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We study the compatibility of measurements on finite-dimensional compact convex state space in the framework
of general probabilistic theory. Our main emphasis is on formulation of necessary and sufficient conditions for
two-outcome measurements to be compatible and we use these conditions to show that there exist incompatible
measurements whenever the state space is not a simplex. We also formulate the linear programming problem for
the compatibility of two-outcome measurements.
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I. INTRODUCTION

Incompatibility lies deeply within quantum mechanics and
many of the famous and key aspects of quantum theories have
been traced to Heisenberg uncertainty principle, the no cloning
theorem, violations of Bell inequalities, and other notions
making use of compatibility (see [1] for recent review). In light
of these discoveries compatibility in the framework of general
probabilistic theories has been studied [2–5] in order to show
the difference between classical and nonclassical probabilistic
theories. Also the connection of compatibility and steering in
general probabilistic theories has been studied [6–8].

Recently incompatibility of measurements on quantum
channels and combs has been in question [9] as it potentially
could be used as a resource in quantum theory in a similar
way as an incompatibility of measurements on quantum
states [1]. The degree of compatibility (also called robustness
of incompatibility) has been studied for measurements on
channels and combs [2,9,10].

In the present paper we study the notion of compatibility of
measurements in the framework of probabilistic theories and
we show that every two measurements are compatible if and
only if the state space is a simplex. In one way this result has
clear physical interpretation—classical state space is always
a simplex and the existence of incompatible measurements is
often seen as one of the main aspects of quantum theories.

The paper is organized as follows. Section II contains
preliminary mathematical results and references. Note that
Sec. II B contains the definition of maximal face that (to
the best knowledge of the present author) was not defined
elsewhere (even though it has close ties to the notion of tangent
half space and tangent hyper-plane [11, p. 169]) and is later
used in Sec. IV. In Sec. III the measurements are defined.
In Sec. IV compatibility of measurements and degree of
compatibility are defined and it is shown that all measurements
are compatible if and only if the state space is a simplex.
Also the linear program for compatibility of two two-outcome
measurements is formulated.

II. PRELIMINARIES

We present preliminary mathematical knowledge used
in the paper. In all of the paper E will denote a real,
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finite-dimensional vector space equipped with the Euclidean
topology and K will denote a nonempty compact convex subset
of E. We will denote the convex hull of a set X as conv(X),
affine hull of a set X as aff(X), and interior of a set X as
int(X), and by ∂K we will denote the boundary of K , i.e.,
∂K = K \ int(K) as K is closed.

A. Structure of A(K )

By A(K) we will denote the set of real valued affine
functions on K and by A(K)+ we will denote the set of
positive affine functions on K , i.e., f ∈ A(K)+ if and only if
f (x) � 0 for every x ∈ K . We will denote constant functions
by the value they attain. Since K is compact and the functions
A(K) are continuous, every function reaches its maximum and
minimum over K at some point of K and we can introduce the
supremum norm for f ∈ A(K) as

‖f ‖A = sup
x∈K

|f (x)|.

The set A(K)+ is closed; convex, i.e., for λ ∈ R, 0 � λ �
1,f1,f2 ∈ A(K)+ we have λf1 + (1 − λ)f2 ∈ A(K)+; a cone,
i.e., for ν ∈ R, ν > 0, f ∈ A(K)+ we have νf1 ∈ A(K)+;
pointed, i.e., A(K)+ ∩ (−A(K)+) = {0}; and generating, i.e.,
for every f ∈ A(K) we have f+,f− ∈ A(K)+ such that f =
f+ − f−.

The closed, pointed, convex cone A(K)+ defines a partial
order � on A(K) given for f1,f2 ∈ A(K) as

f1 � f2 ⇔ f1 − f2 ∈ A(K)+

or equivalently f1 � f2 ⇔ (f1 − f2)(x) � 0,∀x ∈ K . The
partial order � will play a role in our formulation of linear
program for incompatibility of two-outcome measurements.

Definition 1. We say that e ∈ A(K)+ is an order unit if for
every f ∈ A(K)+ there is some ν ∈ R, ν > 0 such that

νe � f.

In the current setting it is easy to see that every strictly
positive function is an order unit. We will omit the simple
proof of the following fact.

Proposition 1. e ∈ A(K)+ is an order unit if and only if
e ∈ int(A(K)+).

