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The quantum steering ellipsoid can be used to visualize 2-qubit states, and thus provides a generalization of the
Bloch picture for the single qubit. Recently, a monogamy relation for the volumes of steering ellipsoids has been
derived for pure 3-qubit states and shown to be stronger than the celebrated Coffman-Kundu-Wootters inequality.
We first demonstrate the close connection between this volume monogamy relation and the classification of pure
3-qubit states under stochastic local operations and classical communication. We then show that this monogamy
relation does not hold for general mixed 3-qubit states and derive a weaker monogamy relation that does hold
for such states. We also prove a volume monogamy relation for pure 4-qubit states (further conjectured to hold
for the mixed case), and generalize our 3-qubit inequality to n qubits. Finally, we study the effect of noise on
the quantum steering ellipsoid and find that the volume of any 2-qubit state is nonincreasing when the state is
exposed to arbitrary local noise. This implies that any volume monogamy relation for a given class of multiqubit
states remains valid under the addition of local noise. We investigate this quantitatively for the experimentally
relevant example of isotropic noise.
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I. INTRODUCTION

Qubits play a fundamental role in quantum information
processing tasks [1] and quantum measurement and control
[2]. The Bloch vector faithfully captures all features of a
single-qubit state. However, finding an analogous geometric
representation of multiqubit states is harder. An elegant
solution to this problem has recently been given for the 2-qubit
case [3]. In particular, for a 2-qubit state shared between
two parties, Alice and Bob say, the set of all possible Bloch
vectors that Alice can steer Bob’s qubit to, via all possible
local measurements on her qubit, forms an ellipsoid, called the
quantum steering ellipsoid. Together with Alice’s and Bob’s
local Bloch vectors, the quantum steering ellipsoid provides a
geometric representation of the shared 2-qubit state [3].

The set of 2-qubit states has a rich structure, which is
mirrored, and in some cases added to, by a corresponding zoo
of quantum steering ellipsoids [3]. For example, properties
of steering ellipsoids reflect various features of quantum
correlations, such as discord [3–5], entanglement [3,6,7], and
Einstein-Podolsky-Rosen (EPR) steering [8–11]. Moreover,
it appears that steering ellipsoids may be useful for charac-
terizing correlation properties of multiqubit states, such as
monogamy, in new ways. In particular, it is well known that
quantum correlations cannot be freely shared between mem-
bers of multipartite systems, resulting in monogamy relations
for, e.g., concurrence [12,13], Bell nonlocality [14–17], and
EPR-steering inequalities [18]. In this vein, Milne et al. have
recently obtained a strong monogamy relation for the volumes
of the steering ellipsoids generated by pure 3-qubit states,
termed volume monogamy [6], which is strictly stronger than
the well-known Coffman-Kundu-Wootters (CKW) monogamy
relation for concurrence [12] in the pure regime.

The volume monogamy relation for pure 3-qubit states
immediately suggests a number of questions: Does it dis-

criminate between different types of entanglement? Is it valid
for the mixed case? Are there similar relations for multiqubit
states? And what happens when noise, induced by inevitable
interaction with the environment and imperfections of local
measurements, is present? We will provide some answers to
these questions in this paper, following a brief review of the
quantum steering ellipsoid and its properties in Sec. II.

In Sec. III, we obtain and discuss volume monogamy
relations in general scenarios ranging from pure 3-qubit
states to general multiqubit states. First, in Sec. III A we
discuss the known volume monogamy relation for pure 3-qubit
states [6]; give an alternative proof of this relation that
demonstrates a link with the quantum marginal problem [19];
review the derivation of the CKW monogamy relation from
volume monogamy; and establish a close connection between
properties of volume monogamy and the classification of pure
3-qubit states under stochastic local operations and classical
communication (SLOCC). In Sec. III B, we show that this
volume monogamy relation is violated by some mixed states,
and derive a weaker volume monogamy relation that is valid
for all 3-qubit states, pure or mixed. We obtain a monogamy
relation of the same form for pure 4-qubit states in Sec. III C,
which we conjecture is also applicable to mixed states, and give
a nontrivial volume monogamy relation for general multiqubit
states in Sec. III D.

