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Systems of neutral kaons can be used to observe entanglement and the violation of Bell inequalities. The decay
of these particles poses some problems, however, and recently an effective formalism for treating such systems
has been derived. We generalize this formalism and make it applicable to other quantum systems that can be
made to behave in a similar manner. As examples, we discuss two possible implementations of the generalized
formalism using trapped ions such as 171Yb or 172Yb, which may be used to simulate kaonic behavior in a
quantum optical system.
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I. INTRODUCTION

The unexpected effects of quantum correlations were
initially described by Einstein, Podolsky, and Rosen (EPR)
in their 1935 paper [1] as a phenomenon questioning the
completeness of quantum mechanics. The natural proposal
to overcome the problems raised therein was to assume
the existence of hidden variables: additional parameters not
present in the quantum-mechanical description, but which
characterize the behavior and evolution of a quantum system.

In 1964, however, Bell [2] proposed an inequality that
must be satisfied by any local hidden-variable alternative to
quantum mechanics. It turns out that quantum mechanics
violates this inequality, and thus no local hidden-variable
theory can reproduce its full predictions. Bell’s inequality was
further generalized in 1969 by Clauser, Horne, Shimony, and
Holt [3], and many versions of Bell-type inequalities have been
proposed since then [4–6].

EPR correlations have been a research topic in the field
of particle physics [7]. In particular, the system of neutral
kaons exhibits interesting quantum correlations which have
been studied since the discovery of kaons in the 1960s [8–10].
Due to the strangeness quantum number the neutral kaon and
its antiparticle are different states, allowing for a description
as a two-state system. However, due to the decay of the kaons,
the time evolution of the two-state system is nonunitary. The
details can be found in particle physics textbooks (see, e.g.,
Ref. [11]); in the context of quantum optics this has been
discussed in Ref. [12].

Treating the system of neutral kaons as a two-state system
allows us to draw some analogies to photons [13,14], but
existing approaches suffered from a series of shortcom-
ings [15]. The most important issues were problems with the
normalization of the state of the decaying system, the difficulty
of choosing an active method to measure the quasispin [16],
and the difficult problem of a generalization to a higher number
of particles.

In Ref. [17] the authors proposed a reformulation of the
problem in terms of an effective operator formalism. Here,
the time evolution of the system as well as the measurement
angles can be incorporated into an effective operator that offers
a series of advantages over the direct photon-analogy method:
By including the nonunitary time evolution into the effective
operator, one ensures that normalization is only performed
with respect to the surviving particles. Another advantage is the

possibility to generalize it to an arbitrary number of particles
just by the usual tensor product. Finally, an interesting property
of neutral kaons, namely, the violation of CP symmetry, is
easily included within the formalism.

In this paper, we present a generalization of this approach to
general decay processes and apply it to trapped ion systems. In
detail, the paper is organized as follows. In Sec. II we describe
the physics of neutral kaons and the existing approaches to
effective operators. In Sec. III we describe our generalized
approach. Section IV presents an application to kaons and
various Bell inequalities in this setting. Section V describes
applications to trapped ions such as 171Yb or 172Yb, which
may be used to simulate kaonic behavior in quantum optics.
Finally, we conclude and discuss possible further directions of
research.

II. ENTANGLEMENT OF NEUTRAL KAONS

A. Neutral kaons

In this section we give a brief summary of the quantum
mechanics of the neutral kaon system, which sets the stage for
the further considerations. The neutral kaons are composed
of a strange quark and a down antiquark, where the strange
quark carries a quantum number called strangeness. Due to this
quantum number we can distinguish the neutral kaon from its
antiparticle:

|K0〉 = |d̄s〉, S|K0〉 = +|K0〉, (1)

|K̄0〉 = |s̄d〉, S|K̄0〉 = −|K̄0〉. (2)

The second relevant quantum number is related to the behavior
of the kaons under charge conjugation C and parity P . Since
the kaons are pseudoscalar particles, one obtains (making a
choice for a possible arbitrary phase)

CP |K0〉 = −|K̄0〉, (3)

CP |K̄0〉 = −|K0〉. (4)

In particular, S and CP do not commute and hence there are
no common eigenstates; in fact, we may construct the CP
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eigenstates from the strangeness eigenvectors to be∣∣K0
1

〉 = 1√
2
(|K0〉 − |K̄0〉), (5)∣∣K0

2

〉 = 1√
2
(|K0〉 + |K̄0〉). (6)