We will also use the notion of a base of a cone.
Definition 2. Let Q ⊂ E be a cone, then a set B ⊂ Q is

called base of Q if for every 0 �= x ∈ Q there exist unique
y ∈ B and λ ∈ R such that x = λy.
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MARTIN PLÁVALA PHYSICAL REVIEW A 94, 042108 (2016)

To formulate the linear programming problem we will also
have to work with the dual space of A(K); we will denote
it A(K)∗. We will denote by A(K)∗+ the cone of positive
functionals dual to A(K)+, that is ψ ∈ A(K)∗+ if and only if
for every f ∈ A(K)+ we have ψ(f ) � 0.

Proposition 2. A(K)∗+ is a closed pointed convex cone.
Proof. It is straightforward to see that A(K)∗+ is a closed

convex cone. It is pointed because A(K)+ is generating. �
We define the dual norm for ψ ∈ A(K)∗ as

‖ψ‖∗ = sup
‖f ‖A�1

|ψ(f )|.

For x ∈ K let �x ∈ A(K)∗ be given for f ∈ A(K) as

�x(f ) = f (x).

The map � : K → A(K)∗ is called an evaluation map and it
is affine. It is easy to see that �[K] = {�x : x ∈ K} contains
only positive functionals with unit norm such that �x(1) = 1
for every x ∈ K . The converse is also true:

Proposition 3. �[K] = {ψ ∈ A(K)∗ : ‖ψ‖∗ = ψ(1) = 1}.
Proof. For proof see [12, Theorem 4.3]. Also note that

‖ψ‖∗ = ψ(1) = 1 implies ψ � 0. �
The set �[K] is sometimes referred to as the state space

as in general applications it is often easier to work with �[K]
rather than K .

B. Exposed faces and maximal faces of a convex set

In this subsection we will define faces, exposed faces, and
maximal faces and prove Proposition 4.

Definition 3. Let C ⊂ K be a convex set (that is, C is a
convex set that is a subset of K). We say that C is a face of
K if x ∈ C, λ ∈ R, 0 < λ < 1 and x = λy + (1 − λ)z implies
y,z ∈ C.

It is straightforward that K and the empty set are faces of
K and they are called the trivial faces. Apart from the trivial
faces it is known that all faces lie in ∂K [11, Corollary 18.1.3].
A face consisting of a single point is called an extreme point
of K .

Definition 4. Let C ⊂ K be a set where some affine
function f reaches its maximum (or minimum) over K , i.e.,
if maxx∈Kf (x) = Mf , then C = {x ∈ K : f (x) = Mf }. Such
C is called an exposed face of K .

Every exposed face is a face [11, p. 162]. An exposed face
consisting of single point is called an exposed point. It will be
important that the set of exposed points of K is dense in the set
of extreme points of K [11, Theorem 18.6] and that every face
of a closed convex set is closed [11, Corollary 18.1.1]. Also
note that not every extreme point must be an exposed point;
an example of this is presented in [11, p. 163].

We proceed by defining the notion of a maximal face.
Maximal faces are generalizations of the n − 1-dimensional
exposed faces of polytopes (that is, of convex sets that are
convex hulls of a finite number of points).

Definition 5. Let C ⊂ K be a nontrivial face, such that for
every x ∈ K \ C we have conv(C ∪ {x}) ∩ int(K) �= ∅; then
we say that C is a maximal face.

Note that we require maximal faces to be nontrivial, i.e., K
itself is not a maximal face. One can show that every maximal
face is exposed, because every maximal face is an intersection

of K and a hyperplane tangent to K . Also every intersection
of K and a hyperplane tangent to K is a maximal face. We
present a simple example of maximal faces of a triangle and
circle.

Example 1. Assume that K ⊂ R2 is a triangle. The vertices
of the triangle are extreme and exposed points of K , but they
are not maximal faces. In this case maximal faces are the edges
of the triangle. Now consider that K ⊂ R2 is the convex hull
of the unit circle; then every extreme point of K is a maximal
face.

Maximal faces will play a role in the notion of compatibility
of measurements as the condition conv(C ∪ {x}) ∩ int(K) �= ∅
will be of great importance.

Proposition 4. Let K ⊂ Rn be a nonempty convex compact
set. Then for every point x ∈ ∂K there are maximal faces
C1,C2 such that x ∈ C1 and x /∈ C2.

Proof. We will prove the statement in two steps. First we
will prove that that every point of ∂K belongs to some maximal
face. Then we prove that maximal faces that have a point in
common cannot form ∂K .

