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Inevitable power-law behavior of isolated many-body quantum systems and how
it anticipates thermalization
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Despite being ubiquitous, out-of-equilibrium quantum systems are much less understood than systems at
equilibrium. Progress in the field has benefited from a symbiotic relationship between theoretical studies and
new experiments on coherent dynamics. The present work strengthens this connection by providing a general
picture of the relaxation process of isolated lattice many-body quantum systems that are routinely studied in
experiments with cold atoms, ions traps, and nuclear magnetic resonance. We show numerically and analytically
that the long-time decay of the probability for finding the system in its initial state necessarily shows a power-law
behavior ∝ t−γ . This happens independently of the details of the system, such as integrability, level repulsion,
and the presence or absence of disorder. Information about the spectrum, the structure of the initial state, and the
number of particles that interact simultaneously is contained in the value of γ . From it, we can anticipate whether
the initial state will or will not thermalize.

DOI: 10.1103/PhysRevA.94.041603

Introduction. A great deal of effort has recently been put into
improving our understanding of isolated many-body quantum
systems quenched far from equilibrium. This is in part moti-
vated by the possibility of investigating the coherent evolution
of these systems for long times with different experimental
setups, including those with ultracold atoms [1,2], trapped
ions [3,4], and nuclear magnetic resonance [5,6]. Aligned
with these efforts, this work characterizes and justifies the
dynamical behavior at different time scales of experimentally
accessible integrable and chaotic lattice many-body quantum
systems with and without disorder. From this analysis, a new
criterion, based exclusively on dynamics, is introduced for
identifying which systems can thermalize.

The survival probability (probability for finding the system
in its initial state at time t) and the Loschmidt echo (measure
of the revival of the initial state after a time-reversal operation)
have been extensively considered in the analysis of out-of-
equilibrium quantum systems [7–14]. Several works tried to
establish a correspondence between the initial exponential
or Gaussian decays with quantum chaos [13–18] and others
focused on the onset of power-law decays at long times [7–12].
In the case of continuous models, the algebraic behavior of the
survival probability has been associated with the presence of
bounds in the spectrum [7–9], while in disordered noninter-
acting systems at the metal-insulator transition, the power-law
exponent has been related with fractal dimensions [10–12].
Exchanges between these different communities have been
very limited. Here, we unify these multiple perspectives into
a single framework and use it to describe the evolution of the
survival probability of lattice many-body quantum systems.

The survival probability (or fidelity) of the initial state is
defined as

F (t) ≡ |〈�(0)|e−iH t |�(0)〉|2

=
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where Eα are the eigenvalues of the system Hamilto-
nian H , C(0)

α =〈ψα|�(0)〉 are the overlaps of the ini-

tial state |�(0)〉 with the eigenstates |ψα〉 of H , and
ρ0(E) = ∑

α |C(0)
α |2δ(E − Eα) is the energy distribution of

|�(0)〉 weighted by the components |C(0)
α |2, the so-called

local density of states (LDOS). The survival probability is
the absolute square of the Fourier transform of the LDOS. All
information about the evolution of F (t) is contained in ρ0(E).

We verified that the initial decay of the survival probability
is dissociated from the regime (integrable or chaotic) of the
Hamiltonian [19–24], but depends on the strength of the pertur-
bation. We now show that at long times, regardless of how fast
the initial evolution may be, the dynamics necessarily slows
down and becomes power law, F (t) ∝ t−γ . The characteriza-
tion of the long-time dynamics and its connection with the
viability of thermalization are the central topics of this work.

We show that in realistic lattice many-body quantum
systems with two-body interactions, 0 � γ � 2. The value of
the power-law exponent indicates the level of delocalization of
the initial state in the energy eigenbasis. When the initial state
samples only a portion of the Hilbert space and the LDOS
is sparse, γ < 1 and thermalization is not expected. When
the initial state is chaotic, so that its components C(0)

α are
uncorrelated and spread over its entire energy shell [25–28],
thermalization should occur [28–34]. In particular, when the
LDOS is ergodically filled, then γ = 2. From the values of γ ,
one can thus anticipate whether the initial state will or will not
thermalize. We also discuss the nonrealistic scenario of full
random matrices, where the power-law exponent reaches the
upper bound γ = 3.