Neutral kaons are produced by generating an ss̄ pair, which
hadronizes into strange particles. A particularly clean way is
pursued at DA�NE at Frascati: The kaons are generated from
the decay of a φ meson, which consists of two strange quarks,
but is heavy enough to (exclusively) decay into a pair of neutral
kaons. The φ meson has a definite CP quantum number and
the kaon state in the moment of the decay of the φ (t = 0) is
given by

|ψ(t = 0)〉 = 1√
2
(|K0〉|K̄0〉 − |K̄0〉|K0〉). (7)

Kaons decay through weak interaction processes; the
relevant weak transition is the decay of the strange quark into
an up quark. Hence the possible final states are either two or
three pions, since there is no phase space for heavier states.
However, the two- and three-pion states with vanishing orbital
angular momentum � = 0 have different CP eigenvalues:

CP |ππ (� = 0)〉 = |ππ (� = 0)〉, (8)

CP |πππ (� = 0)〉 = −|πππ (� = 0)〉. (9)

Thus, if CP were conserved, the K0
1 could decay exclusively

to two pions, while K0
2 could only decay into three pions.

Since the phase space for the decay into three pions is much
smaller than the one for the decay into two pions, the K0

2 has
a significantly longer lifetime.

Weak interactions mediate not only the decays of the kaons

but also an effect called mixing. Since the K0 and the K
0

have

common decay channels f , a K0 state can oscillate into a K
0

state through the process K0 → f → K
0
. Thus the neutral

kaon states undergo a mixing which in the two-dimensional

space of K0 and K
0

is described by a Hamiltonian:

H = M + i�, (10)

where M and � are Hermitian 2×2 matrices. Note that this
Hamiltonian takes into account the decay of the kaons through
the contribution of �, which makes the total Hamiltonian non-
Hermitian.

Assuming first that CP is a good quantum number, the
two CP eigenstates (5) and (6) are the eigenstates of the
Hamiltonian, and the eigenvalue equation reads

H |KS,L〉 = λS,L|KS,L〉. (11)

The eigenvalues are complex, since H is non-Hermitian. We
decompose them into real and imaginary parts as

λS,L = mS,L − i

2
�S,L, (12)

where mS,L are the masses of the short- and long-lived states
and �S,L � 0 are the decay widths. Note that �S < �L, so �S

is the width of the short-lived kaon, while �L is the one of
the long-lived kaon. Furthermore, if CP were conserved, we
would have |KS〉 = |K0

1 〉 and |KL〉 = |K0
2 〉.

The eigenvalue problem (11) is non-Hermitian, which not
only leads to complex eigenvalues but also means that the
eigenvectors are not orthogonal to each other. We make a
choice of the relative phases of KL and KS as

〈KS |KS〉 = 〈KL|KL〉 = 1, (13)

〈KS |KL〉 = 〈KS |KL〉∗ � 0. (14)

Weak interactions violate the CP symmetry; in fact this was
discovered in the system of neutral kaons. As a consequence,
CP and H do not commute and thus the CP eigenstates (5)
and (6) are not identical to the eigenstates KL and KS of the
Hamiltonian. To this end, the eigenstates of the Hamiltonian
become

|KS〉 = 1

N
(p|K0〉 − q|K̄0〉),

(15)

|KL〉 = 1

N
(p|K0〉 + q|K̄0〉),

with N =
√

|p|2 + |q|2, and only if CP is conserved we have
p = q. However, CP violation is a small effect; rewriting the
eigenstates of the Hamiltonian KS and KL in terms of the CP
eigenstates K0

1 and K0
2 ,

|KS〉 = 1√
1 + |ε|2

(∣∣K0
1

〉 + ε
∣∣K0

2

〉)
,

(16)

|KL〉 = 1√
1 + |ε|2

(∣∣K0
2

〉 + ε
∣∣K0

1

〉)
,

we define the CP violating parameter ε, which has a value of
approximately ε ≈ 10−3. The fact that there is CP violation
observed in the neutral kaon system, shown here by the nonzero
ε parameter, leads to a slight nonorthogonality of the short-
and long-lived states.

Including CP violation, the total time evolution of the kaon
system is then given by

|K0(t)〉 = g+(t)|K0〉 + q

p
g−(t)|K̄0〉),

|K̄0(t)〉 = p

q
g−(t)|K0〉 + g+(t)|K̄0〉),

(17)

with the time-dependent functions

g+(t) = 1
2 (e−iλS t + e−iλLt ),

g−(t) = 1
2 (−e−iλS t + e−iλLt ). (18)

The lifetime difference in the kaon system is substantial: The
lifetimes of the two states are τS = 8.95×10−11 s for the short-
lived state |KS〉 and τL = 5.11×10−8 s for the long-lived state
|KL〉.