Let x ∈ ∂K; then there exists a nonconstant affine function
f that reaches its maximum over K in x [11, Colloraly
11.6.2]; let f (x) = Mf . The set G0 = {x ′ ∈ K : f (x ′) =
Mf } is an exposed face. If G0 is maximal face then the
proof is finished; if G0 is not a maximal face, then there
must exist a point y ∈ K \ G0 such that conv(G0 ∪ {y}) ∩
int(K) = ∅. The set conv(G0 ∪ {y}) does not have to be a
face itself, but since conv(G0 ∪ {y}) ∩ int(K) = ∅ then there
exists a nontrivial supporting hyperplane to K containing
conv(G0 ∪ {y}) (see [11, Theorem 11.6] for a definition of
a supporting hyperplane to K and proof of the statement). In
other words there must exist a nonconstant affine function f1

such that maxy∈K f1(y) = Mf1 and G1 = {x ′ ∈ K : f1(x ′) =
Mf1} ⊃ conv(G0 ∪ {y}), i.e., G1 is an exposed face of K and
x ∈ G1. Moreover for the dimensions of aff(G0) and aff(G1)
we must have dim(aff(G1)) > dim(aff(G0)), because y ∈ G1

and y /∈ G0. If G1 is a maximal face then the proof is finished;
if not then we can repeat the procedure to find exposed face
G2 ⊃ G1.

Since the affine span of every maximal face can be at most
n − 1 dimensional and the dimension of affine span of the
exposed faces Gi is strictly growing with i it is clear that
we can repeat this procedure at most n − 1 times to obtain a
maximal face; hence in this way to every x ∈ ∂K we can find
a maximal face that contains it.

Now we will proceed with the second part of the proof. Take
x ∈ ∂K , denote {Ci} the set of all maximal faces of K , and
assume x ∈ ∩iCi . Since every point of ∂K belongs to some
maximal face we must have ∪iCi = ∂K . Let us define positive
affine functions fi , such that Ci = {y ∈ K : fi(y) = 0}; then
since a finite-dimensional convex compact set is an intersection
of closed half spaces tangent to it [11, Theorem 18.8] we have
K = {y ∈ Rn : fi(y) � 0, ∀i}. Since we have fi(x) = 0, ∀i

then for any λ ∈ R, λ � 0, and z ∈ K we have

fi(λz + (1 − λ)x) = λfi(z) � 0

for every i. This implies that λz + (1 − λ)x ∈ K , which is in
contradiction with K being compact. �
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III. MEASUREMENTS ON K

Let E be a finite-dimensional real vector space equipped
with the Euclidean topology and let K ⊂ E be a compact
convex set. We will call K a state space as it represents a set of
all possible states of some system and the convex combination
is interpreted as probabilistic mixture. Let � be a nonempty
compact Hausdorff space and let P(�) denote the set of Borel
probability measures on �.

Definition 6. Measurements (also called observables) on K

with sample space � are affine mappings m : K → P(�).
The interpretation is that � represents all possible outcomes

of a certain measurement and is usually referred to as sample
space. For x ∈ K the measure m(x) ∈ P(�) is a general-
ized notion of assigning probabilities to the measurement
outcomes. Our definition follows the usual definitions of
measurements in probabilistic theories [4,6] but may be easily
generalized to locally compact sample spaces �. Let σ ⊂ � be
a measurable set; then by m(x; σ ) we will denote the measure
of the set σ with respect to the measure m(x).

Finite outcome measurements

Let the sample space � = {ω1, . . . ,ωk} be a finite set. Every
Borel probability measure μ ∈ P(�) is of the form

μ =
k∑

i=1

λiδωi

where δωi
is the Dirac measure centered at ωi and λi ∈ R, 0 �

λi � 1,
∑k

i=1 λi = 1. It follows that if m is a measurement on
K with finite sample space � then there always are functions
fj ∈ A(K)+, 0 � fj � 1 for j ∈ {1, . . . ,k}, ∑k

j=1 fj = 1
such that

m =
k∑

i=1

fiδωi
.

Remark 1. In the standard literature [13,14] usually it
is instead of writing m = ∑k

i=1 fiδωi
simply said that the

function fj represents the probability of the outcome ωj . To
simplify the notation we will use the formulation presented
above.

IV. COMPATIBILITY OF MEASUREMENTS

Assume that we wish to perform two distinct measurements
m1,m2 with two separate sample spaces �1,�2. We would like
to know whether there exists a measurement that performs both
m1 and m2 at the same time. To ask this question properly we
will introduce the concept of marginal measurement. When
working with the Cartesian product �1 × �2 we will always
consider the product topology on it given by the topologies of
�1,�2.

Definition 7. Let m : K → P(�1 × �2) be a measurement
on K with sample space �1 × �2. We say that m1 : K →
P(�1) is a marginal measurement of m if for every measurable
set σ ⊂ �1 and x ∈ K we have

m1(x; σ ) = m(x; σ × �2).

