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Extension of Friedel’s law to vortex-beam diffraction
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Friedel’s law states that the modulus of the Fourier transform of real functions is centrosymmetric, while
the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons
within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to
result in centrosymmetric diffraction patterns. Friedel’s law, however, does not apply for vortex beams, and
centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel’s law for
vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered
on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry
of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our
research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments
to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam
diffraction.
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I. INTRODUCTION

Friedel’s law (FL) states that two antisymmetric points in
the Fourier transform of a real function V (r) are complex
conjugated to one another, F[V ](k) = F∗[V ](−k). By deriv-
ing this rule, the French crystallographer George Friedel was
able to explain why, within the kinematical approximation, the
zeroth-order Laue zone in x-ray diffraction patterns always is
centrosymmetric and showed how this puts restrictions on the
possible crystal symmetries that can be directly determined
by x-ray diffraction [1]. Not only does FL apply to x-ray
diffraction on crystals, it generally is valid for all scattering
processes where a plane wave scatters on (approximately) two-
dimensional objects that are described by a real transmittance
function, such as apertures or gratings. Whereas for electron
diffraction on crystals FL breaks down relatively fast because
of dynamical scattering, it remains valid for electrons scattered
on apertures. Since FL is valid only for plane waves, the
diffraction patterns of distorted or modified beams, like the
so-called vortex beams, do not necessarily follow this rule.

Vortex beams are eigenstates of the orbital angular momen-
tum (OAM) operator, L̂z = −i� ∂

∂φ
[2], and their wave function

has the form

�m(r) = ψ(r,z)ei�φ, (1)

with r and φ being the radial and the azimuthal coordinates
with respect to the wave-propagation axis z. The number � is
called the topological charge (TC) of the vortex. Since vortex
beams are eigenstates of the angular momentum operator, they
possess a well-defined angular momentum of �� per photon
[3], electron [4], or any other particle [5] described by the
wave function in Eq. (1). These beams have a typical donutlike
intensity profile, a bright ring with a black spot in the middle,
that arises from the phase singularity at its center. Since their
first experimental demonstration in optics [6], they have been
studied extensively, both theoretically and experimentally,
which has led to numerous applications in fields such as
nanomanipulation [7–9], astrophysics [10–13], and telecom-
munications [14–16]. Although slightly more complicated,
a vast number of methods have been developed to produce

vortex beams in an electron microscope [17–20] as well, and
several studies suggest their use to probe magnetism [18,21],
in nanomanipulation [22], in spin-polarization devices [23],
and in measuring the chirality of crystals [24]. Additionally,
the expression in Eq. (1) provides an excellent mathematical
basis to describe scattering on helical crystals [25] or processes
involving local exchange of OAM [26].

Many of the above applications require an accurate mea-
surement of the TC of the vortex beam. A popular way of
doing this is to study the vortex diffraction patterns of specially
designed apertures such as triangular apertures [27,28] or
multipinhole plates [29–31]. In this work we elaborate on
the observation made in these studies that diffraction patterns
of vortex beams with opposite TC always seem to be
centrosymmetric, or, equivalently, rotated π rad, with respect
to each other, independent of the shape of the aperture.
Although in the above research this can be explained using
the symmetry of these specific apertures, we will formulate
an extension of FL as a more fundamental property of vortex-
beam diffraction. We illustrate with numerical simulations and
experiments that even for nonsymmetric scattering processes,
the twofold rotational symmetry between diffraction patterns
with oppositely charged vortex beams remains present. This
research provides further insights into vortex-beam diffraction
and can help to optimize methods to measure the TC of
vortex beams using diffraction gratings or to study general
vortex-beam diffraction.

II. THEORETICAL FORMULATION

A. Friedel’s law for plane waves

Friedel’s law includes two properties of the Fourier trans-
form (FT) of real functions [1].

Given a real function f (r), its FT is given by

F(k) =
∫

d r f (r) eik·r . (2)
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Looking at the complex conjugate of the FT,

[F(k)]∗ =
[∫

d r f (r) eik·r
]∗

=
∫

d r f (r) e−ik·r = F(−k), (3)

one can easily see that the modulus of the FT is centrosym-
metric,

|F (k)| = |F (−k)|, (4)

while its phase φ(k) is antisymmetric,

φ(k) = −φ(k). (5)

Equations (4) and (5) are known as Friedel’s law, and any set
of centrosymmetric points (k, − k) is called a Friedel pair.

