
the expression for the Casimir-Polder force obtained in
second-order perturbation theory [1,23,24]. In the latter,
the position-independent polarizability α(0)(ω) replaces the
dressed, position-dependent polarizability α(ω,ra) and thus it
corresponds to the lowest order of the perturbative expansion
of Eq. (B1) in the coupling strength. Indeed, the bare
polarizability represents the Fourier transform of the response
function α(0)(τ ) = (i/�)θ (τ )tr[[d̂(0)(τ ),d̂(0)(0)]ρ̂a], where only
the free dipole evolution is considered (ρ̂a describes the atomic
ground state.)

Perhaps more relevant is the difference between Eq. (B1)
and the corresponding Lifshitz formula in the scattering
formulation [11,83],

F Lif
CP = �

π
Im
∫ ∞

0
dωTr

[
αvac(ω) · ∂zg(ra,r,ω)

1 − αvac(ω) · g(ra,r,ω)

]
|r=ra

.

(B2)
In this case, the force is given in terms of the scattering
properties of the surface and the atom is treated as a
noninteracting scatterer: The quantity αvac(ω) is the position-
independent dressed polarizability for the atom placed in the
free electromagnetic vacuum (it differs from α(0)(ω) as it
contains the Lamb shift and spontaneous decay rate), while
g(r,r′,ω) is again the scattered part of the Green tensor [11].
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The denominator in the above expression indicates multiple
reflections of the electric field between the atom and the
surface. Keeping only one round trip in the atom-surface
multiple reflections process [84], one obtains an expression
which is formally similar to Eq. (B1) but where αvac(ω)
replaces α(ω,ra).

When all multiple reflections are kept, Eq. (B2) becomes
identical to Eq. (B1) provided that

α(ra,ω) = [1 − αvac(ω) · g(ra,ra,ω)]−1 · αvac(ω). (B3)

This corresponds to a resummation of the perturbation series,
and the underlying condition is that the atom responds
linearly to the electric field (and the higher multipoles can
be neglected). For example, when the atom is modeled as a
linear harmonic oscillator, the equation of motion of the dipole
operator d̂ = dq̂ is

¨̂q(t) + ω2
aq̂(t) = 2ωa

�
d · Ê(ra,t). (B4)

Here, Ê(r,t) = Ê0(r,t) + ÊS(r,t) is the sum of the field
without the atom [E0(r,t)] and the radiation reaction field
[ES(r,ω) = G(r,ra,ω) · dq̂(ω)]. In Fourier space, the station-
ary dipole’s dynamics is then given by d̂(ω,ra) = α(ω,ra) ·
Ê0(ra,ω) which implicitly defines the atom’s polarizability as

α(ra,ω) =
2ωa

�
dd

ω2
a − ω2 − 2ωa

�
d · G(ra,ra,ω) · d

. (B5)

This is the expression for the polarizability that enters in
Eq. (B1) which, as expected, depends on the position of the
oscillator through the Green tensor. If the atom is isolated in
vacuum, one must replace G by G0 to recover αvac(ω). Finally,
using that G = G0 + g one can show that, in the case Eq. (B5),
α(ra,ω) and αvac(ω) are related as described in Eq. (B3).

APPENDIX C: QUANTUM REGRESSION THEOREM

We provide here the main steps that lead to the result known
as the quantum regression theorem [25]. We will consider the
time evolutions of quantities related to a coupled quantum
system given by a small subsystem “S” and a large stationary
environment (reservoir) “R,” which for simplicity is also
assumed to be in thermal equilibrium. The eigenvectors |En〉
of the Hamiltonian ĤS describing the free evolution of the
system “S” are chosen as basis of the corresponding Hilbert
space. The total system is described at the time t by the density
matrix ρ̂(t).

Consider the function Cnm
B (t,τ ) = tr[Âmn(t + τ )B̂(t)ρ̂(0)]

(τ > 0) where Âmn = |Em〉〈En| and B̂ is a generic operator
having support only on the Hilbert space of “S.” We have that
Cnm

B (t,τ ) = trS[Âmnχ̂
B
S (τ ; t)] where we have defined

χ̂B
S (τ ; t) = trR[e−(i/�)Ĥ τ χ̂B(0; t)e(i/�)Ĥ τ ], (C1)

where the symbol trR(S) indicates the trace only of the
reservoir’s (subsystem’s) quantum degrees of freedom. If we
look at χ̂B(0; t) = B̂ρ̂(t) as the initial condition for a density
matrix, χ̂B