This definition can be formally understood as

m1(x; σ ) =
∫

�2

m(x; σ × dω2)

for every measurable set σ ⊂ �1. For the finite outcome
measurements the integral is replaced by a sum over the
outcomes; i.e., for m = ∑k

i,j=1 fij δ(ωi,ωj ), where fij ∈ A(K)+
and δ(ωi,ωj ) is the Dirac measure centered at (ωi,ωj ), we have

m1 =
k∑

i,j=1

fij δωi
.

It is straightforward to see that m1 is a measurement on K

with sample space �1 as the positivity and normalization to
1 follow from the properties of m. Now we are ready for the
definition of compatibility.

Definition 8. We will say that measurements m1 : K →
P(�1) and m2 : K → P(�2) are compatible if there exists
a measurement m : K → P(�1 × �2) such that m1,m2 are
marginal measurements of m.

This definition is the standard definition used for compati-
bility of measurements.

A natural question is, are there any incompatible measure-
ments? It is of course long known that incompatible mea-
surements in quantum mechanics exist, but mathematically
it is interesting to ask what properties of K imply that all
measurements are compatible.

Proposition 5. Let K be a simplex, that is, let {x1, . . . ,xn} be
the set of extreme points of K such that the points x1, . . . ,xn

are affinely independent. Then every measurement on K is
compatible with every other measurement on K .

Proof. Let K be a simplex; then there exists affine
functions bj : K → R, j ∈ {1, . . . ,n} defined by bj (xi) = δij .
These functions are positive, because for every y ∈ K we
have y = ∑n

i=1 λixi with
∑n

i=1 λi = 1 and 0 � λi � 1 for
every i.

Let m be a measurement on K with a sample space �; then
for y ∈ K , y = ∑n

i=1 λixi we have

m(y) =
n∑

i=1

λim(xi) =
n∑

i=1

bi(y)m(xi),

i.e., a measurement m on a simplex is uniquely described by
the measures m(xi) ∈ P(�).

Now let m1,m2 be measurements on K with the sample
spaces �1,�2, respectively; then for y ∈ K we have as above

mj (y) =
n∑

i=1

bi(y)mj (xi),

for j ∈ {1,2}. Let (m1 × m2)(xi) denote the product measure
obtained from the measures m1(xi) and m2(xi), that is, for
measurable sets σi ⊂ �i , i ∈ {1,2} we have

(m1 × m2)(xi ; σ1 × σ2) = m1(xi ; σ1)m2(xi ; σ2).

Let the measurement m : K → P(�1 × �2) be given as

m(y) =
n∑

i=1

bi(y)(m1 × m2)(xi);
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then it is easy to verify that m1 and m2 are marginal
measurements of m. �

Note that positivity of functions bj plays a crucial role
in the proof and these functions are positive only if K is a
simplex. Next we introduce the concept of a coin-toss (also
called trivial) measurement.

Definition 9. Let μ be some fixed Borel probability measure
on sample space �; then by coin toss we will refer to the
measurement given as

m(y) = μ

for every y ∈ K .
Coin-toss measurements usually represent noise, that is,

some random factor that affects the measurement outcomes. It
can be also interpreted as the most simple measurement when
we ignore any information about the state and simply “toss a
coin” and return whatever value we obtain. It is straightforward
that any coin-toss measurement is compatible with any other
measurement.

In the following we state the usual definition of the degree
of compatibility.

Definition 10. Let i ∈ {1,2} and let mi : K → P(�i) be a
measurement on K with sample space �i . Let τi : K → P(�i)
be some coin-toss measurements; then we define degree of
compatibility of measurements m1,m2 as

DegCom(m1,m2) = sup
0 � λ � 1

τ1,τ2

{λ : λm1 + (1 − λ)τ1,

λm2 + (1 − λ)τ2 are compatible}.
The reason for considering different trivial measurements τ1,τ2

is that the sample spaces may be different and even if they
would be the same due to our definitions we cannot pick
some preferred measure as, for example, a properly normed
Lebesgue measure on a compact subset of Rk . Note that the
supremum is taken also over the coin-toss measurements τ1,τ2.

Based on the analysis of compatibility presented in [1] we
obtain the following.

Proposition 6. For any two measurements mi : K →
P(�i), i ∈ {1,2}, we have DegCom(m1,m2) � 1

2 .
Proof. The idea is that we can always toss a fair two

sided coin, based on the result implementing one of the
measurements and substituting the other by the respective
coin-toss observable. In other words let μ1,μ2 be any Borel
probability measures on �1,�2, respectively, that give rise
to coin-toss measurements τi given as τi(y) = μi , i ∈ {1,2}.
Consider the measurement m : K → P(�1 × �2) given for
y ∈ K as

m(y) = 1
2 (μ1 × m2(y) + m1(y) × μ2).