There are two physical properties of neutral kaons that
make them important for our model. The first one is decay
as the system is represented by the two states with different
lifetimes. The second property is flavor oscillation. As the state
|ψ〉 of Eq. (7) evolves in time, the particles undergo mixing,
essentially an oscillation between particle and antiparticle [see
Eq. (17)]. This type of behavior is known as neutral particle
oscillation and will prove useful to us, as we will want to
make our measurements at different times, by performing the
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measurement on one particle and allowing the other to evolve
for an additional time τ , before measuring. This effectively
allows us to measure the spin in different directions.

B. Brief description of the effective formalism

For a system of two particles of spin 1/2, one can select
four settings for the directions of the corresponding spins (two
for each particle, say A1 and A2 for Alice’s particle and B1

and B2 for Bob’s particle). These can be used as parameters
for the CHSH inequality [3]

〈A1B1〉 + 〈A2B1〉 + 〈A1B2〉 − 〈A2B2〉 � 2, (19)

where the bound is valid for local realistic theories and can be
violated by quantum mechanics.

One can define a quasispin quantity, for neutral kaons, with
the parametrization

|kn〉 = cos

(
αn

2

)
|KS〉 + sin

(
αn

2

)
eiφn |KL〉, (20)

and thus give the possibility to the experimenter of choosing
different quasispin directions. One must be careful though:
there is no arbitrary spin direction in this case; one only
has the choice of |KS〉,|KL〉,|K0〉,|K̄0〉, due to the fact
that only strangeness or lifetime measurements can be
performed.

For a certain quasispin direction |kn〉 at a certain measure-
ment time tn, the expectation value can be written in terms of
the probability of obtaining a |kn〉 [denoted here by Y (yes) and
N (no)] as

E(kn,tn) = P (Y : kn,tn) − P (N : kn,tn)

= 2P (Y : kn,tn) − 1. (21)

Noteworthy is the fact that the probability P (N : kn,tn)
includes not only the case of detecting a |kn〉 but also
nondetection events.

Using our parametrization and the fact that

P (Y : kn,tn) = Tr[|kn〉〈kn|ρ(tn)], (22)

we can find an operator that satisfies the property

E(kn,tn) = Tr[Oeff(kn,tn)ρ(t = 0)], (23)

where Oeff(kn,tn) is called an “effective operator.”
With this, the matrix form of the effective operator in the

lifetime eigenbasis is

Oeff

=
(

cos2
(

αn

2

)
e−�Stn − 1 1

2 sin(αn)ei(φn−ωtn)e−�tn

1
2 sin(αn)e−i(φn−ωtn)e−�tn sin2

(
αn

2

)
e−�Ltn − 1

)
,

(24)

as can be constructed by following the derivations in Ref. [17],
with ω ∝ �m. Here, � = 1

2 (�S + �L), where �S,L are the
decay constants of the short- and long-lived states.

A few remarks are in order: First, from the matrix form
of this operator, we see that for large times, when the
probability that the particles have decayed is very high, the
effective operator tends to minus identity. This is a reasonable
expectation, since, as the particles decay, the overall amount of

detection events decreases. Second, using Eq. (23) it is easy to
see that in the case of a multiparticle system the generalization
is straightforward: E = Tr(Oeff

1 ⊗ Oeff
2 ⊗ ... ⊗ Oeff

n ρn).
The experimental setup of a Bell test is rather standard:

a pair of particles produced at a source propagates in
opposite directions. They are detected by two experimenters,
by tradition named Alice and Bob. There are two possible
ways to test any given Bell-type inequality in this situation:
(1) fix the measurement times and measure for different
quasispins and (2) fix the quasispins and measure at different
times.

Because of the scarcity of directions when it comes to
choosing a quasispin, the former option does not provide
interesting information, other than what would be, much easier,
obtained with nondecaying systems like photons. However, the
decay and strangeness oscillation make the latter much more
appealing. In short, both Alice and Bob agree upon a single
measurement direction, say K̄0, and each measures his or her
particle at a different time.

The measurement procedure in the case of kaons also
requires a certain amount of discussion: while it surely is
possible to allow the particles to decay, and then identify the
initial particle by its decay products (passive measurement),
this does not allow the experimenter a free choice of measure-
ment times. One possibility (active measurements) would be
to insert a piece of matter in the way of the kaon beam and,
thus, force the particle to decay, by interaction. The distance
between the object and the kaon source would help set the
measurement times. Another essential aspect is the ability of
the experimenter to choose their measurement angle (in our
case a choice between the particle and its antiparticle). A more
detailed analysis of the various types of measurements that can
be performed on kaons is given in Ref. [16].