In Sec. IV, we investigate the effects of noise on steering
ellipsoid volumes and on volume monogamy relations. In
Sec. IV A, we show that the volume of the steering ellipsoid
decreases monotonically under arbitrary local operations,
including under local noise channels in particular. This
significantly generalizes a recent result [20], which is restricted
to particular classes of states and types of noise. Moreover,
it implies that any volume monogamy relation for a given
set of multiqubit states remains valid under the addition of
local noise. This includes, in particular, the strong volume
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monogamy relation for pure 3-qubit states in Ref. [6]. Finally,
in Sec. IV B we investigate the experimentally relevant case
of isotropic noise acting on a family of 3-qubit W -class states.
We conclude with some remarks and open questions in Sec. V.

II. QUANTUM STEERING ELLIPSOIDS
FOR 2-QUBIT STATES

Any 2-qubit state ρAB can be written in the form

ρAB = 1

4

⎛
⎝1A ⊗ 1B + a · σ ⊗ 1B + 1A ⊗ b · σ

+
3∑

j,k=1

Tjkσj ⊗ σk

⎞
⎠, (1)

where σ ≡ (σ1,σ2,σ3) denotes the vector of Pauli spin oper-
ators and 1A,1B are identity operators. Here, a and b are the
Bloch vectors of Alice’s and Bob’s reduced states and T is the
spin correlation matrix, i.e.,

aj := Tr[ρABσj ⊗ 1B], bk := Tr[ρAB1A ⊗ σk],

Tjk := Tr[ρABσj ⊗ σk] (j,k = 1,2,3). (2)

Different choices of Alice’s local measurements result
in different steered states for Bob. Specifically, each local
measurement outcome for Alice corresponds to some element
E � 0 of a positive operator-valued measure (POVM) describ-
ing her measurement. Thus, E = e0(1A + e · σ ), with e0 � 0
and |e| � 1. This outcome is obtained with probability

pE = Tr[ρAB E ⊗ 1B] = e0(1 + a · e),

leading to the steered state

ρE
B = TrA[ρAB E ⊗ 1B]

pE
= 1

2

[
1B + (b + T �e) · σ

1 + a · e

]
(3)

for Bob’s qubit.
Considering all possible local measurements by Alice, it

follows that the corresponding set of Bob’s steered states is
represented by the set of Bloch vectors

EB|A =
{

b + T �e
1 + a · e

: |e| � 1

}
. (4)

While not immediately apparent from Eq. (4), this set forms
a (possibly degenerate) ellipsoid, and hence is called a
quantum steering ellipsoid [3]. The subscript B|A indicates
the steering ellipsoid for Bob that is generated by Alice’s local
measurements. Similarly, there is a steering ellipsoid for Alice
generated by Bob’s local measurements, denoted by EA|B . The
ellipsoid EB|A is fully determined by its center

cB|A = b − T �a
1 − a2

,

and its orientation matrix

QB|A = 1

1 − a2
(T − ab�)�

(
I + aa�

1 − a2

)
(T − ab�),

where the eigenvalues and corresponding eigenvectors of QB|A
describe the squared lengths of the ellipsoid’s semiaxes and

their orientations [3]. Here and elsewhere, we use x to denote
|x| for the vector x.

The quantum steering ellipsoid EB|A, together with the re-
duced Bloch vectors a and b, provides a faithful representation
of any 2-qubit state up to local unitary operations on Alice’s
qubit [3]. Additionally, its various geometric properties encode
useful information about the state. For example, the state is
separable if and only if its steering ellipsoid can be nested in a
tetrahedron that is in turn nested in the Bloch sphere [3].

The size of the steering ellipsoid is quantified by its
volume [3]

VB|A = 4π

3

| det(T − ab�)|
(1 − a2)2

. (5)

It is obvious that the steering ellipsoid is constrained to lie
inside the Bloch sphere, implying the volume is always no
larger than Vunit = 4π

3 . It is therefore convenient to work with
the corresponding normalized volume defined by

vB|A := VB|A
Vunit

� 1. (6)

The upper bound is achieved if and only if Alice and Bob
share a pure entangled 2-qubit state [3], and hence the steering
ellipsoids of such states coincide with the Bloch ball. In
contrast, the normalized volume of any separable state is
restricted by the nested tetrahedron condition to be no greater
than 1

27 [3]. Thus, the steering ellipsoid volume is, at least
to some extent, connected with the entanglement of the state.
This paper will explore this connection further, via volume
monogamy relations.