S (τ ; t) is the time evolution in τ of the reduced
density matrix obtained after the trace over the reservoir.
Using the Born approximation and the theory of open quantum

system [4,5] we can derive in general that

∂τ χ̂
B
S (τ ; t) =

[
− i

�
HS − L(τ )

]
χ̂B

S (τ ; t), (C2)

where the superoperator HS = [ĤS,·] describes the free evo-
lution of the subsystem, while L(τ ) is a superoperator related
to the interaction with the environment. The previous equation
requires only that the initial density matrix is factorized,

χ̂B(0; t) = B̂ρ̂(t) ≈ B̂ρ̂S(t) ⊗ ρ̂R = χ̂B
S (0; t) ⊗ ρ̂R, (C3)

which can be seen as a consequence of the Born approximation.
The density matrix ρ̂S(t) is the reduced density matrix of the
subsystem, while ρ̂R describes the state of the environment,
which will be assumed to be stationary. The superoperator
L(τ ) can be expressed as an infinite series using the time-
convolutionless (TCL) approach [5,85–87] or equivalently as
an integral operator involving a memory kernel K(τ ′), i.e.,

L(τ )χ̂B
S (τ ; t) ≡

∫ τ

0
dτ ′K(τ ′)χ̂B

S (τ − τ ′; t). (C4)

Within the Markov approximation L(τ )χ̂B
S (τ ; t) → Lχ̂B

S (τ ; t)
and the superoperator L = ∫∞

0 dτ ′K(τ ′) becomes time in-
dependent and is no longer a convolution. Since χ̂B

S (τ ; t)
has support on the Hilbert space “S,” using the expansion
χ̂B

S (τ ; t) =∑ij trS[Â†
ij χ̂

B
S (τ ; t)]Âij we obtain

∂τC
nm
B (t,τ ) = trS

[
Âmn

[
− i

�
HS − L(τ )

]
χ̂B

S (τ ; t)

]

=
∑
ij

trS

[
Âmn

[
− i

�
HS − L(τ )

]
Âij

]

× trS
[
Â

†
ij χ̂

B
S (τ ; t)

]
=
∑
ij

[−iωij δ
nm
ij − Lnm

ij (τ )
]
C

ij

B (t,τ ) (C5)

[δnm
ij = δniδmj and Lnm

ij (τ ) = trS[Â†
nmL(τ )Âij ]] which is

Eq. (11). In the previous expression we used that L(τ ) is a
linear superoperator to take out the sum symbol (this does not
mean that the system dynamics is linear).

APPENDIX D: USING THE QRT FOR CALCULATING
THE CASIMIR-POLDER FORCE

Within the QRT approach, the Casimir-Polder force is given
as an integration over real frequencies via Eq. (13). It can be
decomposed into four terms:

F
QRT
CP =

∫ ∞

0

dω

2πi

Tr
[
dd · ∂zG(ra,r,ω)|r=ra

]
ω + ω̃a(ra) − iγ (ra)

(D1a)

−
∫ ∞

0

dω

2πi

Tr
[
dd · ∂zG

∗(ra,r,ω)|r=ra

]
ω + ω̃a(ra) − iγ (ra)

(D1b)

+
∫ ∞

0

dω

2πi

Tr
[
dd · ∂zG(ra,r,ω)|r=ra

]
ω + ω̃a(ra) + iγ (ra)

(D1c)

−
∫ ∞

0

dω

2πi

Tr
[
dd · ∂zG

∗(ra,r,ω)|r=ra

]
ω + ω̃a(ra) + iγ (ra)

, (D1d)
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where ω̃a(ra) and γ (ra) are non-negative quantities. The
integrand in Eq. (D1c) has poles in the lower part of the
complex-frequency plane. Thus, a standard Wick rotation can
be performed, resulting in an integration over the positive
imaginary frequency axis. For the integral in Eq. (D1a),
we notice that the integrand has all poles in the lower
part of the complex-frequency plane with the exception of
ω = −ω̃a(ra) + iγ (ra) which is actually located in the upper
left quadrant. This means that a similar Wick rotation in the first
integrand is still possible. For the term appearing in Eq. (D1b)
we can utilize that G∗(ra,r,ω) = G(ra,r, − ω) and a change
of variable ω → −ω. The resulting integral running from −∞
to zero concerns an integrand with poles in the lower part of the
complex-frequency plane. A similar procedure for the term in
Eq. (D1d) leads to an integral where all the poles of the Green
tensor are in the lower part of the complex-frequency plane,
except for one pole at ω = ω̃a(ra) + iγ (ra) that is located in
the first quadrant. Since the corresponding integral again runs
from −∞ to zero we can still perform a rotation of the complex
path in the second quadrant. This procedure leads to