III. GENERAL DECAYING SYSTEMS

In this section we describe our generalization of the
effective operator formalism. Later, we will see how it can
be applied to other systems beyond neutral kaons. This
generalization is based on the Bloch equation formalism [18].
We start by treating a closed three-level system at zero
temperature, with population decay from the upper two levels
to a ground level (see Fig. 1). The long- and short-lived states
|KS〉 and |KL〉 would correspond to |2〉 and |1〉, respectively.
The |0〉 level plays the role of a general “decayed” level.

|2

|1

|0

γ1

γ2

γ3

FIG. 1. A general three-level system at zero temperature with
different decay processes. See the text for further details.
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The time evolution of a single particle is given by the
Lindblad equation

ρ̇(t) = −i[H,ρ(t)] −
∑

i

γi

(
1

2
{�†

i �i,ρ(t)} − �iρ(t)�†
i

)
,

(25)

with �i being jump operators between different levels. Here,
H is the mass term M from Eq. (10), a notation we will
maintain throughout the rest of the paper. For our case, these
are given by

�20 = |0〉〈2|,
�21 = |1〉〈2|,
�10 = |0〉〈1|. (26)

Taking into account only the unitary part of the time evolution

ρ̇(t) = −i[H,ρ(t)] (27)

and denoting the density operator in column vector form as


ρ = (ρ1,1, . . . ,ρ1,N ,ρ2,1, . . . ,ρ2,N , . . . ,ρN,N ) (28)

the unitary part becomes

−i[H,ρ] = −i(H ⊗ 1 − 1 ⊗ HT ) 
ρ. (29)

As for the nonunitary part of the time evolution, we simplify
the notation by writing it as

ρ̇ = −γ

2
(�+�−ρ + ρ�+�− − 2�−ρ�+), (30)

where �+ stands for �† and �− stands for �.
Using the transformation from Eq. (29), we have

�+�− · ρ = (�+�− ⊗ 1) 
ρ,

ρ · �+�− = (1 ⊗ (�+�−)T ) 
ρ,

�−ρ�+ = �− · (ρ�+) = (�− ⊗ 1) · (1 ⊗ �T
+) 
ρ. (31)

The Lindblad equation can now be written in operator form


̇ρ = A 
ρ, (32)

with the time evolution operator given by the above results:

A = [−i(H ⊗ 1 − 1 ⊗ HT )

− γ

2
(�+�− ⊗ 1 + 1 ⊗ �+�− − 2�− ⊗ �−)].

Note that, while for the specific way in which we have defined
the � operator the relation �T

+ = �− holds, this is not true in
general. With this, the time evolution equation of the decaying
system is simply


ρ(t) = eAt 
ρ(0). (33)

Worth mentioning is that this formulation of the time evolution
also makes a numerical approach towards solving the problem
possible.

The final step is to construct the general effective operator.
From Eqs. (21)–(23) it follows that

E = Tr[2|kn〉〈kn|ρ(t) − ρ(0)], (34)

where we used the fact that Tr[ρ(0)] = 1. In order to apply
the time evolution, we will write everything in vector notation

and then go back to the original matrix notation, to recover
the final form of the effective operator. Denoting the matrix
|kn〉〈kn| as K , we have

E = Tr[2(K ⊗ 1) 
ρ(t) − 
ρ(0)]

= Tr[2(K ⊗ 1)eAt 
ρ(0) − 
ρ(0)] (35)

[see Eq. (33)]. In vector notation, one should retain the indices
from the matrix notation (ρi,j ), in order for the trace to
make sense; thus, in the above equation, the trace should be
understood as

Tr[ 
ρ(t)] =
∑

i


ρii(t). (36)

Finally, we apply the exponential to 
K and revert to the original
matrix notation, where we replace 
KeAt with K(t):

E = Tr[(2K(t) − 1)ρ(0)] = Tr[Oeffρ(0)], (37)

from which one can simply identify the general effective
operator as

Oeff(kn,tn) = 2K(kn,tn) − 1. (38)

Here, the dependence of K on the time tn and measurement
direction kn has been explicitly highlighted.

The above effective operator represents measurements
performed on a single particle, and the possible settings are
given by the measurement “angles” of the quasispin and the
various times. Now, as previously mentioned, one can test
correlations between larger numbers of particles, by taking
the tensor products of the corresponding effective operators.