Friedel applied these properties to describe the symmetries
seen in x-ray diffraction patterns in crystals. For a scalar
plane-wave photon that is scattered kinematically by a crys-
tal, the scattering potential is a real function. Within the
single-scattering approximation, valid for weakly interacting
samples, the scattering amplitude of a plane-wave photon, with
wave number k, to scatter to a plane wave with wave number
k′ then is given by

A(k,k′) = 〈
k′∣∣V (r)|k〉 =

∫
d r e−ik′ ·rV (r) eik·r

=
∫

d r V (r) ei�k·r , (6)

with �k = k − k′. Clearly, the scattering amplitude exactly
equals the FT of the potential. The x-ray diffraction pattern is
given by the intersection of the three-dimensional scattering
amplitude with the so-called Ewald sphere, which ensures that
the length of the wave vector of the outgoing photon, and thus
the energy, is the same as that of the incoming photon [32].
In general, the curvature of this sphere can be considered flat
for any relevant scattering angle, and the scattering amplitude
is determined by the two-dimensional FT of the potential
projected along the z axis, the photon’s propagation axis,
V⊥(r⊥) = ∫

dz V (x,y,z),

A(k,k′) =
∫

d r⊥ V⊥(r⊥) eik′
⊥·r⊥ , (7)

where, here and in the following, r⊥ denotes the two-
dimensional coordinate in the (x,y) plane. The diffraction
patterns in the kinematical approximation, given by the scat-
tering amplitude squared |A(k,k′)|2, will be centrosymmetric
because of FL, making it impossible to distinguish certain
symmetries in the projection of crystals with one single
diffraction pattern. A crystal with a threefold rotation axis
along the projection direction, for instance, will show the same
symmetry in its diffraction pattern as a crystal with a sixfold
rotation axis [1].

Besides x-ray diffraction on crystals, FL also applies to
diffraction of plane waves on apertures and gratings. Consider,
for instance, an aperture in the xy plane that is placed at
z0 = 0, illuminated by a plane wave of the form �0 = eikzz0 .
The diffracted wave in the far field of the aperture then is given

FIG. 1. (Left) Illumination of a fivefold multipinhole aperture
with an � = −1, � = 0, and � = 1 vortex, as in [29] and [31]. (Mid-
dle) Simulated diffraction pattern. (Right) Experimental diffraction
pattern. Since the axis of the vortex lies on the fivefold symmetry axis
of the aperture, all diffraction patterns show the fivefold symmetry of
the pinhole aperture. The � = 0 diffraction pattern is twofold rotation
symmetric as well, demonstrating the conventional Friedel’s law. This
symmetry is absent in the � = −1 and � = 1 diffraction patterns, but
as expected from Eq. (11), they do show twofold rotational symmetry
with respect to each other.

by the Fraunhofer equation [33]

�(k⊥,z) =
∫

d r ′
⊥ f (r ′

⊥)ei
kz
z

r⊥·r ′
⊥�(r ′

⊥,0)

=
∫

dk′
⊥ f (r ′

⊥)ei
kz
z

r⊥·r ′
⊥

=
∫

dk′
⊥ f (r ′

⊥)eik⊥·r ′
⊥ , (8)

with k⊥ = kz

z
r ′
⊥, z being the distance from the aperture, and

f (x ′,y ′) being the transmittance function of the grating. In
general f (r ′

⊥) does not have to be real. In the case of phase
plates, for instance, where the phase of the wave is altered,
f (r ′

⊥) is complex. But for apertures that only change the
amplitude, f (r ′

⊥) is real. In this case it is clear we can apply
Friedel’s law and the intensity pattern of the diffracted wave
will always be centrosymmetric, independent of the symmetry
of the diffraction grating. This is shown numerically and
experimentally in Fig. 1.

B. Friedel’s law for vortex beams

Friedel’s law applies only to diffraction of plane waves.
When the incoming beam is modified or distorted, it is no
longer valid. This is the case for an incoming vortex beam of
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FIG. 2. (Left) Illumination of a triangular aperture with an � =
−1 and � = 1 vortex, as in [27]. (Middle) Simulated diffraction
pattern. (Right) Experimental diffraction pattern. Since the axis of
the vortex lies on the threefold symmetry axis of the aperture, all
diffraction patterns show threefold symmetry. Again, the � = −1 and
� = 1 diffraction patterns show twofold rotational symmetry with
respect to each other.

the form

��(r) = ψ�(r,z)ei�φ, (9)

where � is the topological charge and ψ�(r,z) is the radial
profile of the beam at height z. The symmetry of the diffraction
pattern of such a beam scattered on an aperture or crystal in
general will not be centrosymmetric anymore (see Figs. 1, 2,
and 3). However, applying the same trick as in Eq. (3), we can
easily find a relation between the diffraction patterns of vortex
beams with opposite topological charge having the same real
radial profile.