It is straightforward to verify that the measurements 1
2 (m1 +

τ1) and 1
2 (m2 + τ2) are marginal measurements of m. �

A similar result has been observed even for compatibility
of quantum channels [15].

A. Compatibility of two-outcome measurements

In general it may be hard to decide whether measurements
m1 and m2 are compatible but in the case of two-outcome
measurements, that is, in the case when �1,�2 contain

only two points, we will formulate necessary and sufficient
conditions for the measurements m1,m2 to be compatible.
These conditions may be generalized in the same manner to
general finite outcome measurements.

Let �1 = �2 = � = {ω1,ω2} be the sample space of the
measurements m1,m2; then they are of the form

mi = fiδω1 + (1 − fi)δω2

for i ∈ {1,2}. Also every measurement m on K with sample
space � × � is of the form

m = g11δ(ω1,ω1) + g12δ(ω1,ω2) + g21δ(ω2,ω1) + g22δ(ω2,ω2),

where g11,g12,g21,g22 ∈ A(K)+ and δ(ωj ,ωk) is a Dirac measure
on � × � centered at (ωj ,ωk) ∈ � × �. Assume that m1 and
m2 are marginal measurements of m; then we obtain

g11 + g12 = f1, (1)

g21 + g22 = 1 − f1, (2)

g11 + g21 = f2, (3)

g12 + g22 = 1 − f2. (4)

These equations imply g11 + g12 + g21 + g22 = 1, but not
gjk � 0, j,k ∈ {1,2}, and they in general do not have a unique
solution. Let g11 = p, 0 � p � 1; then a general solution to
Eqs. (1)–(4) is

g12 = f1 − p,

g21 = f2 − p,

g22 = 1 − f1 − f2 + p,

which imply the inequalities

f1 � p, (5)

f2 � p, (6)

1 + p � f1 + f2, (7)

that come from gjk � 0 for all j,k ∈ {1,2}. In general there
may not exist such p satisfying Eqs. (5)–(7); in that case
the measurements are incompatible. But if m is a joint
measurement of m1,m2 then Eqs. (5)–(7) must be satisfied
and Eqs. (1)–(4) are satisfied simply because m1 and m2 are
marginals of m. We have proved the following.

Proposition 7. Let m1,m2 be two-outcome measurements
on K given as

mi = fiδω1 + (1 − fi)δω2

for i ∈ {1,2}; then they are compatible if and only if there is
a function p ∈ A(K)+, such that 0 � p � 1 and Eqs. (5)–(7)
are satisfied. Similar results in terms of operators in the case
of measurements on states were obtained in [2,10].

Now we will proceed by deriving some conditions on the
incompatibility of two-outcome measurements based on the
results of Proposition 7 that will help us prove that there exist
incompatible measurements if and only if K is not a simplex.

The main idea is that we will construct two functions
f1,f2 ∈ A(K)+ that reach both zero and one on K and for
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the exposed faces

Fi = {x ∈ K : fi(x) = 0}
i ∈ {1,2} it holds that conv(F1 ∪ F2) ∩ int(K) �= ∅. Then by
the Eqs. (5) and (6) we have that p(x) = 0 for every x ∈
conv(F1 ∪ F2). Since conv(F1 ∪ F2) ∩ int(K) �= ∅ and p � 0
we get p = 0. Then by Eq. (7) we must have f1 + f2 � 1 if
the measurements are compatible so we will show that we can
construct functions f1,f2 with the mentioned properties such
that f1(y) + f2(y) > 1 for some y ∈ K whenever K is not a
simplex.

The ideas presented above were inspired by an example of
incompatible measurements on a square presented in [4].

Proposition 8. Let x ∈ K be an extreme point and let F be a
maximal face disjoint from {x}; then there exist incompatible
two-outcome measurements on K if F does not contain all
other extreme points of K except for x.

Proof. For the definition of a maximal face see Definition 5
and remember that according to the definition K itself is not a
maximal face. Note that closedness of K will play a role as it
implies closedness of every face of K [11, Corollary 18.1.1].