Time scales. The system is initially prepared in an eigen-
state of the unperturbed Hamiltonian H0, which is abruptly
quenched into H = H0 + gV , where g is the strength of the
perturbation V . At very short times, the decay of the survival
probability is quadratic [35], as derived from the expan-
sion F (t � σ−1

0 ) ≈ 1 − σ 2
0 t2, where σ0 = [

∑
α |C(0)

α |2(Eα −
E0)2]1/2 is the width of the LDOS and E0 = ∑

α |C(0)
α |2Eα =

〈�(0)|H |�(0)〉 is the energy of the initial state.
After the initial quadratic behavior, whether F (t) switches

or not to an exponential decay depends on the strength g of
the perturbation. The exponential decay is valid in the Fermi
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golden rule regime, where the typical matrix elements of gV

are larger than the mean level spacing and the LDOS has
a Lorentzian form. However, for very strong perturbations,
g → 1, the LDOS is broader. In many-body quantum systems
with two-body interactions, where the density of states is Gaus-
sian [36–38], the limiting shape of the LDOS is also Gaussian,
resulting in the Gaussian decay F (t) = exp(−σ 2

0 t2) [15,16,19–
24,39]. Exponential and Gaussian decays can thus occur in
both integrable and chaotic models [19–24]. The picture be-
comes more subtle at long times, where the power-law behav-
ior ∝ t−γ emerges and the filling of the LDOS plays a key role.

Causes of the power-law decay. We discuss two distinctive
causes for the long-time algebraic decay of the survival
probability.

Case 1 is related to the unavoidable presence of a lower
bound Elow in the energy spectrum of any real quantum system.
This point was put forward already in 1958 [40] and in several
other early works [41–46]. At long times, the energy bound
leads to the partial reconstruction of the initial state. This
results in the power-law decay of continuous many-particle
models [7–9] and, as explained here, also of finite lattice many-
body quantum systems with ergodically filled LDOS.

Case 2 is induced by the correlations that are present
in nonchaotic eigenstates. They are typical of disordered
systems undergoing localization with [23,24] or without
interactions [10–12] and, as argued here, appear also in
clean integrable systems. The power-law exponent due to
correlations is smaller than that resulting from energy bounds.

The exponents of case 1 can be derived from asymptotic
expansions of the integral form of Eq. (1), assuming that
ρ0(E) is absolutely integrable [47] and that its derivatives
exist and are continuous in [Elow,∞]. Two scenarios are
identified [48,49]:

(i) If limE→Elow ρ0(E) > 0, then at long times F (t)∝ t−2.
(ii) If ρ0(E) decays abruptly close to the lower bound,

such that ρ0(E) = (E − Elow)ξ η(E) with 0 < ξ < 1 and
limE→Elow η(E) > 0, then F (t) ∝ t−2(ξ+1).

These results have been obtained for continuous functions.
Yet we show that they remain valid even in the case of discrete
spectra provided |�(0)〉 is chaotic and the LDOS is ergodically
filled.

To determine if the initial state is chaotic, one performs
scaling analysis of the inverse participation ratio (IPR) of
|�(0)〉 written in the energy eigenbasis, IPR0 ≡ ∑

α |C(0)
α |4.

IPR−1
0 is the effective number of energy eigenstates contribut-

ing to the initial state. A chaotic |�(0)〉 samples most energy
eigenbasis without any bias, so IPR0 ∝ D−1, where D is the
dimension of the Hilbert space. Hence, as the system size
increases, ρ0(E) becomes homogeneously filled and close to
an absolutely integrable function. An illustrative example is
that of an arbitrary initial state projected onto the eigenstates
of a full random matrix (FRM). Since these eigenstates are
pseudorandom vectors, the overlaps C(0)

α are random variables
and IPR0 ∼ 3/D [29]. Even though realistic chaotic many-
body quantum systems with two-body interactions are not
described by FRMs, because their Hamiltonian matrices are
banded, sparse, and random elements may not even exist,
they still follow random matrix statistics and their bulk
eigenstates are close to random vectors [29,50,51]. After a
strong perturbation into such Hamiltonians, initial states with

energies away from the edges of the spectrum also give very
filled LDOS [25–33].

Case 1(i) holds for realistic chaotic many-body quantum
systems, where the LDOS is Gaussian, which leads to γ = 2.
For FRM, the LDOS is a semicircle [19], so case 1(ii) applies
and γ = 3.

