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Engineering a squeezed phonon reservoir with a bichromatic driving of a quantum dot
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We demonstrate how an acoustic phonon bath when coupled to a quantum dot with the help of a bichromatic
laser field may effectively form a quantum squeezed reservoir. This approach allows one to achieve an arbitrary
degree of squeezing of the effective reservoir and it incorporates the properties of the reservoir into two parameters,
which can be controlled by varying the ratio of the Rabi frequencies of the bichromatic field. It is found that for
unequal Rabi frequencies, the effective reservoir may appear as a quantum squeezed field of ordinary or inverted
harmonic oscillators. When the Rabi frequencies are equal the effective reservoir appears as a perfectly squeezed
field in which the decay of one of the polarization quadratures of the quantum dot dipole moment is inhibited.
The decay of the quantum dot to a stationary state which depends on the initial coherence is predicted. This
unusual result is shown to be a consequence of a quantum-nondemolition-type coupling of the quantum dot to
the engineered squeezed reservoir. The effect of the initial coherence on the steady-state dressed-state population
distribution and the fluorescence spectrum is discussed in detail. The complete polarization of the dressed state
population and asymmetric spectra composed of only a single Rabi sideband peak are obtained under strictly
resonant excitation.
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I. INTRODUCTION

The study of the effect of phonons on the dynamics
and coherent excitation of a quantum dot has been the
subject of considerable interest in recent years. A number
of different situations have been investigated [1–15]. These
include experimental studies of the effect of phonons on the
Rabi oscillations, Autler-Townes splitting, and the Mollow
triplet of the fluorescence field emitted by a driven quantum dot
[16–24]. In particular, it has been observed that the linewidths
of the Rabi sidebands of the Mollow triplet increase linearly
with temperature and with the square of the driving field
strength [25,26]. These properties of the spectrum have been
explained as arising from the coupling of the exciton transition
of the quantum dot to longitudinal acoustic phonons [27].
Moreover, an interesting phenomenon of population inversions
between the excitonic states of a quantum dot located inside
an optical cavity and interacting with a phonon bath has been
demonstrated both theoretically and experimentally [28–32].
The investigation of this interaction in a quantum dot-cavity
system has led to the prediction of single-photon sources and
the realization of single-photon devices [33–36]. The influence
of a phonon bath on the photon blockade effect in a driven
dot-cavity system and the emission of correlated and entangled
photons has also been treated [37–39].

It is well known that the decay of a quantum system can be
controlled and significantly modified by coupling the system
to a squeezed vacuum field, which is characterized by the noise
in one of the field quadrature components reduced below the
usual vacuum level [40–44]. Particularly interesting effects of
the squeezed vacuum field on the atomic radiative processes
are the inhibition of the atomic decay and its dependence
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on the squeezing phase. However, there are many practical
problems with the application of the squeezed field produced
by an external sources [45–50]. The main obstacle is due
to the requirement that nearly all the modes to which the
quantum system is coupled must be squeezed. In addition,
there is a general lack of squeezed light sources coinciding
with convenient atomic transitions [51]. It has been proposed
that these difficulties could be circumvent by engineering
a squeezed-reservoir-type interaction of a quantum system
rather than coupling the system to a squeezed field produced
by an external source [52,53]. For example, Lütkenhaus et al.
[54] have studied the dynamics of a four-level system driven by
two laser fields and have shown that the system may effectively
behave as a two-level system coupled to a squeezed reservoir.