IV. RESULTS FOR NEUTRAL KAONS

A first test of the formalism is to apply it for the case of the
CHSH inequality on two three-level quantum systems, thus
also including the neutral kaon case.

Alice’s settings are represented by the indices A1 and A2

while Bob’s settings are represented by B1 and B2. The witness
form of the CHSH inequality is given by

Seff = Oeff
A1

⊗ (
Oeff

B1
− Oeff

B2

) + Oeff
A2

⊗ (
Oeff

B1
+ Oeff

B2

)
,

and thus the test for a possible violation is simply reduced to
the consideration of the maximal and minimal eigenvalues of
Seff , that is, the condition

|Tr(Seffρ)| � 2. (39)

In Fig. 2, we plot the relation from Eq. (39), considering the
initial state of Eq. (7). While a violation is observed (compare
with Ref. [13]), in order to get the optimal results, we must
consider the minimal and maximal eigenvalues of the effective
operator, which is the subject for the rest of this section.

Another interesting Bell-type inequality, the Sliwa-Collins-
Gisin inequality, was first proposed by Sliwa [4] and shown
by Collins and Gisin [5] to be nonequivalent to the original
CHSH inequality. In what follows we shall denote it SCG for
short.
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FIG. 2. Plot of Eq. (39) illustrating an obtained violation of the
CHSH inequality by starting from an initial state |ψ0〉, described in
Eq. (7).

It is a three-setting inequality which is given in witness
form by

SCGeff = Oeff
A1

⊗ (
1 + Oeff

B1
+ Oeff

B2
+ Oeff

B3

)
+ Oeff

A2
⊗ (

1 + Oeff
B1

+ Oeff
B2

− Oeff
B3

)
+ Oeff

A3
⊗ (

Oeff
B1

− Oeff
B2

) + 1 ⊗ (
Oeff

B1
+ Oeff

B2

)
,

which must obey, for an initial two-particle state ρ,

Tr(SCGeffρ) � −4. (40)

We tested for various measurement settings, and the results
can be found in Table II, in Appendix B.

It is interesting to look at the dependence of the lifetime of
the violation (in units of 10 ns) in terms of ε (Fig. 3) and the
maximal violation in terms of ε (Fig. 4). For the CHSH, Alice
measures her fixed quasispin |K̄0〉 at time tA1 = τ,tA2 = 0
(in fact all measurements assume a fixed |K̄0〉 quasispin,
modifying only measurement times, for both parties) and Bob
measures at tB1 = 0, tB2 = τ . For the SCG, Alice measures
at tA1 = 0, tA2 = τ, tA3 = 2τ and Bob measures at tB1=0,

tB2 = 2τ, tB3 = τ . Here, τ is just a plot parameter. Plots of the
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FIG. 3. Dependence of the violation lifetime, for the CHSH (fast
decaying curve) and SCG (in units of 10 ns) on the CP-violation
parameter.
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FIG. 4. Dependence of the maximal violation of the CHSH (short
line) and SCG inequalities on the CP-violation parameter. The
measurement settings are the same as for Fig. 3.

maximal and minimal eigenvalues of the effective operator,
as functions of time, for different measurement settings, are
shown in Table I in Appendix B.

For ε = 0 the maximal values of the effective operators
were Seff ≈ 2.12 and SCGeff ≈ −5.58. For ε = 10−3 the
value for the CHSH was Seff ≈ 2.11. However, the SGC
inequality showed a remarkable robustness to the variation of
the CP-violation parameter; for values of ε = 0.2 one can still
observe an effective operator eigenvalue of SCGeff ≈ −4.49
(see Table II in Appendix B).

We notice that, while the presence of CP violation does
reduce the amount of violation we observe, while testing Bell-
type inequalities, the violation is still present for values of ε

much larger than the one characteristic for neutral kaons.

V. SIMULATING KAONLIKE BEHAVIOR
WITH TRAPPED IONS

A. General requirements

Before looking at two examples of kaonlike behavior in
trapped Yb ions we summarize the general requirements for
simulating kaonlike behavior with ions.

As shown in Fig. 5, there must be two levels which
we identify as |1〉 = |K0

1 〉 and |0〉 = |K0
2 〉 and consecutively

|K0〉 = |+〉 and |K̄0〉 = |−〉 with |±〉 = (|0〉 ± |1〉)/√2. There

detectionfast decay

|1

|0

no decay
arbitrary
manipulation

moderate
decay

|decayed

FIG. 5. Basic scheme needed to implement kaonlike behavior.
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should be no decay between these two levels (as there is no
decay between |K0

1 〉 ≈ |KS〉 and |K0
2 〉 ≈ |KL〉). Besides a two-

qubit gate to create entanglement also arbitrary singe-qubit
rotations (for example by using an rf field) are needed for
preparation, inducing kaon oscillation and choosing arbitrary
measurement directions.