In case 2, the power-law exponent is obtained from the
correlation function C(ω) ≡ ∑

α,β |C(0)
β |2|C(0)

α |2δ(Eα−Eβ −
ω) present in F (t) = ∫ ∞

−∞ dω eiωtC(ω). A power-law decay
of C(ω → 0) ∝ ωγ−1, with γ < 1, leads to F (t) ∝ t−γ

[10–12,52–54]. The more correlated the components of
|�(0)〉, the smaller the exponent γ . This exponent coincides
with the fractal dimension φ obtained from the scaling analysis
of IPR0 ∝ D−φ . This relation was found in studies of Anderson
localization [10–12] and of many-body localization [23,24].
We show that it holds also in noninteracting integrable models.

This work analyzes how γ depends on the properties of
the spectrum, the structure of the initial state, and the number
of particles that interact simultaneously. We consider finite
many-body quantum systems described by realistic lattice
models with two-body interactions and by banded random
matrices. All accessible power-law exponents are reached with
the disordered models, while with the clean Hamiltonians, we
study some specific values.

Realistic many-body quantum systems. We consider one-
dimensional spin-1/2 models with L sites described by the
following Hamiltonian,

H =
L∑

n=1

hnS
z
n + HNN + λHNNN, (2)

HNN = J
∑

n

(
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

)
,

HNNN =
∑

n

J
(
Sx

nSx
n+2 + Sy

nS
y

n+2 + �Sz
nS

z
n+2

)
.

It contains nearest-neighbor (NN) and possibly also next-
nearest-neighbor (NNN) couplings; � = 1 and S

x,y,z
n are the

spin operators on site n. hn are random numbers from a
uniform distribution [−h,h]; the system is clean when h = 0
and disordered otherwise. J is the coupling strength, � the
anisotropy parameter, and λ the ratio between NNN and
NN couplings. J = 1 sets the energy scale. The Hamiltonian
conserves total spin in the z direction Sz. We work with the
largest subspace Sz = 0 of dimension D = L!/(L/2)!2.

The integrable limits of H include the clean noninteracting
XX (�,λ,h = 0) and the clean interacting XXZ (� �= 0,
λ,h = 0) models. The system becomes chaotic as λ increases
from zero [55–58] and the level spacing distribution changes
from Poisson [59] to a Wigner-Dyson form [60]. It also
becomes chaotic when the disorder strength increases from
zero and h < J [61–63].

The initial states considered are site-basis vectors, where
the spin on each site either points up or down in the z direction.
An example is the experimentally [64] accessible Néel state,
| ↑↓↑↓↑↓↑↓ . . .〉, that has been extensively used in studies of
the dynamics of integrable spin systems. Site-basis vectors
evolve under H (2) after a strong perturbation, where the
anisotropy parameter is quenched from � → ∞ to a finite
value. The envelope of the LDOS for these initial states is
therefore Gaussian.
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FIG. 1. Survival probability (a) and f (t) [(b), (c)]. (a) From
bottom to top, h = 0.2,0.3, . . . ,0.9, h = 0.95,1,1.25, . . . ,3, h = 3.5.
Thick solid line: h = 1 with γ ∼ 1. Circles: analytical Gaussian
decay F (t) = exp(−σ 2

0 t2). (b) and (c) Numerical curve (solid),
const−L−1ln t−γ (dashed). Averages over 105 data of disorder
realizations and initial states with E0 ∼ 0; L = 16, closed boundaries.

Realistic disordered systems. Figure 1 shows the survival
probability of site-basis vectors evolving under H (2) with
� = 1, λ = 0, and various values of h. The initial decay is
Gaussian, as expected from the Gaussian LDOS. It agrees
very well with the analytical expression F (t) = exp(−σ 2

0 t2),
as seen for the bottom curve of Fig. 1(a). Subsequently the
dynamics slows down and becomes a power law for all curves.

When the disorder strength is small, 0 < h < 1, the system
is chaotic and the LDOS is very filled. This is corroborated
from the analysis of level statistics and by computing the
inverse participation ratio averaged over initial states and
random realizations. One finds that 〈IPR0〉 ∝ D−1. For the
value of h where 〈IPR0〉 is maximum, the decay of F (t) at long
times is ∝ t−2, as illustrated with the bottom curve in Fig. 1(a).
For other values of h in (0,1], we have the intermediate region,
where 1 � γ < 2. These values may result from a competition
between weak correlations and energy bounds, but this needs
to be further investigated.