For later reference, we note here that the quantum steering
ellipsoid EB|A, and hence its volume VB|A, is invariant under
the local filtering operation on Alice’s qubit defined by [6]

ρ̃AB := [(2ρA)−1/2 ⊗ 1B]ρAB[(2ρA)−1/2 ⊗ 1B]. (7)

The filtered state ρ̃AB is called the canonical form of ρAB , and
has the useful properties ẼB|A = EB|A and ã = 0. Thus, for
example, the normalized volume of EB|A can be rewritten in
the simple form

vB|A = ṽB|A = | det T̃AB |, (8)

via Eqs. (5) and (6), where T̃AB denotes the spin correlation
matrix for ρ̃AB . Note that the canonical form is well defined
whenever Alice does not have a pure qubit state, i.e., whenever
a �= 1. Conversely, for a = 1 the shared state factorizes, and
hence Bob’s steering ellipsoid trivially reduces to the single
point EB|A = {b}, with vB|A = 0.

III. VOLUME MONOGAMY

A. Pure 3-qubit states

1. Monogamy, quantum marginals, and concurrence

Consider now the scenario in which Alice, Bob, and Charlie
share a pure 3-qubit state, ρABC = |ψABC〉〈ψABC |, and let
EB|A and EC|A denote the steering ellipsoids for Bob and
Charlie, respectively, generated by local measurements on
Alice’s qubit. Milne et al. have derived the strong volume
monogamy relation [6,21]

√
vB|A + √

vC|A � 1 (9)
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FIG. 1. The volume monogamy relation [Eq. (9)] for pure states.
The x axis and y axis refer to the normalized volumes vB|A and vC|A,
respectively. Both fully factorizable states and bipartite entangled
states |ψA〉|ψBC〉 are mapped to the origin. Two red points (1,0) and
(0,1) correspond to the other two classes of bipartite entangled states
|ψAB〉|ψC〉 and |ψAC〉|ψB〉. The blue solid line is

√
vA|B + √

vC|B =
1 and represents the W -class states, except for the red points (1,0)
and (0,1). The shaded region, including the two axes, represents the
GHZ-class states.

for the corresponding normalized volumes.
This relation immediately implies that Alice cannot steer

both Bob and Charlie to a large set of states. For example, if
Alice is able to steer Bob to the whole Bloch sphere (i.e., they
share a pure entangled state), then Charlie’s steering ellipsoid
has zero volume (and indeed reduces to a single point). The
volume monogamy relation (9) is depicted in Fig. 1. It is
nontrivially saturated if and only if |ψABC〉 is a W -class state
[6,21] (see also Sec. III A 2 below).

We note here an alternative proof of Eq. (9) to that
given in Ref. [21], which does not require consideration of
extremal ellipsoid volumes, and which provides an interesting
connection between volume monogamy and the quantum
marginal problem [19,22]. For a = 1 the proof is trivial:
Alice’s state is pure and hence the shared state factorizes,
implying that vB|A = vC|A = 0. Otherwise, for a �= 1 we can
apply a local filtering operation similarly to Eq. (7), with 1B

replaced by 1BC and ρAB replaced by ρABC , to obtain the
corresponding canonical state ρ̃ABC with ã = 0. Taking partial
traces, the normalized volumes of Bob’s and Charlie’s steering
ellipsoids follow via Eq. (8) as

vB|A = ṽB|A = | det T̃AB | = c̃2, (10)

vC|A = ṽC|A = | det T̃AC | = b̃2, (11)

respectively, where the final equalities may be proved for
pure canonical states by direct calculation, or via partial
transposition properties as per Ref. [21]. Finally, we apply

the polygon inequality [19,22]

b + c � 1 + a, (12)

for the Bloch vectors of any pure 3-qubit state, to the canonical
state ρ̃ABC , yielding

√
vB|A + √

vC|A = c̃ + b̃ � 1 + ã = 1

as required.
Remarkably, the volume monogamy relation (9) also has a

deep connection with entanglement monogamy. In particular,
the concurrence of a bipartite state ρAB has the upper
bound [6]

C2(ρAB) � (1 − a2)
√

vB|A , (13)

which combined with Eq. (9) immediately yields the cele-
brated CKW inequality [12]

C2(ρAB) + C2(ρAC) � (1 − a2) = 4 det ρA. (14)

Thus, volume monogamy is a mathematically stronger condi-
tion than the monogamy of concurrence. Note, however, the
latter is valid for any 3-qubit state, including mixed states. This
is not the case for Eq. (9), as we will show in Sec. III B.