Consider scattering of a vortex beam on an aperture with
real transmittance function f (r⊥) placed at height z0 = 0.
Like in Eq. (8), the wave in the far field now is given by the

FIG. 3. Same as in Fig. (2), but now the axis of the vortex lies on a
nonsymmetric point of the aperture. Therefore the diffraction patterns
no longer show the symmetry of the aperture. However, consistent
with Eq. (11), the � = −1 and � = 1 diffraction patterns are rotated
π rad with respect to one another. This shows that this effect is not
dependent on the symmetry of the scattering object but is a more
fundamental effect of vortex scattering.

Fraunhofer equation

��(r⊥,z) =
∫

d r ′
⊥ f (r ′

⊥)ei
kz
z

r⊥·r ′
⊥��(r ′

⊥,0). (10)

When we look at the complex conjugate of the scattered wave,
we get

�∗
� (r⊥,z) =

(∫
d r ′

⊥ f (r ′
⊥)ei

kz
z

r⊥·r ′
⊥��(r ′

⊥,0)

)∗

=
∫

d r ′
⊥ f (r ′

⊥)e−i
kz
z

r⊥·r ′
⊥ψ�(r,0)e−i�φ

= �−�(−r⊥,z). (11)

This means that diffraction patterns of oppositely
charged vortex probes with a real radial profile will be
centrosymmetric, or rotated π rad, with respect to each other.
The same goes for diffraction on a crystal when replacing the
incoming plane wave in Eq. (6) with a vortex beam. Note that
the radial profile of the beam has to be real, as is the case for
most typical vortex beams such as the nondiffracting Bessel
beams, ψB

� (r,z) = J�(kr), or the Laguerre Gaussian beams in
the focal plane, ψLG

� (r,0) = ( r
k
)�L�

n( r2

k2 ) exp (− r2

k2 ), where L�
n

is the Laguerre polynomial with radial and angular modes n

and �, respectively, and k is a parameter determining the width
of the beam. Note that when defocussing a vortex beam with
a real radial function, this radial function becomes complex,
and Eq. (11) no longer holds.

We will refer to Eq. (11) as the extension of Friedel’s law
(EFL) applicable for vortex beams. It includes the known
Friedel’s law when considering a plane wave as a vortex beam
with topological charge � = 0.

III. SIMULATION AND EXPERIMENT

In this section, we show simulations of vortex-beam diffrac-
tion on multipinhole and triangular apertures and compare
these with electron vortex-beam experiments on a probe-
corrected FEI Titan3 microscope. The incoming vortex wave
with TC � numerically is simulated by

��(r,φ) =
∫ kmax

0
dk

∫ 2π

0
dφk ei�φk eikr cos(φk−φ), (12)

with kmax = αck0, k0 = 2π
λ

. Here λ is the wavelength of the
incoming beam, and αc is the convergence angle, an experi-
mental parameter determining the spot size. In our simulations
and experiments we make use of a 300 keV electron beam,
k0 = 3.19 pm−1, with a semiconvergence angle αc = 4 μrad.
Equation (12) reflects the experimental setup of a vortex beam
that is generated by evenly illuminating the condenser aperture
while giving it an extra vortex phase, after which the probe is
formed in the far field of this aperture. For photons, this phase
can be applied with, for instance, a spatial light modulator
[34], while for electrons, this can be realized by placing the tip
of a magnetized needle on the center of the condenser aperture
[20]. In our experiment, however, the electron vortex beams
are created by placing a fork hologram in the illumination
system [18]. The condenser system then is used to project the
FT of the hologram in the sample plane, and the vortex probe
in Eq. (12) is obtained. For practical reasons, the triangular
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and multipinhole apertures were placed in the selected area
plane which is conjugated to the image plane. Note that the
experiments are done using an electron microscope, but the
result is equally valid for optical vortex diffraction.

In Fig. 1, the real-space image of a vortex beam with � =
−1, � = 0, and � = +1 centered on a multipinhole aperture
that consists of five equidistant holes is shown together with the
simulated and experimental diffraction patterns. Because of the
fivefold symmetry of the aperture and the central position of
the probe, the diffraction patterns all show fivefold symmetry.
Also, because of Friedel’s law, the � = 0 beam shows extra
twofold rotation symmetry, and the resulting diffraction pattern
becomes tenfold symmetric. This symmetry is absent in the
vortex-beam diffraction patterns. However, following Eq. (11),
a twofold rotation symmetry can be observed between the
� = −1 and � = +1 diffraction patterns. The same can be seen
in Fig. 2, where � = −1 and � = +1 vortices are centered on
a triangular aperture. Because of the threefold symmetry of
the aperture and the central probe position, both diffraction
patterns show threefold symmetry. Again, the two diffraction
patterns are rotated π rad with respect to each other.