Without CP violation, the oscillation between |K0〉 and
|K̄0〉 corresponds to an oscillation around the z axis given
by U (t) = exp(−iδtσz) with the Pauli matrix σz. The rotation
frequency δ is given by the detuning δ = ωK − ωL between
the level splitting ωK and the reference laser ωL determining
the rotating reference frame.

The CP violation ε leads to several effects. For example
|K0(t)〉 is decaying faster than |K̄0(t)〉 and the decay rates
for both states start to oscillate. Furthermore their expecta-
tion values 〈σz(t)〉 undergo small oscillations and we find
〈σz(t)〉K0 � 〈σz(t)〉K̄0 for all times. This behavior can be
simulated by slightly tilting the rotation axis. The connection
between the CP violation and the tilting is given by

δ√
δ2 + �2

= 1 − ε

1 + ε
(41)

with the Rabi frequency � determining the strength of the
laser or microwave.

Two additional levels are needed, one for fluorescence
detection (from which a fast decay must exist to one of the qubit
states) and another, representing the state of decay products,
with a moderate decay rate �S from one of the two qubit states.

In general, arbitrary values for the oscillation frequency ω,
the decay rate �S , and the CP violation ε can be chosen for our
ion system. However, the behavior of the here-described ion
system mimics kaonlike behavior only for small values of the
CP violation, that is, ε � ω/�S . This becomes apparent if we
look at Eqs. (17) and (18), which lead to unphysical behavior
for large ε.

B. Examples

In this final section we present two possible ways to
simulate decaying systems with quasikaon behavior using
trapped Yb ions. We will only briefly go over the examples
here. For a more detailed description see the Appendix.

Example 1. The first proposal is based on the level
structure of 171+

Yb sketched in Fig. 6. The qubit is de-
fined as |0〉 = |S,F = 0〉 and |1〉 = |S,F = 1,mF = 1〉 and
the decayed state is represented by |S,F = 1,mF = 0〉 and
|S,F = 1,mF = −1〉. |0〉 and |1〉 are both long-lived states.
However, decay can be generated by weak driving of the
|S,F = 1,mF = 1〉 ↔ |P,F = 0〉 transition with σ− polar-
ized light. From |P,F = 0〉 the state decays fast to all
|S,F = 1,mF 〉 states. It is important to note here that the
strength of the decay is thus tunable, by tuning the strength or
duration of the transitions.

This decay behavior is slightly different from kaons,
because |0〉 does not decay and there is a nonzero probability
of |1〉 “decaying” to itself, which leads to dephasing. More
clearly, while for neutral kaons one could express the decay
process as

� = γS |decayed〉〈1| + γL|decayed〉〈0|, (42)

mF = 1

mF = 0

mF = −1

F = 1

F = 1

F = 0

F = 0

S

P

mF = 1

mF = 0

mF = −1

λp

λd

FIG. 6. An implementation of the effective formalism using
171+

Yb. The qubit is defined between the two levels marked with
thick dots.

where, for clarity of notation, the short-lived kaon state has
been identified with |1〉 and the long-lived kaon state has been
identified with |0〉, the case for example 1 is described by

�′ = γS

(
2
3 |decayed〉〈1| + 1

3 |1〉〈1|), (43)

where there is always a chance of decay to the initial level
(dephasing). In Fig. 7 we plot the violation lifetimes in terms
of the CP-violation parameter with and without splitting γS

into 2/3 decay and 1/3 dephasing.
Another necessary step to simulate the kaon is to gen-

erate entanglement between two ions. This is achieved in
our example by using magnetic gradient-induced coupling
(MAGIC) [19,20].

State detection of the ion is achieved by a single-qubit
rotation to choose the measurement direction and consec-
utively driving the |S,F = 1〉 ↔ |P,F = 0〉 transition with
unpolarized light and detecting the scattered photons. Un-
fortunately, this state-dependent fluorescence measurement is
only able to distinguish between the states |S,F = 0〉 and
|S,F = 1〉, but cannot resolve the sublevels |mF = 0/ ± 1〉.