2. Connection to SLOCC classes and 3-tangle

It has been shown in Ref. [23] that any pure 3-qubit
state can be classified into one of six entanglement classes,
with all members of any one class being interconvertible
under SLOCC transformations, i.e., under local operations and
classical communication with some nonzero probability. Here,
we show that these classes map onto corresponding regions of
Fig. 1, thus relating these classes to properties of steering
ellipsoid volumes.

We first consider the four classes having no tripartite
entanglement. The first of these comprises all fully factorizable
states, i.e., those of the form |ψABC〉 = |ψA〉|ψB〉|ψC〉. All
steering ellipsoids reduce to single points for this class, with
zero volumes, and thus it is mapped to the origin in Fig. 1.
Next are the three classes of bipartite entangled states, with the
corresponding forms |ψA〉|ψBC〉, |ψAB〉|ψC〉, and |ψAC〉|ψB〉.
For the first of these, Alice’s qubit is uncorrelated with Bob’s
and Charlie’s qubits, and hence the steering ellipsoids EB|A
and EC|A again have zero volumes, corresponding to the origin
in Fig. 1. For the other two bipartite classes, Alice can steer
one of Bob and Charlie’s qubits to the entire Bloch sphere, and
the other to a single point. Thus, these two classes correspond
to the two red dots in Fig. 1, and trivially saturate volume
monogamy relation (9).

The remaining two entanglement classes comprise genuine
3-party entangled states. They correspond to states which are
convertible, under SLOCC transformations, to either the W

state

|ψABC〉 = 1√
3

(|100〉 + |010〉 + |001〉) (15)

or to the Greenberger-Horne-Zeilinger (GHZ) state

|ψABC〉 = 1√
2

(|000〉 + |111〉), (16)

and are called the W class and the GHZ class, respectively
[23]. These two classes are distinguished by having 3-tangles
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τ (ρABC) = 0 and τ (ρABC) > 0, respectively [23], where for
pure states [12]

τ (ρABC) := 4 det ρA − C2(ρAB) − C2(ρAC). (17)

As indicated in Fig. 1, and demonstrated below, W -class
states are precisely those states which nontrivially saturate
the volume monogamy relation, while the GHZ-class states
correspond to the entire region below this saturating curve.

It has been shown by Milne et al. that the volume
monogamy relation is saturated if and only if the state is a
“maximum volume” state, with the canonical form

|ψ̃ABC〉 = (|100〉 + cos θ |010〉 + sin θ |001〉)/
√

2 (18)

up to local unitary transformations, where θ ∈ [0,π/2] [6,21].
It is straightforward to check that such states are bipartite
entangled states for θ = 0,π/2, corresponding to the points
(0,1) and (1,0) in Fig. 1, and are W -class states otherwise [23].
Hence, all states nontrivially saturating the volume monogamy
relation are W -class states. Conversely, noting that W -class
states have zero 3-tangle and a < 1 [23], the inequality

τ (ρABC) � (1 − a2)(1 − √
vB|A − √

vC|A)

following from Eqs. (13) and (17) immediately implies that
every W -class state saturates the monogamy relation.

It follows from the above that all GHZ-class states must
correspond to points in the region below the saturating curve
in Fig. 1. We show that indeed every point in this region,
including the axes, corresponds to such a state. In particular,
we give a family of canonical GHZ-class states for which the
normalized volumes are mapped to every point (x,y) in the
shaded area in Fig. 1, including the axes. The explicit form of
these states is defined via two real free parameters:

|ψ̃ABC〉 = 1√
2

(sin α|100〉 + sin β|010〉

+ cos β|001〉 + cos α|111〉), (19)

where α,β ∈ (0,π/2), which immediately maps to the co-
ordinates x = vB|A = 1

4 (cos 2α + cos 2β)2 and y = vC|A =
1
4 (cos 2α − cos 2β)2 via Eqs. (10) and (11). These fill the
shaded area because any point (x,y) therein corresponds to
either 2α = arccos(

√
x + √

y ) and 2β = arccos(
√

x − √
y )

or 2α = arccos(
√

x − √
y ) and 2β = arccos(

√
x + √

y ).

