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Photoionization of neutral atoms by X waves carrying orbital angular momentum
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In contrast to plane waves, twisted or vortex beams have a complex spatial structure. Both their intensity
and energy flow vary within the wave front. Beyond that, polychromatic vortex beams, such as X waves, have
a spatially dependent energy distribution. We propose a method to measure this (local) energy spectrum. The
method is based on the measurement of the energy distribution of photoelectrons from alkali-metal atoms. On
the basis of our fully relativistic calculations, we argue that even ensembles of atoms can be used to probe the
local energy spectrum of short twisted pulses.
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In atomic physics, light is described by a plane wave in
the majority of cases. In optics, however, methods are known
to produce specially tailored twisted or vortex beams [1–5].
These beams have a helical, “corkscrew”-like, phase structure
and can carry orbital angular momentum (OAM) in addition
to their spin angular momentum [6–10]. Both the intensity
and the energy flow of such beams depend on the position
in the wave front [11,12]. Even though the interaction of
twisted light and atomic targets has attracted much interest
during recent years [13–16], only a few proposals have been
made so far as to how one can study this internal structure of
the beam itself [11,12,17]. In these proposals, however, only
monochromatic beams were considered. Nowadays, much
effort is spent to produce ultrashort twisted pulses, with the aim
to benefit from OAM carrying light in the domain of optical
pulses and spectroscopy [5]. In particular, recent experiments
report the generation of twisted femtosecond pulses in the
visible regime [18,19], Laguerre-Gauss supercontinua [20],
and vortex light bullets [21,22]. Moreover, first signatures
of OAM have been observed in XUV pulses from high
harmonic sources [23–25] and free-electron lasers [26–28].
Obviously, such short pulses are not monochromatic but have
a distribution of photon energies. Measured by detectors with
spatial resolution, this energy distribution will depend on the
position of detection in the beam. In analogy to the local energy
flow, we will refer to this as the local spectrum of the twisted
pulse.

Bessel beams are a special kind of twisted light. Pulses
formed by such beams are also known as Bessel-X pulses [29]
or X waves [30] and feature a localization in both space
and time. For this reason, X waves have been the subject of
intensive research in various fields, including optics [31–33],
condensed matter [34], and waveguide arrays [35,36], to name
just a few. In most of these works only zeroth-order Bessel-X
pulses have been considered. Only recently have optical X
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waves of higher order been introduced [37–39]. In these works
it has been found that the orbital angular momentum has a pulse
shortening effect on the X wave and causes a blueshift of the
pulse’s carrier frequency.

X waves of nonzero order are expected to be of use in
various areas of physics, such as material processing, spatially
resolved spectroscopy, and optical communications. In all
these cases, a characterization of the internal structure of such
light fields will help to further optimize their properties for
the desired applications. Up to now, however, only global
characteristics such as time duration and carrier frequency
of OAM-carrying X waves have been explored in some
detail [37,38], whereas a complete characterization of their
local spectrum has not been addressed yet. Here, we therefore
propose an easy and reliable method for obtaining a full
characterization of the local spectrum of X waves, based on
the measurement of the photoelectron spectra of alkali-metal
atoms. These atoms are widely used in experiments and
can be very well described theoretically. Moreover, their
ionization threshold is low enough to allow for single-photon
ionization with available experimental techniques and, hence,
the application of first-order perturbation theory. Therefore,
alkali-metal atoms are particularly suited for studies aiming for
a comparison between theory and experiment. Throughout this
Rapid Communication, atomic units are used unless specified
otherwise.

In order to construct a short twisted pulse, we start with
a continuous Bessel beam that propagates along the z axis.
Mathematically, such a Bessel beam can be expressed as
a superposition of circularly polarized plane waves with
frequency ω and helicity λ that all lay on a cone in momentum
space [15,16],

Atw
�mλ(r,t) =

∫
d2k⊥
(2π )2

a�m(k⊥)ei(k·r−ωt)uλ, (1)

where the momentum k of each plane wave splits into a
component k⊥ = (k⊥,φk,0) perpendicular and a component
k‖ = (0,0,kz) parallel to the propagation axis. The cone
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FIG. 1. Local spectrum I (r,ω) of an X wave of length τ = 150 as (left panel), τ = 300 as (center panel), and τ = 1 fs (right panel). Results
are shown for a pulse with ω0 = 15 eV, λ = 1, m = 2, θk = 10◦ at three different distances from the beam axis (r = 300 nm: black solid line;
r = 500 nm: blue dashed line; r = 700 nm: red dotted line). All results have been normalized to the maximum in each panel.

function

a�m(k⊥) = (−i)m

√
2π

k⊥
eimφk δ(k⊥ − �), (2)

determines the transversal momentum � of the twisted beam
and the total angular momentum (TAM) projection m upon the
z axis. To conveniently compare beams with different ratios of
transverse and longitudinal momentum, one often specifies the
so-called opening angle θk = arctan(�/kz) of the momentum
cone instead of the transverse momentum �.