(b)
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FIG. 7. The effect of dephasing on the violation lifetimes (units
of 10 ns) for the SCG inequality, in terms of ε. Here we plot both the
case of (a) only decay with strength γS and (b) splitting γS into 2/3
decay and 1/3 dephasing.
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π

FIG. 8. An implementation of the effective formalism using
172Yb+. The qubit is defined between the two levels marked with
thick dots. The effect of the ac Stark shift is also shown in the lower
box.

Therefore, each probability measured in such a way will
correspond to the sum of the probability P (|kn〉) to be in
the state |kn〉 plus the probability that the ion or kaon has
already decayed. Therefore, instead of measuring P (|K̄0〉) we
rotate |K0〉 = |+〉 onto the state |1〉 and perform in this way
an inverse measurement and determine the probability P =
1 − P (|K̄0〉). That is, instead of asking “What is the probability
corresponding to the state |K̄0〉?”, we may equivalently ask
“What is the probability for not obtaining |K̄0〉?”.

Example 2. The second example comes to eliminate the
dephasing problems one finds with the first. This time, we
use 172+

Yb ions (see Fig. 8). The qubit is defined as |0〉 =
|D3/2,mj = −3/2〉 and |1〉 = |D3/2,mj = −1/2〉.

To simulate decay, we drive the |D3/2,mj = −1/2〉 ↔
|P,mj = −1/2〉 transition with π -polarized light. From
|P,mj = −1/2〉 the ion decays with over 99% probabil-
ity into the |S,mj = ±1/2〉 state and not back into the
|D3/2,mj = −1/2〉. Similar to the first example, we perform
again an inverse measurement by transferring |K0〉 onto
|P,mj = −1/2〉.

Two remarks need to be made here. First, the time evolution
of “decay” and “oscillation” commutes only for ε = 0. In
this case, we are able to switch on the lasers or microwaves
causing the decay and the oscillation one after the other.
However, for ε �= 0 our way to model interferes with the
oscillation. Therefore, we have to use the Trotter theorem and
we approximated the time evolution by switching between
oscillation and decay in short time intervals. This is a standard
method in digital quantum simulations and the approximation
can be made arbitrarily good by shortening, e.g., the time
intervals (see, e.g., [21]).

Second, as explained above, there are different decay chan-
nels between kaons and the chosen ion examples [compare
Eqs. (42) and (43)]. This does not significantly modify the
nature results for small CP violations ε as depicted in Fig. 7.

VI. CONCLUSION

We have described an easy-to-use formalism that facilitates
the study of entanglement for systems under nonunitary time
evolution. Besides decay, the systems chosen also display an
oscillation between two orthogonal states, raising the inter-
esting possibility of performing the bipartite measurements
at different times. The generalized formalism was applied to
neutral kaons, in order to show that it does indeed reproduce
previous results, and then applied to the case of two ytterbium
isotopes, 171Yb and 172Yb. The purpose of the latter is to
exemplify a similar type of behavior, which comes naturally
for kaons, on a different but practically relevant system, the
motivation given by the fact that trapped ions are an important
implementation for quantum computation in particular and
quantum information processing in general.

The treatment of entanglement in unstable systems can
provide a new way of studying the predictions of quantum
mechanics in systems other than kaons and ions. The behavior
treated above can be reproduced with other systems, for
example photons traveling through optical fibers. In this case
birefringence determines fast and slow polarization modes, an
analog of the long- and short-lived states of neutral kaons,
and polarization dependent loss is an analog to the decay
property [14].

Meson-antimeson systems exhibit one interesting feature
that does affect the amount of violation one observes in Bell-
type inequalities, the phenomenon of CP violation. Because
CP violation translates into an asymmetry between matter and
antimatter the eigenstates of the system’s Hamiltonian become
slightly nonorthogonal (due to the different probabilities
corresponding to the states representing the particle and its
antiparticle). Such behavior can also be simulated in the
case of trapped ions by a detuned laser/rf-pulse driving
the kaon-antikaon oscillation. Another essential feature of
the formalism is that it allows for an analytical method to
be applied [see Eq. (33)], because it reduces the entire time
evolution of the system to exponentiating one single operator
that encompasses both unitary and nonunitary time evolution.

For future research, it would be desirable to use the
formalism for other systems where decay or no-detection
events play a role, such as polarized photons. Then, the
formalism can be combined with other tools in entanglement
theory, such as entanglement witnesses. This may open a way
for entanglement characterization and quantification in the
presence of noise and imperfect detectors.
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APPENDIX A

Example 1. The first example (Fig. 6) uses 171+
Yb ions.