In this paper we propose a method to construct a squeezed-
vacuum-type multimode reservoir from a phonon bath based
on a suitable engineering of the coupling of the phonon bath
to a quantum dot. The quantum dot is modeled as a two-level
system and experiences fluctuations and decay of its excitation
that are due to the dissipative interaction with the phonon bath.
We derive the master equation for the reduced density operator
of the quantum dot and show that the phonon bath combined
together with a bichromatic laser field tuned close to the
dot’s transition frequency can result in a squeezed-reservoir-
type interaction of the phonon bath with the quantum dot.
We find that the squeezing properties of the effective reservoir
and then the quantum dot’s relaxation dynamics can be con-
trolled through variation of certain tunable system parameters,
e.g., the Rabi frequencies of the bichromatic field. By varying
the ratio between the Rabi frequencies of the bichromatic
field the effective squeezed reservoir displays interesting
differences in its properties. In particular, the reservoir may
appear as a quantum squeezed field of ordinary or inverted
harmonic oscillators, or can behave as a perfectly squeezed
field. When in addition to the interaction with the squeezed
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reservoir, the quantum dot is driven by a resonant laser field we
find that the steady-state dressed state population distribution
and in the properties of the fluorescence field can be governed
by the initial coherence between the ground and excited
states of the quantum dots. The fluorescence spectrum can be
asymmetric and its structure varied with the initial coherence.
We show that the asymmetries are manifestation of the
complete polarization of the dressed state populations, and thus
the spectrum offers a method of observing the polarization.

The paper is organized as follows. In Sec. II, we describe
the model and derive the master equation for the reduced
density operator of a quantum dot interacting with a low
frequency phonon bath and driven by a bichromatic laser field.
In Sec. III, we examine the conditions for quantum features of
the engineered reservoir and their dependence on the number
of phonons. We distinguish between different forms of the
squeezed phonon reservoir which can be engineered, including
a perfectly squeezed reservoir and a squeezed reservoir of
inverted harmonic oscillators. In Sec. IV, we concentrate on
the dynamics of the quantum dot which in addition to the
interaction with the engineered reservoir is driven by a resonant
laser field. We are particularly interested in the stationary
state and its dependence on the form of the engineered
squeezed reservoir. Section V is devoted to the discussion of
the fluorescence spectrum. The dependence of the stationary
spectrum on the initial coherence is exhibited and explained
in terms of the dressed states of the driven quantum dot. The
results are summarized in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

We consider a single quantum dot (QD) coupled to a low
frequency phonon bath and driven by a bichromatic laser field.
The quantum dot is modeled as a two-level system with the
upper state |e〉, the ground state |g〉, transition frequency
ω0, and transition dipole moment �μ. The driving field is
characterized by two frequencies ω1 and ω2 and the amplitudes
�E1 and �E2, respectively. The components of the laser field are
tuned near the atomic resonance, at detunings �1 = ω1 − ω0

and �2 = ω0 − ω2, as illustrated in Fig. 1. The phonon bath
is treated as a quantized multimode reservoir. In practice this
scheme could be realized by the bichromatic driving of an
exciton transition between the semiconductor ground state and
single exciton state of an InAs or GaAs quantum dot. Typical

ω0

ω1

ω2

Δ1

Δ2

|g>

|e>

FIG. 1. Two-level system driven by a bichromatic laser field of
frequencies ω1 and ω2 tuned close to the atomic transition frequency
ω0 at detunings �1 and �2, respectively.

parameters of experimental samples of quantum dots [17,20]
are shapes with heights of 3–5 nm, base diameters of 25–30
nm, the exciton transition wavelength λ0 = 950 nm (ω0/2π =
300 THz).

The total Hamiltonian of the system can be written in the
form,

H = H0 + H1 + H2, (1)

where H0 is the Hamiltonian of the phonon field (setting � = 1
throughout the paper),

H0 =
∑

p

ωpb†pbp, (2)

H1 is the Hamiltonian of the quantum dot plus the interaction
with the bichromatic laser field

H1 = ω0Sz + [
�1e

−i(ω1t−φ1)

+ �2e
−i(ω2t−φ2)

]
S+ + H.c., (3)

and H2 is the interaction Hamiltonian of the quantum dot with
the phonon reservoir,

H2 =
∑

p

gpSz(bp + b†p). (4)

Here b
†
p and bp are the creation and annihilation operators of

mode p of frequency ωp of the phonon bath, S+(S−) is the
raising (lowering) operator and Sz is the population difference
operator of the quantum dot, and gp is the coupling strength
of the mode p of the phonon reservoir to the quantum dot. The
parameters �1 and �2 are the Rabi frequencies between the
quantum dot and the components of the laser field, which are
given by the product of the atomic transition dipole moment
�μ and the laser field amplitudes �E1 and �E2, respectively.