B. Mixed 3-qubit states

A natural question to consider is whether the volume
monogamy relation (9) is also valid for a general mixed 3-qubit
state. Unfortunately, the answer is negative. A counterexample
is given by

ρABC = 1
2 (|χ1〉〈χ1| + |χ2〉〈χ2|), (20)

with

|χ1〉 = 1√
6

(|101〉 − 2|011〉 + |110〉),

|χ2〉 = 1√
6

(|010〉 − 2|100〉 + |001〉).

The 2-qubit reduced states ρAB and ρAC are then identical
Werner states, of the form

2
3 |ψ−〉〈ψ−| + 1

3
1
2 ⊗ 1

2 , (21)

where |ψ−〉 denotes the singlet state (|01〉 − |10〉)/√2 . It
is easy to verify that the corresponding steering ellipsoids
are spheres of radius 2

3 [3]. Hence,
√

vB|A + √
vC|A =

2
√

8/27 = 1.0888 > 1, implying that the volume monogamy
relation (9) does not hold for all mixed 3-qubit states.

In Sec. IV, we will show that Eq. (9) does remain valid for
the particular case of mixed states obtained via local operations
on pure 3-qubit states. Here, however, we will derive a volume
monogamy relation that is valid for all 3-qubit states:

(vB|A)2/3 + (vC|A)2/3 � 1. (22)

This monogamy relation is clearly weaker than Eq. (9) for pure
states. However, it is saturated in some cases:-for example,
when ρABC = ρAB ⊗ ρC where ρAB is a pure entangled state,
in which case vB|A = 1 and vC|A = 0.

Our derivation of Eq. (22) is based on a relatively strong
tradeoff relation for the pairwise spin correlations of any 3-
qubit state ρABC ,

Tr[T �
ABTAB] + Tr[T �

ACTAC] + Tr[T �
BCTBC] � 3 (23)

(with equality for pure states), obtained as follows. First,
consider a pure state ρABC . From the Schmidt decomposition,
the purities of any bipartition of such a state satisfy Tr[ρ2

AB] =
Tr[ρ2

C], Tr[ρ2
AC] = Tr[ρ2

B], and Tr[ρ2
BC] = Tr[ρ2

A], which from
the definitions in Eq. (2) are equivalent to

Tr[T �
ABTAB] + a2 + b2 = 1 + 2c2,

Tr[T �
ACTAC] + a2 + c2 = 1 + 2b2,

Tr[T �
BCTBC] + b2 + c2 = 1 + 2a2.

Summing these three equations immediately leads to the
identity

Tr[T �
ABTAB] + Tr[T �

ACTAC] + Tr[T �
BCTBC] = 3 (24)

for pure 3-qubit states. Second, expressing a mixed state
ρABC as a convex combination of pure states, ρABC =∑

m pm|ϕm〉〈ϕm|, and letting T m
AB denote the spin correlation

matrix of TrC |ϕm〉〈ϕm|, we have

Tr[T �
ABTAB]

=
∑
m,n

pmpnTr
[(

T m
AB

)�
T n

AB

]

�
∑
m,n

pmpn

{
Tr

[(
T m

AB

)�
T m

AB

]
Tr

[(
T n

AB

)�
T n

AB

]}1/2

� 1

2

∑
m,n

pmpn

{
Tr

[(
T m

AB

)�
T m

AB

] + Tr
[(

T n
AB

)�
T n

AB

]}

=
∑
m

pmTr
[(

T m
AB

)�
T m

AB

]
. (25)

Here, the first inequality follows from the Schwarz inequality,
and the second from the geometric mean being no greater than
the arithmetic mean. One has similar relations for Tr[T �

ACTAC]
and Tr[T �

BCTBC]. Summing these and using identity (24) for
pure states then yields Eq. (23) as required.
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We note that Eq. (23) can itself be considered as a
monogamy relation, for the strengths of the pairwise spin
correlations, and subsumes the known monogamy relation for
pairwise Bell nonlocality [24].