To construct an X wave with duration τ , we convolute the
vector potential (1) over a Gaussian spectral distribution while
keeping the opening angle θk constant. For a pulse with spectral
width 
ω = 1/τ and central frequency ω0, the convoluted
vector potential reads

Atw
θkmλω0

(r,t) =
∫ ∞

0

dω√
2π
ω

e− 1
2 ( ω−ω0


ω
)2Atw

�mλ(r,ω). (3)

From the Fourier transform Atw
θkmλω0

(r,ω) of this vector
potential, we can obtain the intensity I (r,ω) of the beam.
This intensity is a measure for the number of photons with
frequency ω at a certain radial distance r to the beam axis and,
hence, corresponds to the local spectrum of the beam. Note
that I (r,ω) due to the cylindrical symmetry of X waves has no
spatial dependencies other than r .

With the formulas above in mind, the reason for the X wave
spectrum being local becomes clear. We can think of a twisted
beam as the superposition of an infinite number of plane
waves that interfere with each other. For a monochromatic
beam this gives the well-known intensity pattern of concentric
rings in the transversal plane. The position of these rings
depends on the frequency of the beam. Because an X wave
is constructed by convoluting monochromatic twisted beams
over a spectral distribution, we measure a different intensity
pattern for different frequencies. Vice versa, we find that the
spectrum of an X wave depends on the point of observation.

Figure 1 shows the local spectrum of a ω0 = 15 eV X wave
with three different pulse durations τ at three different r . As
seen from the figure, the spectrum appears very sensitive to the
axis distance r for a short pulse of τ = 150 as (left panel). Here,
the local spectrum is almost Gaussian for r = 300 nm, but
multiple maxima appear if r is increased. A similar but not that
distinct behavior is seen for slightly longer pulses (τ = 300

as). For pulses with duration τ = 1 fs, however, a variation of r

results only in a different amplitude of a Gaussian-like-shaped
I (r,ω). This behavior can be explained by the exponential
prefactor in the integrand of Eq. (3) that approaches a delta
function the longer the pulse becomes. In this limit (τ → ∞)
the integration over ω in Eq. (3) is trivial and the spectrum
of the (infinitely long) pulse is a delta peak at ω = 15 eV
independent of r .

Above we have derived the expression for the vector
potential of a twisted pulse (3) and discussed its local spectrum.
Before we can calculate the S matrix and cross section for the
photoionization of atoms by such a pulse, we need to fix the
geometry of the process. Consciously it is chosen to be very
simple; as shown in Fig. 2, the longitudinal momentum k‖ of
the vortex beam and the momentum p of the ejected electron
are parallel. The target atom is located at b in the transversal
plane with respect to the beam axis. We will refer to its module
|b| = b as the impact parameter.

In order to calculate the photoionization cross section,
we need to evaluate the S matrix which is a measure for
the probability amplitude of the process [40]. Under the
assumption that the photon energies in the pulse are high
enough to overcome the ionization threshold and the intensity
of the pulse is low, it can be written, using first-order
perturbation theory,

S = −i

∫ ∞

−∞
dtei(Ep−Ei )t e−ik⊥·b

×〈 pms |α · Atw
θkmλω0

(r,t)|nijiμi〉, (4)

FIG. 2. Geometry of the photoionization by twisted light. The
incident photons as well as the ejected electron propagate parallel to
the z axis. Their separation is given by the vector b.
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FIG. 3. Cross section dσω0/dp(p,b) (7) as a function of the impact parameter b and the photoelectron energy Ep . Calculations have been
performed for the photoionization of neutral sodium by an X wave with ω0 = 15 eV for three different pulse durations: τ = 150 as (left
column), τ = 300 as (center column), and τ = 1 fs (right column), respectively. Results are shown for the opening angles θk = 0.1◦ (top row)
and θk = 10◦ (bottom row). The projections of angular momenta are λ = 1, m = 2.

where α is the vector of Dirac matrices and the translation
operator exp(−ik⊥ · b) specifies the location of the target in
the beam [12,15,16]. Here, 〈 pms | is a continuum solution of
the Dirac equation with a well-defined asymptotic momentum
p, spin projection ms , and energy Ep. The vector |nijiμi〉
describes a Dirac bound state with energy Ei , principal
quantum number ni , total angular momentum ji , and angular
momentum projection μi .