The bottom curve of Fig. 1(a) is isolated in Fig. 1(c),
which shows the rescaled survival probability f (t) =
−(1/L) ln F (t) [65,66]. For L � 1, this quantity is inde-
pendent of L [67]. Figure 1(c) is a clear example of the
power-law decay caused by energy bounds [case 1(i)]. The
Fourier transform of a Gaussian LDOS that has lower Elow

and upper Eup bounds, as in our case, leads to F (t) =
e
−σ2

0 t2

4N 2 |erf(E0−Elow+iσ 2
0 t√

2σ0
) − erf(E0−Eup+iσ 2

0 t√
2σ0

)|2, where erf is the
error function and N is a normalization constant that depends
on L through the energy bounds and σ0. At long times,
after dropping the oscillations from the sinusoidal term
cos[t(Eup + Elow)], the expression becomes F (t � σ−1

0 ) �
(2πσ 2

0 t2N 2)−1 ∑
k=up,low e−(Ek−E0)2/σ 2

0 , from where the t−2

power-law decay is evident.
When h = 1, we get γ ∼ 1. This curve is depicted with

a thick line in Fig. 1(a). Above this line, h > 1 and γ < 1.
An example with γ ∼ 1/2 is isolated in Fig. 1(b). This γ is
close to the exponent φ obtained from the scaling analysis of
IPR0 ∝ D−φ [23]. This example belongs to case 2.

Figure 1(a) demonstrates that with the disordered XXZ

model, we can obtain all power-law exponents accessible to
realistic lattice many-body quantum systems with two-body
interactions. By varying h, every γ ∈ [0,2] can be reached.

Banded random matrices. Algebraic decays faster than
t−2 also signal the ergodic filling of the LDOS. They are
possible if instead of two-body interactions, many-body
random interactions are included. As the number of particles
that interact simultaneously grows, increasing the number of
uncorrelated nonzero elements in the Hamiltonian matrix, the
density of states transitions from Gaussian to a semicircle [36].
The latter is typical of FRMs [60]. This transition is reflected
also in the shape of the LDOS [19,20,27,68,69]. The Fourier
transform of a semicircle gives F (t) = [J1(2σ0t)]2/(σ 2

0 t2),
where J1 is the Bessel function of the first kind [19,20].
The decay at short times is faster than Gaussian and the
asymptotic expansion reveals a power-law decay with γ = 3,
F (t � σ−1

0 ) � [1 − sin(4σ0t)]/(2πσ 3
0 t3). This is an example

of case 1(ii), where for the semicircle, ξ = 1/2, η(E) =
(2πσ 2

0 )−1(2σ0 − E)1/2, and Elow = −2σ0.
To illustrate the increase of the value of γ from 2 to

the upper bound γ = 3, we consider power-law banded
random matrices (PBRMs) [70–72]. Despite the success of
FRMs in describing statistically the spectrum of complex
systems, they imply the unphysical scenario of all particles
interacting simultaneously. Banded random matrices were
introduced [68] in an effort to better approach random matrices
to real systems. We use PBRMs that preserve time-reversal
symmetry and whose elements are real random numbers from
a Gaussian distribution [73]: 〈Hnn〉 = 0, 〈H 2

nn〉 = 2, 〈H 2
nm〉 =

1/[1 + |(n − m)/b|2] for n �= m. The value of b determines
how fast the elements decrease as they move away from the
diagonal. When b → D, the PBRM coincides with a FRM.

In Fig. 2, we show the survival probability for PBRMs
with different values of b. As b grows from ∼50 to D and
the LDOS transitions from case 1(i) to case 1(ii), γ increases
from 2 to 3. In the other direction, as b decreases below 50,
the eigenstates become less spread out and γ decreases below
2. With PBRMs, we obtain a general picture of the behavior of
the survival probability, covering all values of γ , without any
restriction to a specific model.

10-3

10-2

10-1

100

<F
>

10-2 10-1 100 101 102
t

FIG. 2. Survival probability for basis vectors evolving under
PBRM with b = 0.1,0.5,1,2,5,10,20,50,100,3000 (solid) from
top to bottom. They correspond, respectively, to the fitted γ ∼
0.1,0.5,0.6,0.7,0.9,1.2,1.4,1.9,2.2,2.8 (dashed). Analytical F (t) =
[J1(2σ0t)]2/(σ 2

0 t2) (dotted); D = 3432. Averages over 100 realiza-
tions and 343 initial states with E0 ∼ 0.
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FIG. 3. LDOS [(a),(c)] and f (t) [(b),(d)] for the Néel state under
the chaotic open H (2) with h = 0, � = 1/2, λ = 1 [(a),(b)] and
under the closed XX H [(c),(d)]. (a), (c) Numerical LDOS (shaded
area) and Gaussian envelope (solid line). (b) Numerical results
for L = 22 (light), L = 24 (dark), and const − L−1ln t−2 (dashed).
(d) L = 400 (solid) and f Néel

XX (t) (dashed).