Similarly to the proof of Eq. (9) in the previous section,
we now consider the canonical state ρ̃ABC for a �= 1 [since
Eq. (22) is similarly trivially satisfied when a = 1]. Equation
(8) then yields

(vB|A)2/3 + (vC|A)2/3

= | det[(T̃AB)�T̃AB]|1/3 + | det[(T̃AC)�T̃AC]|1/3

� 1
3 Tr[(T̃AB)�T̃AB] + 1

3 Tr[(T̃AC)�T̃AC]

� 1 (26)

as desired. Here, the first inequality follows from the
arithmetic-geometric mean inequality, applied to the eigenval-
ues of (T̃AB)�T̃AB and (T̃AC)�T̃AC , and the second inequality
from the tradeoff relation in Eq. (23).

In the next section, we show that a monogamy relation of
the same form (involving 2

3 powers) also holds for pure 4-qubit
states.

C. 4-qubit states

We first remark that the strong monogamy relation (9) for
pure 3-qubit states cannot be generalized to a similar form for
pure n-qubit states, for any n � 4. In particular, by purifying
the counterexample in Eq. (20), we can construct the pure
4-qubit state

|ψ〉ABCD = 1√
2

(|χ1〉ABC |0〉D + |χ2〉ABC |1〉D), (27)

implying, similarly to the counterexample, that
√

vB|A +√
vC|A + √

vD|A = 2
√

8/27 + √
vD|A > 1. It follows more

generally, by considering an n-qubit pure state with factor
|ψ〉ABCD , that the form of Eq. (9) does not generalize to any
n � 4.

We will show here, however, that the volume monogamy
relation

(vB|A)2/3 + (vC|A)2/3 + (vD|A)2/3 � 1 (28)

is valid for any pure 4-qubit state ρABCD , and give numerical
evidence strongly supporting its validity for mixed 4-qubit
states.

To prove result (28), we adapt the techniques used in the
proof of Eq. (22) in Sec. III B. First, using the equalities of
purities of any bipartition of a pure state, we have

a2 + b2 + Tr[T �
ABTAB] = c2 + d2 + Tr[T �

CDTCD], (29)

a2 + c2 + Tr[T �
ACTAC] = b2 + d2 + Tr[T �

BDTBD], (30)

a2 + d2 + Tr[T �
ADTAD] = b2 + c2 + Tr[T �

BCTBC], (31)

with respect to the bipartitions (AB,CD), (AC,BD), and
(AD,BC). We also have, for the bipartition (A,BCD),

b2 + c2 + d2 + Tr[T �
BCTBC + T �

BDTBD + T �
CDTCD]

+LBCD = 3 + 4a2, (32)

where

LBCD :=
∑
l,m,n

(Tr[1 ⊗ σl ⊗ σm ⊗ σn ρABCD])2 (33)

is a measure of the tripartite spin correlation strength between
Bob, Charlie, and Dianne. Summing Eqs. (29)–(32) yields

Tr[T �
ABTAB] + Tr[T �

ACTAC] + Tr[T �
ADTAD]

= 3 + a2 − LBCD � 3 + a2. (34)

Applying a local filtering operation similarly to Eq. (7), with
1B replaced by 1BCD and ρAB replaced by ρABCD , to obtain
the corresponding canonical state ρ̃ABCD , we have ã = 0 and
hence that

Tr[(T̃AB)�T̃AB] + Tr[(T̃AC)�T̃AC] + Tr[(T̃AD)�T̃AD] � 3.

(35)

Equation (28) then follows via the same arguments used in the
derivation of Eq. (26).

Finally, we conjecture that inequality (35) generalizes to

Tr[TABT �
AB] + Tr[TACT �

AC] + Tr[TADT �
AD] � 3 (36)

for all pure 4-qubit states. We have employed numerical
simulations to generate 2 × 105 random pure states and
find no violation of inequality (36). The validity of this
conjecture would imply, using the same techniques as above,
that monogamy relation (28) in fact holds for all 4-qubit states.