The time integration in Eq. (4) can be performed analyti-
cally and gives

S = −i

√
2π


ω
e− 1

2 (
Ep−Ei−ω0


ω
)2
Mtw

f i (p,b). (5)

Because of the particular choice of geometry, the matrix
element

Mtw
f i (p,b) =

∫
d2k⊥
(2π )2

a�m(k⊥)e−ik⊥·b

×〈 pms |eik·rα · uλ|nijiμi〉 (6)

depends only on the modules of the vectors p and b. The
evaluation of Mtw

f i (p,b) can be done using methods that
have been outlined in our previous studies [12,16,41]. In
order to describe the photoionization of neutral atoms, we
here applied the single active electron approximation. In this
approximation, the initial and final electron states are single-
electron solutions of the Dirac equation with an effective
potential [42]. In the present work all results are obtained
for the ionization of the valence 3s electron of neutral sodium,
where the effective potential is formed by the nucleus and the
K- and L-shell electrons.

After we know how to evaluate the matrix element (6)
we can calculate the energy differential cross section for the
photoionization of an atom by a short twisted pulse. It is given

by the module squared of the S matrix (5),

dσω0

dp
(p,b) = 2π


ω2
e−(

Ep−Ei−ω0
σ

)2
∑
μims

1√
2ji + 1

∣∣Mtw
f i (p,b)

∣∣2
,

(7)

where we assume that neither μi nor ms is observed. It is
noteworthy that the second line of Eq. (7) corresponds to the
differential cross section for the photoionization of an atom by
a continuous twisted wave with frequency Ep − Ei .

Using Eq. (7), we performed calculations for the ionization
of a single sodium atom by a right circular polarized (λ = 1) X

wave with center frequency ω0 = 15 eV and TAM projection
m = 2. Figure 3 displays the cross section (7) for three
different pulse lengths as a function of the impact parameter b

and the energy of the ejected photoelectron Ep. By comparing
the results column by column it can be seen that the scatter of
photoelectron energies becomes narrower for larger values of
τ . This can be understood from our discussion of Fig. 1, where
we showed that the spectrum of the pulse approaches a delta
function in the limit of a continuous wave (τ → ∞). Due to
energy conservation, the energy distribution of photoelectrons
exhibits the same behavior. The top row of Fig. 3 shows results
for θk = 0.1◦, which is close to the paraxial limit θk → 0◦. It
can be seen that in this case only the amplitude but not the shape
of the energy distribution depends on the impact parameter.
In the case of a pure plane-wave pulse without any spatial
structure, the width of the photoelectron energy distribution is
the same as in the paraxial limit (cf. top right panel of Fig. 3)
but the amplitude is constant for all impact parameters, because
there are no intensity variations within the beam. However, if
the ionizing pulse is far from both limits, τ → ∞ and θp → 0,
it can be seen in Fig. 3 (bottom row, left and center panels)
that both the shape and the width of the photoelectron spectrum
strongly depend on the impact parameter. By comparing these
results with Fig. 1, we find, again due to energy conservation,
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ROBERT A. MÜLLER et al. PHYSICAL REVIEW A 94, 041402(R) (2016)

0.0

0.2

0.4

0.6

0.8

1.0

τ = 150as τ = 300as

σ
b

=
0
nm

τ = 1fs

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
av

er
ag

ed
di

ffe
re

nt
ia

lc
ro

ss
se

ct
io

n
d

σ
ω
0

d
p

b
0

[a
rb

.
un

its
]

σ
b

=
5
0
nm

0 5 10 15 20

photoelectron energy Ep [eV]

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

photoelectron energy Ep [eV]

0 5 10 15 20

photoelectron energy Ep [eV]