Assume that there is one maximal face F disjoint from x,
but F does not contain all extreme points of K except for
x, i.e., there is an extreme point y ∈ K , such that y /∈ F and
y �= x. Since F , {x}, {y} are closed sets and {y} is disjoint from
both F and {x}, then there exists some open neighborhood Nε

containing y, such that x /∈ Nε and F ∩ Nε = ∅. There is an
exposed point z ∈ Nε as the set of exposed points is dense in
the set of extreme points of K [11, Theorem 18.6]. For the
same reason we will consider x an exposed point as well. Now
let us construct positive affine function f1,fx,fz such that

F1 = {w ∈ K : f1(w) = 0},
{x} = {w ∈ K : fx(w) = 0},
{z} = {w ∈ K : fz(w) = 0},

and

max
w∈K

f1(w) = max
w∈K

fx(w) = max
w∈K

fz(w) = 1.

The functions f1,fx,fz give rise to two-outcome measure-
ments m1,mx,mz given as

m1 = f1δω1 + (1 − f1)δω2,

mx = fxδω1 + (1 − fx)δω2,

mz = fzδω1 + (1 − fz)δω2 .

Since we have

conv(F1 ∪ {x}) ∩ int(K) �= ∅,

conv(F1 ∪ {z}) ∩ int(K) �= ∅,

we must have by Proposition 7

f1 + fx � 1, f1 + fz � 1,

for the measurements m1,mx and m1,mz to be compati-
ble. From f1 + fx � 1 we get {w ∈ K : f1(w) = 1} = {x}
and from f1 + fz � 1 we get {w ∈ K : f1(w) = 1} = {z},
which is a contradiction with x �= z implied by x /∈ Nε and
z ∈ Nε. �

Proposition 9. Let K ⊂ Rn be a compact convex set; then
there exist incompatible measurements on K whenever K is
not a simplex.

Proof. We will rely on the results of Proposition 8. Assume
that x ∈ K is an extreme point that is affinely dependent
on other extreme points, i.e., there are extreme points
{y1, . . . ,yn} ⊂ K such that x = ∑n

i=1 αiyi with
∑n

i=1 αi = 1
and let F denote the maximal face disjoint from {x}. Now let
us construct a nonconstant positive affine function f ∈ A(K)+
such that

F = {z ∈ K : f (z) = 0}.
Again the function f exists as F is an exposed face. Since
x = ∑n

i=1 αiyi , {y1, . . . ,yn} ∈ F and f is affine, we have

f (x) =
n∑

i=1

αif (yi) = 0

and we must have x ∈ F , which is a contradiction. Hence the
set of exposed points must be affinely independent and finite
and K must be a simplex. �

It is an open question whether it can be in an easier fashion
showed that the compactness and convexity of K together with
compatibility of every two-outcome measurement imply the
Riesz decomposition property [16, p. 84] as it is known that it
is equivalent to K being a simplex [16, Corollary II.3.11]. It
is also known that in more general settings of effect algebras
the result does not hold, i.e., there are effect algebras that are
compatible but that do not satisfy the Riesz decomposition
property (see [17, Example 3.6] for an example).

B. Linear programming problem for compatibility
of two-outcome measurements

We will formulate the problem of compatibility of two two-
outcome measurements as a problem of linear programming
[18] similar to the one obtained in [2]. We will start with
the results of Proposition 7 and we will construct the linear
programming problem from there.

Let m1,m2 be two-outcome measurements with sample
space � = {ω1,ω2} given as

mi = fiδω1 + (1 − fi)δω2

for i ∈ {1,2} and let τ represent a coin-toss measurement given
as

τ = 1
2 (δω1 + δω2 ).

In the following calculations we will restrict ourselves only to
this special coin-toss observable as it is sufficient to determine
whether the measurements m1,m2 are compatible.

We want to know what is the highest possible λ ∈ [ 1
2 ,1],

such that the measurements λm1 + (1 − λ)τ,λm2 + (1 − λ)τ
are compatible. In terms of Proposition 7 we want to know what
is the highest value of λ such that there exists p̃ ∈ A(K)+ such
that the conditions

λf1 + 1 − λ

2
� p̃, λf2 + 1 − λ

2
� p̃,

1 + p̃ � λ(f1 + f2) + (1 − λ)
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MARTIN PLÁVALA PHYSICAL REVIEW A 94, 042108 (2016)

are satisfied. Denoting p = p̃

λ
and μ = 1−λ

λ
we obtain

μ

2
− p � −f1, (8)

μ

2
− p � −f2, (9)

p � f1 + f2 − 1. (10)

Now it is important to realize that maximizing λ is equivalent to
minimizing μ. In the following we will introduce new partially
ordered vector spaces and a linear map as the problem of linear
programming will be formulated in their terms.