D. Multiqubit states

We now obtain a general volume monogamy relation
for n-qubit states, pure or mixed, based on Eq. (22) for
3-qubit states. In particular, for an n-qubit state ρABCD...

consider the normalized volumes vB|A,vC|A,vD|A, . . . of the
steering ellipsoids generated by Alice’s local measurements.
The steered parties B,C,D, . . . can be grouped into 1

2 (n − 1)
(n − 2) distinct pairs, with each pair satisfying a volume
monogamy relation as per Eq. (22). Summing these relations
over all such pairs and rearranging terms then yields the general
monogamy relation

(vB|A)2/3 + (vC|A)2/3 + (vD|A)2/3 + · · · � n − 1

2
. (37)

This reduces to the 3-qubit relation for n = 3, and in general
places a nontrivial constraint on the degree to which Alice can
steer the states of the other parties. For example, noting that
v � v2/3 for v � 1, it follows that the average volume of the
n − 1 ellipsoids to which Alice can steer the other parties is
bounded by

v̄|A := vB|A + vC|A + vD|A + . . .

n − 1
� 1

2 . (38)

For the 4-qubit case, the upper bound in Eq. (37) is 3
2 . While

this is weaker than the upper bound of 1 in Eq. (28) for pure
4-qubit states, it has the advantage of also being valid for the
mixed case.
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IV. VOLUME MONOGAMY AND NOISE

A. Local noise and steering ellipsoids

Taking into account the imperfections of any experiment,
including in state preparation and measurement, the quantum
state is inevitably exposed to all kinds of noise. Such noise
processes can be modeled as a noisy channel acting on an
ideal initial state. We are interested in the problem of how
such channels affect the desired properties of the initial state,
and in particular the steering ellipsoid.

Mathematically, a noisy channel acting on a bipartite state
ρAB is equivalent to a completely positive and trace-preserving
(CPTP) map, �, mapping the initial state ρAB to some ρ ′

AB .
Here, we consider the case that the noise acts locally on each
subsystem. Thus, � = φA ⊗ φB where φA and φB are CPTP
maps acting on A and B, respectively, and

ρ ′
AB = �(ρAB) = (φA ⊗ φB)(ρAB). (39)

The set of reduced states generated by Alice’s local measure-
ments on ρ ′

AB follows from Eq. (3) of Sec. II as

{
ρ ′ E

B

} =
{

TrA[(φA ⊗ φB)(ρAB) E ⊗ 1B]

Tr[(φA ⊗ φB)(ρAB) E ⊗ 1B]

}

=
{

TrA[(IA ⊗ φB)(ρAB) φ�
A(E) ⊗ 1B]

Tr[(IA ⊗ φB)(ρAB) φ�
A(E) ⊗ 1B]

}
,

where E ranges over all positive operators, I denotes the
identity map, and the dual map φ� of any CP map φ is defined
by Tr[φ�(X)Y ] := Tr[Xφ(Y )]. Noting φB is trace preserving
and that φ�

A maps positive operators to positive operators then
yields

{
ρ ′ E

B

} =
{

φB(TrA[ρAB φ�
A(E) ⊗ 1B])

Tr[ρAB φ�
A(E) ⊗ 1B]

}

⊆
{

φB(TrA[ρAB E ⊗ 1B])

Tr[ρAB E ⊗ 1B]

}

=
{
φB

[
TrA[ρAB E ⊗ 1B]

Tr[ρAB E ⊗ 1B]

]}
.

Hence, the steering ellipsoids of ρ ′
AB and ρAB are related by

E ′
B|A ⊆ φB(EB|A). (40)

To determine how the volumes of the steering ellipsoids
are related, note that the trace distance between two states
contracts under any CPTP map φ [1]. Moreover, for qubits,
the trace distance is proportional to the Euclidean distance in
the Bloch ball [1]. As a consequence, the volume of any set of
qubit Bloch vectors contracts under CPTP maps, yielding the
inequality chain

V (E ′
B|A) � V (φB(EB|A)) � V (EB|A) (41)

via Eq. (40). Thus, local noise never increases the volume of
the steering ellipsoid.

An immediate consequence of this result is that any volume
monogamy relation, for a given set of multiqubit states, will
remain valid under the addition of local noise. For example, it
follows via Eq. (9) that√

v′
B|A +

√
v′

C|A � 1 (42)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

v C
A

+
v B

A

FIG. 2. The effect of local noise on the left-hand side of the
volume monogamy relation [Eq. (9)] for the family of states in
Eq. (43). Here, the noise on each qubit is a depolarizing channel
with strength ε = 0 (black solid curve), 0.001 (red solid curve), 0.005
(blue dashed curve), 0.01 (purple dotted curve).

for any state obtained by adding local noise to a pure 3-qubit
state, i.e., for any 3-qubit state of the form ρ ′

ABC = (φA ⊗
φB ⊗ φC)(|ψABC〉〈ψABC |).