In both examples, the vortex is centered on a high-symmetry
point of the aperture, which ensures that the symmetry of the
aperture is retained in all diffraction patterns. This ensures that
the twofold rotational relation between the opposite vortex
diffraction patterns is equivalent to a mirror operation or a
rotation over π/5 and π/3 rad for the fivefold and threefold
symmetric apertures, respectively. To show that the twofold
rotation is independent of the symmetry of the beam position
and symmetry of the aperture, in Fig. 3, we shift the vortex
beam to a nonsymmetric position on the triangular aperture,
thereby destroying the threefold symmetry. However, the
twofold rotation relation between diffraction patterns of the
opposite vortex beams remains present, as expected.

IV. DISCUSSION

The EFL in Eq. (11) shows that diffraction patterns of
oppositely charged vortices always are twofold symmetric with
respect to each other when scattered on a real two-dimensional
projected potential or two-dimensional apertures with real
transmittance functions. The triangular aperture we used
(Fig. 2) was already suggested to determine the topological
charge of a vortex beam by Hickmann et al. [27]. By looking
at the diffraction pattern, they were able to derive a rule
for determining the magnitude of the OAM of the incoming
beam, and they noted that diffraction patterns of opposite
charge were always rotated by π rad. Similarly, the pinhole
aperture was proposed by Berkhout and Beijersbergen [13]
as an alternative method to measure the topological charge
of vortex beams. They also mention that, in the case of an
odd number of holes, diffraction patterns of opposite charge
mirror one another. Several other diffraction experiments
with vortices were performed [29,30,35–39], and when a
comparison with oppositely charged vortices was made, the
same centrosymmetry between diffraction patterns was always
observed.

In all these examples, however, the arguments to explain
the symmetry between two opposite vortex-beam diffraction
patterns relied on the symmetry of the specific apertures with

respect to the center of the vortex (the studies we found on
asymmetric apertures unfortunately do not compare opposite
vortex-beam diffraction patterns). The EFL, however, shows
that this symmetry is a fundamental property of vortex beams
scattered on any real projected potential or two-dimensional
apertures with real transmittance functions, independent of the
symmetry of the scattering object.

Like Friedel’s law, EFL is useful when studying crystal-
lography with vortex beams. In previous work, for example,
we proposed the use of electron vortex-beam diffraction to
determine the handedness of chiral crystals [24], crystals
that only differ by a mirror operation, starting from the
idea that vortex beams themselves are chiral. However, by
extending Friedel’s law to vortex beams, it immediately
becomes clear that the chirality cannot be learned directly from
the projected potential of the crystal or the zeroth-order Laue
zone (ZOLZ) in the diffraction pattern, within the kinematical
approximation. Any chiral effect that would be seen with
one vortex would differ by only a rotation of π rad with
the opposite vortex. Therefore the left-handed crystal would
show the same ZOLZ as its right-handed mirror image when
rotated π rad along the beam’s propagation direction. Looking
at kinematically scattered electrons, any chiral effect must thus
be searched for in the higher-order Laue zones that contain
three-dimensional information about the crystal [40].

V. CONCLUSION

In this work, we derived an extension of Friedel’s law
that applies to vortex beams, whether it concerns an optical
electron or any other particle beam. We show that when a
vortex beam is diffracted on a two-dimensional scattering
object, such as apertures, two diffraction patterns of vortex
beams with opposite topological charge are always rotated
π rad with respect to each other. This is independent of
the symmetry of the scattering object and a fundamental
property of vortex-beam scattering. Our findings also apply for
diffraction on a crystal, when kinematical scattering between
the zeroth-order Laue zone is considered. In general, this can
be applied to x-ray diffraction but not to electron diffraction on
crystals, which is mostly dominated by dynamical scattering.

We verified our analytical derivation with numerical sim-
ulations and showed experimental results for electron vortex
beams scattered on multipinhole and triangular apertures. We
compared our findings with observations made in the literature,
where this effect mostly is explained using the symmetry of the
scattering objects with respect to the center of the vortex beam.
However, with our derivation and by looking at vortex beams
scattering on nonsymmetric points of our apertures, we have
shown that this symmetry is a more fundamental property of
vortex-beam diffraction. The work presented here provides
deeper understanding of vortex-beam diffraction, which in
turn can be used to design new experiments to measure the
topological charge of vortex beams with diffraction gratings
or to study general vortex-beam diffraction.
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