Let x ∈ R × A(K); then x = (α,g) for α ∈ R and g ∈
A(K). We introduce partial ordering on R × A(K) by the
relation

(α,g) = x � 0 ⇔ α � 0, g ∈ A(K)+.

The topological dual to R × A(K) is R × A(K)∗; for x =
(α,g), c̃ ∈ R × A(K)∗, c̃ = (β,ψ), β ∈ R, ψ ∈ A(K)∗ we
have

〈c̃,x〉 = αβ + ψ(g).

We will also use A(K) × A(K) × A(K) equipped with the fol-
lowing partial order: let (g1,g2,g3) ∈ A(K) × A(K) × A(K);
then (g1,g2,g3) � 0 if and only if gi � 0 for every i ∈ {1,2,3}.

Let T : R × A(K) → A(K) × A(K) × A(K) be a linear
map given as

T (α,g) =
(

− g + α

2
,−g + α

2
,g

)
,

where α
2 stands for the constant function attaining the value α

2 .
It is straightforward to see that T is linear.

Proposition 10. Let c ∈ R × A(K)∗, c = (1,0), F ∈
A(K) × A(K) × A(K), F = (−f1,−f2,f1 + f2 − 1) and x ∈
R × A(K), x = (μ,p); then

inf〈c,x〉
x � 0

T x � F

is a primal linear programming problem. When the reached
minimum is zero then the measurements m1,m2 are compati-
ble. Moreover, there always exists a primal feasible plan.

Proof. The proof is straightforward. We have 〈c,x〉 = μ for
the given c, x � 0 translates to μ � 0, and p � 0. Note that
μ � 0 corresponds to λ � 1. T x � F is the same as

(
− p + μ

2
,−p + μ

2
,p

)
� (−f1,−f2,f1 + f2 − 1)

which is in turn equivalent to conditions (8)–(10).
Since μ = 1−λ

λ
then μ = 0 implies λ = 1. There always

exists a primal feasible plan as we know that for λ = 1
2 the

measurements are always compatible (see Proposition 6). �
Now that we have the primal problem we will find the dual

problem to obtain another condition on the compatibility of
measurements m1,m2.

Proposition 11. The dual problem to the problem introduced
in Proposition 10 is given as

sup〈F,l〉
T ∗l � c

l � 0

where l ∈ A(K)∗ × A(K)∗ × A(K)∗ and T ∗ is given by the
relation 〈l̃,T x̃〉 = 〈T ∗ l̃,x̃〉 for every l̃ ∈ A(K)∗ × A(K)∗ ×
A(K)∗ and x̃ ∈ R × A(K), i.e., T ∗ : A(K)∗ × A(K)∗ ×
A(K)∗ → R × A(K)∗, such that for (ψ1,ψ2,ψ3) ∈ A(K)∗ ×
A(K)∗ × A(K)∗ we have

T ∗(ψ1,ψ2,ψ3) = (
1
2 (ψ1 + ψ2)(1),−ψ1 − ψ2 + ψ3

)
where 1 stands for the constant function on K and ψi(1) is
the value of functional ψ1 on this function, that is, for some
z11,z12 ∈ K and a1,a2 ∈ R, a1 � 0, a2 � 0 we have ψ1 =
a1φz1 − a2φz2 and ψ1(1) = a1 − a2.

Proof. The only thing we need to do is to find T ∗; the rest
follows from the relation between primal and dual problems
[18, p. 163].

From the relation 〈l̃,T x̃〉 = 〈T ∗ l̃,x̃〉 for l̃ = (ψ1,ψ2,ψ3) ∈
A(K)∗ × A(K)∗ × A(K)∗ and x̃ = (α,g) ∈ R × A(K) we get

〈l̃,T x̃〉 =
〈
(ψ1,ψ2,ψ3),

(
−g + α

2
,−g + α

2
,g

)〉

= α

2
(ψ1 + ψ2)(1) + (−ψ1 − ψ2 + ψ3)(g)

=
〈(

1

2
(ψ1 + ψ2)(1),−ψ1 − ψ2 + ψ3

)
,(α,g)

〉

= 〈T ∗ l̃,x̃〉. �
Proposition 12. The duality gap between the primal problem

given by Proposition 10 and the dual problem given by
Proposition 11 is zero.

Proof. The duality gap is zero if there is a primal feasible
plan and the cone

Q = {(T x̃,〈c,x̃〉) : x̃ ∈ R × A(K),x̃ � 0},
Q ⊂ A(K) × A(K) × A(K) × R,

where c = (1,0) as in Proposition 10 is closed [18, Theorem
7.2]. To show that Q is closed we will use the fact that if V,W

are topological vector spaces then QV ⊂ V is a cone with
compact convex base and TV : V → W is a continuous linear
transformation, such that ker(TV ) ∩ QV = {0}; then the cone
TV (QV ) is closed [18, Lemma 7.3].