σ
b

=
1
0
0
nm

FIG. 4. Energy distribution of the photoelectrons for the photoionization of neutral sodium by an X wave with m = 2, λ = 1, and central
frequency ω0 = 15 eV at three impact parameters: b0 = 300 nm (black solid lines), b0 = 500 nm (blue dashed lines), and b0 = 700 nm (red
dotted lines). Detailed calculations have been performed again for three pulse durations (left column: τ = 150 as; center column: τ = 300 as;
right column: τ = 1 fs) and three different target sizes (top row: σb = 0 nm; center row: σb = 50 nm; bottom row: σb = 100 nm). For better
visibility all results have been normalized to one.

that the local spectrum of the ionizing X wave is reflected in
the energy distribution of ejected electrons.

So far, we discussed the photoionization of a single atom
placed at a particular impact parameter b with respect to the
propagation axis of the X wave. Although such a localization of
the target has been achieved lately [43], most photoionization
experiments deal with extended (mesoscopic) targets. An
extended target can be described by averaging the cross
section (7) over a target distribution function fσb

(b⊥) that
characterizes the density of target atoms in the xy plane. This
gives rise to the target averaged cross section,〈

dσω0

dp
(p,b)

〉
b0

=
∫

db⊥fσb
(b⊥)

dσω0

dp
, (8)

where we assume a Gaussian target distribution with width
σb around the point b0. For sufficiently small targets well
away from the beam center, this target distribution can be
approximated by

fσb
(b⊥) = exp

[
−1

2

(b − b0)2 + (b0ϕb)2

σ 2
b

]
. (9)

In contrast to the results for a single target atom, we expect that
the dependence of the target averaged cross section (8) on the
impact parameter will be washed out due to the integration over
b⊥. Thus the local spectrum of the pulse will not be reflected
in the photoelectron energy distribution as good as it is shown
in Fig. 3. To analyze how exactly the target size σb affects

the visibility of the local spectrum in the energy distribution
of photoelectrons, Fig. 4 compares the energy distribution of
photoelectrons for three different σb. In the top row we display
again results for the ionization of a single atom. These results
correspond to cuts along the white vertical lines shown in Fig. 3
and reflect directly the local spectrum of the ionizing pulse.
In the middle and bottom row of Fig. 4 results are shown for
the same impact parameters but averaged over a σb = 50 nm
and σb = 100 nm target, respectively. For the latter target size
the results shown in each panel vary only in amplitude due to
the different intensity of the ionizing pulse at different impact
parameters. The overall shape of the photoelectron energy
distribution, however, remains unaltered, a behavior that is
changed as the target width becomes σb � 50 nm. As seen
from Fig. 4, such a target is suitable to measure the local
spectrum of a τ = 150 as X wave. Yet, the spectrum of the
longer τ = 300 as pulse is only visible in the photoelectron
energy distribution from a single target atom. The results for
the longest considered X wave (τ = 1 fs) exhibit no qualitative
variation with the impact parameter. This is expected since we
have shown in Fig. 1 that such a pulse has a spectrum that is
Gaussian-like, independent on the position in the wave front.

In summary, we have investigated the ionization of neutral
alkali-metal atoms by twisted attosecond pulses, also referred
to as X waves. Our study is focused on the energy distribution
of forward-emitted electrons. This energy distribution is
determined by the spectrum of the ionizing pulse which, in
turn, strongly depends on the pulse duration τ . As shown in the
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present work, this remains true even for non-point-like targets.
Therefore, we propose that the photoionization of alkali-metal
atoms may be used as a probe process to study the (local)
energy properties of X waves. Based on our calculations,
it is shown that such a “mapping” of photon to electron
energies is possible using atomic targets with size σb � 50 nm
and pulse length τ � 300 as. Recent experimental advances
with Paul traps [43] and high harmonic optical vortices [25]
indicate that these measurements might be possible in the near
future. In addition, if not only the local spectrum but also the
spin of the photoemitted electron is measured, our method
can be used to locally characterize (twisted) pulses with

complex polarization patterns, e.g., cylindrically polarized
X waves [39]. Such kinds of pulses have been recently
discussed in the context of classical entanglement [44,45].
Moreover, our method might open up opportunities for trans-
ferring the classical entanglement from light fields to electron
beams and even produce classically entangled electron vortex
beams.
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in this Rapid Communication has been partially funded also
by the QUTIF priority program of the DFG.
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