B. An example: Local isotropic noise

We consider the set of states

|ϕABC〉 = p|100〉 +
√

1 − p2

2
|010〉 +

√
1 − p2

2
|001〉,

(43)

with p ∈ (0,1). These states are symmetric with respect to
Bob and Charlie, so that vB|A = vC|A. Moreover, it is easy to
verify that these are W -class states [23]. Thus, they saturate the
volume monogamy relation in Eq. (9) (see Sec. III B), making
them of experimental interest.

However, the inevitable presence of noise in any experiment
means that in practice these states cannot be perfectly gener-
ated and measured. We therefore investigate the robustness
of these states under a simple noise model. In particular, we
consider the addition of local isotropic noise

ρ ′
ABC = �ε(ρABC) := (φε ⊗ φε ⊗ φε)(ρABC), (44)

where

φε : ρ → ε

2
1 + (1 − ε)ρ (45)

corresponds to adding isotropic noise of strength ε ∈ [0,1].
Thus, for each qubit, ε = 0 corresponds to no noise, while
ε = 1 corresponds to noise so strong that the state becomes
completely mixed. The Bloch vector of each qubit is scaled by
1 − ε.

The noisy channel �ε preserves the symmetry of the state
ρABC with respect to Bob and Charlie, and the volumes of the
steering ellipsoid may be analytically calculated for the states
in Eq. (43) as

v′
B|A = v′

C|A = 4p4(1 − p2)2(1 − ε)6

[1 − (1 − ε)2(1 − 2p2)2]2
. (46)

The corresponding sensitivity of the volume monogamy
relation (9) to noise is depicted in Fig. 2, for a range of
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experimentally relevant noise strengths. It is seen that while
the relation is no longer saturated for ε > 0, those states with p

taking values in the mid-range of the unit interval are relatively
robust.

V. CONCLUSION

We have studied volume monogamy relations for multiqubit
systems. We have demonstrated a close connection between
the volume monogamy relation (9) for pure 3-qubit states and
the SLOCC classification of such states. A counterexample
(20) was constructed to show this relation does not generalize
to all 3-qubit states, and a suitable universal volume monogamy
relation (22) was obtained for the general case. A similar
relation was obtained in Eq. (28) for pure 4-qubit states, and
conjectured to also hold for mixed states. Furthermore, we
have found a generalized volume monogamy relation valid for
all multiqubit states. Finally, we studied the effects of noise
on the quantum steering ellipsoid and showed that local noise
channels do not invalidate the volume monogamy relation, as
such noise decreases the volume of steering ellipsoids.

More generally, it is remarkable that the simple concept
of the steering ellipsoid, i.e., the set of Bob’s local states
that Alice can prepare by local measurements on her system,
can geometrically capture many important aspects of quantum
correlations and information processing tasks. Properties of
steering ellipsoids are not only strongly connected to quantum
monogamy, as investigated here, but have also been closely

linked with quantum communication protocols based on, for
example, Bell nonlocality [7], teleportation [7], and Einstein-
Podolsky-Rosen steering [8,11].

It is hoped that further investigation of steering ellipsoids
(and their generalizations to higher dimensions) will cement
their relevance to understanding the properties and usefulness
of quantum correlations. This goes well beyond properties
of ellipsoid volumes: for example, while local dissipation
reduces volumes as per Sec. IV, it is also known that such
noise can enhance teleportation fidelity for some states [25].
Hence, a geometric characterization of such states will require
consideration of aspects other than volume (such as semiaxis
lengths [7]).

Many open questions remain for future work even within
the confines of volume monogamy relations. For example,
can stronger monogamy relations than Eqs. (22) and (28)
be obtained? Is the 4-qubit conjecture in Eq. (36) valid? Is
there some underlying connection between volume monogamy
relations and that of other types of entanglement [26–28]? How
close might we get to these bounds with experiments? Finally,
can volume monogamy be generalized to higher-dimensional
systems?
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