F
QRT
CP =

∫ ∞

0

dξ

2π

Tr
[
dd · ∂zG(ra,r,iξ )|r=ra

]
ω̃a(ra) − [−iξ + iγ (ra)]

+
∫ ∞

0

dξ

2π

Tr
[
dd · ∂zG(ra,r,iξ )|r=ra

]
ω̃a(ra) − [iξ + iγ (ra)]

+
∫ ∞

0

dξ

2π

Tr
[
dd · ∂zG(ra,r,iξ )|r=ra

]
ω̃a(ra) + [iξ + iγ (ra)]

+
∫ ∞

0

dξ

2π

Tr
[
dd · ∂zG(ra,r,iξ )|r=ra

]
ω̃a(ra) + [−iξ + iγ (ra)]

. (D2)

Equation (14) is then recovered from Eq. (D2) by using the
definition in Eq. (15).

It is also interesting to show that the non-Markovian con-
tribution in Eq. (16) is directly responsible for the difference
between the result of the QRT in Eq. (14) and Eq. (10) obtained
via the FDT. Upon inserting the second term on the right-hand
side of Eq. (16) into the expression of the Casimir-Polder force
Eq. (4), we have

F nM
CP = Re

(
2

π

∫ ∞

0
dω

∫ ∞

0
dτe−iωτ Tr

[{
�

π

∫ ∞

0
dξe−ξτ

× [αI (ω)]|ω=−iξ+0+

}
· ∂zGI (ra,r,ω)|r=ra

])

= Tr

[
�

π

∫ ∞

0
dξ

α(iξ ) − α(−iξ )

2

· 2

π

∫ ∞

0
dω

ω∂zGI (ra,r,ω)|r=ra

ω2 + ξ 2

]

= �

π

∫ ∞

0
dξTr

[
α(iξ ) − α(−iξ )

2
· ∂zG(ra,r,iξ )|r=ra

]
,

(D3)

where we have already assumed that the polarization tensor
is symmetric [see Eq. (15)]. In addition, in the last step we
have used the Kramers-Kronig relation (for simplicity, we have
suppressed the dependence of the polarizability on ra). When
added to Eq. (14) the above expression reproduces Eq. (10).

APPENDIX E: NON-MARKOVIAN CONTRIBUTION
TO QUANTUM FRICTION

The importance of non-Markovianity in quantum friction
can be assessed by considering the term SnM(k · v − ω) defined
in Eq. (30). Using Eqs. (23) and (30) we obtain (for simplicity
we consider v = vxx)

F nM
fric = 2�

π

∫
d2k

(2π )2
kx

∫ ∞

kxvx

dω

×Tr

[
Re
∑

μ

iRes[α(�μ)]

�μ + ω − kxvx

· Gs
I (k,za,ω)

]

+2�

π

∫
d2k

(2π )2
kx

∫ kxvx

0
dω

×Tr

[
Re
∑

μ

iRes[α(�μ)]

�μ + kxvx − ω
· Gs

I (k,za,ω)

]
. (E1)

Recalling that Gs
I (k,za,ω = 0) = 0, the leading term in the

expansion for low velocities is provided by the first term on
the right-hand side of this equation. Consequently, we obtain
to leading order

F nM
fric ≈ 2�vx

π

∫
d2k

(2π )2
k2
x

∫ ∞

0
dω

× Tr

[
Re
∑

μ

iRes[α(�μ)]

(�μ + ω)2
· Gs

I (k,za,ω)

]
. (E2)

This exactly compensates the contribution arising from the
QRT [cf. Eq. (32)].

[1] H. B. G. Casimir and D. Polder, The Influence of Retardation on
the London-van der Waals Forces, Phys. Rev. 73, 360 (1948).

[2] J. B. Pendry, Shearing the vacuum - quantum friction, J. Phys.:
Condens. Matter 9, 10301 (1997).

[3] A. I. Volokitin and B. N. J. Persson, Near-field radiative heat
transfer and noncontact friction, Rev. Mod. Phys. 79, 1291
(2007).

[4] C. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).

[5] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).
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