The qubit is defined here between |S,F = 0〉 = |0〉 and
|S,F = 1,mF = 1〉 = |1〉 (highlighted in the figure by thick
dots).

The initialization is done by driving an unpolarized pump-
ing laser, λp between the F = 1 levels, of S and P , and a
consecutive decay to the |S,F = 0〉 state. The arbitrary rotation
in the qubit basis {|0〉,|1〉} is performed via a polarized rf
field. In this way, any superposition of |0〉 and |1〉 can be
prepared. This also assures that a readout is possible in any
basis (corresponding to a rotation from the {KS,KL} to the
{K0,K̄0}, in the kaon case).

The decay is simulated by a second polarized laser λd

driving the transition |S,F = 1,mF = 1〉 ↔ |P,F = 0〉. From
|P,F = 0〉, the ion decays very fast into the |S,F = 1〉 levels,
the probabilities for each of the mF = 0, ± 1 are equal. This
essentially turns the |F = 1,mF = 0〉 and |F = 1,mF = −1〉
sublevels into a generalized decayed state (the third state in
our kaon formalism). There is an inconvenience here, however.
Due to the equal probability of a decay from the P level back to
any of the three |S,F = 1〉 sublevels, one also gets dephasing.
We will see in the second example how this problem can be
overcome.

The essence of the effective formalism is that it does not
distinguish between a nondetection event and one of the two

TABLE I. Plots (for neutral kaons) for the minimal and maximal eigenvalues of the CHSH effective operator, represented here in blue
(dark gray), for certain values of the CP-violation parameter. The red (light gray) lines represent the classical limits of the CHSH inequality.
The settings are for both Alice and Bob measuring at different times; for example, A(0,t) means Alice’s first measurement is made at τ = 0
and the second measurement is made at τ = t , where t is a plot parameter.
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possible states (decayed or |K0〉, when measuring |K̄0〉, in the
kaon case). This could be translated into

P|K̄0〉︸ ︷︷ ︸
P(Y)

+P|K0〉 + Pdecayed︸ ︷︷ ︸
P(N)

= 1. (A1)

This provides the option of performing the opposite mea-
surement (corresponding to P (N ) above). For this, we perform
a population inversion between the |S,F = 1〉 sublevels and
the |S,F = 0〉 level. Then, a typical fluorescence measurement
can be performed on the S level. There is also a second option
to perform the population inversion and that is a population
shelving from the two sublevels, representing the decayed
state, to some other atomic level.

Example 2. A second way to implement the formalism is to
use 172Yb+ ions. In this case, the qubit is defined between the
|D3/2,mj = −3/2〉 and |D3/2,mj = −1/2〉 levels (Fig. 8).

The implementation is done by running a pump laser
between the S and P states; this leads to a population transfer
to all four D3/2 sublevels, due to decay. Then a combination of
π and σ− polarized lasers moves the populations of the upper
three D sublevels to the |[3/2,1/2]〉 states, and ultimately to
the |D3/2,mj = −3/2〉 sublevel.

Coherent driving of the |D3/2,mj = −3/2〉 ↔
|D3/2,mj = −1/2〉 transition causes a problem, because
the level splittings of all |D3/2〉 states are equal. To isolate
this transition, an ac Stark shift is induced, to increase the
distance between the qubit levels and the sublevels mj = 1/2
and 3/2.

TABLE II. Plots (for neutral kaons) for the minimal and maximal eigenvalues of the SCG effective operator, represented here in blue (dark
gray), for certain values of the CP-violation parameter. The red (light gray) line represents the classical limit of the SCG inequality.
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The decay is modeled by a weak pulse driving the
transitions |D3/2,mj = −1/2〉 ↔ |P1/2〉.

Finally, we transfer again the state |K0〉 onto |P 〉 before
performing a state-dependent fluorescence measurement by
driving the |S〉 ↔ |P 〉 transition. This measurement is again
an inverse measurement similar to the first example, essentially
measuring the probability 1 − P (K̄0) (using kaon notation).

In both examples, two ions can be entangled with the help
of MAGIC [19,20] to generate a bipartite system with similar
properties as pairs of neutral kaons.

APPENDIX B

The suggested implementations of the effective formalism
allow for one to tune the value of the quasi-CP-violation
parameter ε. This value has a direct impact on the observed vi-
olation of a Bell inequality. We reproduce here the minimal and
maximal eigenvalues of the effective operators, corresponding
to the CHSH and SCG inequalities, for various values of ε,
as functions of time. Two different measurement settings have
been chosen for Alice and Bob, in both cases. The results are
shown in Table I and II.
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