Realistic clean systems. In Fig. 3, we study the Néel
state evolving under a clean chaotic Hamiltonian [Figs. 3(a)
and 3(b)] and under the XX Hamiltonian [Figs. 3(c) and 3(d)].
The envelope of the LDOS is Gaussian in both cases (a) and
(c), but visibly sparse in Fig. 3(c).

In Fig. 3(b), we observe a power-law decay ∝ t−2. The
agreement between the t−2 decay (dashed line) and our
numerical results (solid lines) suggests that the LDOS must
be ergodically filled and that thermalization should occur.
Indeed, the inverse participation ratio of the Néel state in
Fig. 3(a) gives IPR0 ∝ D−1 and several studies for this model
confirm thermalization [30,31,74,75]. We found γ = 2 also for
periodic boundary conditions; chaotic models with different
values of λ and �, including � = 0; and other initial states. A
t−2 decay has also been speculated for the chaotic Ising model
with longitudinal and transverse fields [76].

An analytical expression exists for F (t) for the Néel
state evolving under the periodic XX model [66,77]. Its
expansion for long times, Lt−1/2 → 0, gives f Néel

XX (t) →
−L−1 ln [2−L(1 + 2−1Lt−1/2)], as indeed confirmed with the
dashed line in Fig. 3(d). Such small γ indicates that the LDOS

is not ergodically filled, as seen in Fig. 3(c) and corroborated
below by calculating IPR0.

Among the total D = L!/(L/2)!2 components of the
Néel state, only 2L/2 are nonzero and they are all equal,
|C(0)

α |2 = 2−L/2 [77]. This means that IPR0 = 2−L/2. Using
the Stirling approximation for large L, we have that lnD �
L ln 2. From ln IPR0 vs lnD, we find that IPR0 � D−1/2, so
φ = 1/2. One sees that, similarly to what is done in disordered
systems [23,24], the power-law exponent for the Néel state in
the XX model, γ = 1/2, can also be extracted from the scaling
analysis of IPR0.

The nonzero |C(0)
α |2 are spread out in energy, result-

ing in a very sparse and inhomogeneous LDOS. The
nonergodicity of this state indicates that thermalization
should not occur. One way to confirm thermalization is
by verifying the coincidence of the diagonal entropy Sd =
−∑

α |C(0)
α |2 ln |C(0)

α |2 [78] and the thermodynamic entropy,
Sth = ln

∑
α e−Eα/T − (

∑
α Eαe−Eα/T )/(T

∑
α e−Eα/T ) [30].

Here, Sd = (L/2) ln 2 and Sth = lnD. (Note that the Néel
state has E0 = 0 and thus infinite temperature T .) The two
entropies do not coincide even in the thermodynamic limit,
where (Sth − Sd )/L = ln

√
2.

Conclusions. We have shown that the long-time decay of
the survival probability in isolated lattice many-body quantum
systems is algebraic, F (t) ∝ t−γ , be the system integrable or
chaotic, interacting or noninteracting, clean or disordered. The
entire range of γ ∈ [0,3] can be reached with banded random
matrices, while for realistic systems with two-body interac-
tions, γ ∈ [0,2]. From the value of γ , we infer how much
delocalized the initial state is in the energy eigenbasis. This
provides a way to identify whether the initial state will ther-
malize based exclusively on its dynamics. Exponents γ � 2
signal ergodicity and therefore thermalization. Advantages
of this approach to the problem of thermalization include
the following: any initial state can be considered, numerical
methods other than exact diagonalization are available for
analyzing dynamics, and a natural connection is established
with experiments that routinely study the dynamics of many-
body quantum systems.

Acknowledgments. This work was supported by the NSF
Grant No. DMR-1147430 and funding from Yeshiva Uni-
versity. E.J.T.H. acknowledges funding from CONACyT,
PRODEP-SEP, and VIEP-BUAP, Mexico. We thank Adolfo
del Campo, Yevgeny Bar Lev, and Marcos Rigol for useful
discussions.

[1] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U.
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