Because the cone A(K)+ is generating there exists a base
of positive functions h1, . . . hn such that for every h̃ ∈ A(K)+
we have h̃ = ∑n

i=1 λihi for λi � 0. We introduce the L1 norm
on A(K): for h′ ∈ A(K), h′ = ∑n

i=1 νihi we have ‖h′‖L1 =∑n
i=1 |νi |. Note that this norm is an affine function on A(K)+.
We can introduce a norm on R × A(K) as follows: let

x̃ = (α,g) ∈ R × A(K); then

‖x̃‖R×A(K) = |α| + ‖g‖L1.

The base of the positive cone in R × A(K) is the set

K = {x̃ ∈ R × A(K) : ‖x̃‖R×A(K) = 1}.
K is compact and convex, because the norm ‖ · ‖R×A(K) is
continuous and for α � 0 and g ∈ A(K)+ it is affine.
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The map T ′ : R × A(K) → A(K) × A(K) × A(K) × R
given as

T ′x̃ = (T x̃,〈c,x̃〉)
is linear and continuous. If for (α,g) = x̃ ∈ R × A(K) it holds
that T ′x̃ = 0 then we have to have x̃ = (0,0) as 〈c,x̃〉 = 0
implies α = 0 and T x̃ = (0,0,0) implies g = 0. In conclusion
we have ker(T ′) = {(0,0)}.

This shows that the cone Q is closed and since we have
already showed in Proposition 10 that a primal feasible plan
exists the duality gap is zero. �

We will proceed with rewriting the dual problem from
Proposition 11 into a more usable form to obtain a necessary
and sufficient condition for two two-outcome measurements to
be incompatible. We will start from the dual problem stated in
Proposition 11. Since l ∈ A(K)∗ × A(K)∗ × A(K)∗ and l � 0
we must have some z1,z2,z3 ∈ K and a1,a2,a3 ∈ R, ai � 0,
i ∈ {1,2,3}, such that l = (a1φz1 ,a2φz2 ,a3φz3 ) in the formalism
of Sec. II A. From T ∗l � c we obtain the conditions

1
2 (a1 + a2) � 1, a3φz3 � a1φz1 + a2φz2 .

Moreover we have

〈F,l〉 = −a1f1(z1) − a2f2(z2) + a3(f1(z3) + f2(z3) − 1).

Thus we have proved the following.
Proposition 13. The two-outcome measurements m1,m2

corresponding to the functions f1,f2 are incompatible if
and only if there exist positive numbers a1,a2,a3 ∈ R
and z1,z2,z3 ∈ K such that Eqs. (11) are satisfied and
〈F,l〉 > 0.

To make 〈F,l〉 > 0 we could first consider f1(z1) =
f2(z2) = 0 as then only f1(z3) + f2(z3) > 1 would be re-
quired. In this case it would be easy to satisfy Eqs. (11) by suit-
able choice of a1,a2,a3 whenever conv({z1,z2}) ∩ int(K) �= ∅
as then for some ν ∈ [0,1] we would have νz1 + (1 − ν)z2 ∈
int(K) and φνz1+(1−ν)z2 would be an order unit in A(K)∗.
As a matter of fact, this is exactly the idea we used to
prove Proposition 9. By similar methods of semidefinite

programming it was shown that in the case of measurements
on states the value of 〈F,l〉 corresponds to maximal violation
of the Clauser-Horne-Shimony-Holt Bell inequality [2].

V. CONCLUSIONS

Incompatibility of measurements is one of the key aspects
of quantum theories and, as our results have shown, in finite-
dimensional cases it only differentiates classical probabilistic
theories from general probabilistic theories. The quest for
finding some essentially quantum restriction on probabilistic
theories also considered in [3,5] is not over as such restriction
would probably help us to understand quantum theories better
and more deeply.

It is an open question whether our results hold also in the
infinite-dimensional case. A possible approach to generalize
our results would be to prove it using the Riesz decomposition
property and to observe whether the proof may be generalized
for infinite-dimensional state space. It was already proved in
the framework of quantum logic [19] that if the state space
is a Bauer simplex then the set of yes-no observables is
compatible in quantum logic sense. There are hints that the
compatibility in quantum logic sense and compatibility as
defined in Definition 8 coincide as it can be showed that the
conditions for compatibility of two-outcome measurements
given by Proposition 7 may be rewritten in a similar way as in
[19, Theorem 2].
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