To remove the fast oscillating terms in Eq. (3), we transform
the Hamiltonian into a frame rotating with the frequency ω0

and obtain

H̃1 = (
�1e

−i(�1t−φ1) + �2e
i(�2t+φ2)

)
S+ + H.c. (5)

We now derive the master equation for the reduced
density operator ρ of the quantum dot subject of the driving
bichromatic field and the low frequency phonon reservoir. In
the treatment, we derive the effective interaction Hamiltonian
between the driven QD and the phonon bath, and the
derivation closely follows the approach previously used in
Refs. [6,7,22,25].

We assume that the bichromatic field is weak so that the
dynamics of the QD are mostly affected by the interaction
with the phonon reservoir. In order to analyze the effect of the
phonon reservoir on the QD, we define an unitary operator,

U = i
∑

p

gp

ωp

(b†p − bp)Sz, (6)

and make the unitary transformation of the Hamiltonian of the
system. Hence, we obtain

HT = e−iUHeiU = HR + HI , (7)

where

HR = e−iU (H0 + H2)eiU =
∑

p

�ωpb†pbp −
∑

p

g2
p

4ωp

, (8)
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and

HI = e−iU H̃1e
iU = [�(t)S+ + H.c.]

+
[∑

p

gp�(t)

ωp

(b†p − bp)S+ + H.c.

]
+ . . . , (9)

in which

�(t) = (�̃1e
−i�1t + �̃2e

i�2t ), (10)

with �̃i = 〈B〉�i exp(iφi), and

〈B〉 = exp

[
−1

2

∑
p

(gp/ωp)2(2n̄p + 1)

]
. (11)

Here, �(t) is the total time-dependent Rabi frequency of the
driving laser and n̄p ≡ 〈b†pbp〉 = [exp(ωp/kBTp) − 1]−1 is the
average occupation phonon number of a mode p, where kB is
the Boltzmann constant and Tp corresponds to the temperature
of the reservoir. The first term in Eq. (8) represents the energy
of the phonon reservoir, while the second term represents a
shift of the energy levels of the QD due to the interaction with
the phonon reservoir. The shift is known in the literature as the
Lamb shift. This term is usually considered to be absorbed into
the atomic transition frequency and is not included explicitly
in the dynamics of the system. Therefore, the Hamiltonian (8)
can be simply considered as the energy of the phonon reservoir.

The first term on the right-hand side of Eq. (9) contains the
interaction of the QD with the driving laser field. The second
term represents the interaction of the QD with the phonon
reservoir. It is in a form of the electric dipole interaction in
which the phonon reservoir couples to the dipole transition
of the QD. In the derivation of Eq. (9), we have performed
a Taylor expansion and have kept only the terms up to first
order in gp. With the higher-order terms ignored, we simply
limit the interaction of the QD with the phonon reservoir to
one-phonon processes only.

It is worthwhile noting at this point that the main result of
the unitary transformation of the Hamiltonian of the system
is the coupling of the phonon reservoir to the atomic dipole
moment. Thus, with the help of the driving laser, the low
frequency phonon reservoir effectively couples to the atomic
dipole transition |g〉 ↔ |e〉.

We may transform the Hamiltonian (7) into the interaction
picture with the unitary operator U (t) = eiHRt , and find

H̃T = e−iHRtHT eiHRt = VL(t) + VR(t), (12)

where VL(t) is the interaction of the laser with the QD, and

VR(t) =
∑

p

gp�(t)

ωp

(b†peiωpt − bpe−iωpt )S+ + H.c. (13)

is the interaction of the QD with the phonon reservoir. The
interaction VR(t) can be written explicitly as

VR(t) =
∑

p

gp

ωp

{[
b†p

(
�̃1e

i(ωp−�)t + �̃2e
i(ωp+�)t

)
− bp

(
�̃1e

−i(ωp+�)t + �̃2e
−i(ωp−�)t

)]
S+ + H.c.

}
,

(14)

where we have assumed that the components of the bichro-
matic field are equally detuned from the atomic transition
frequency, i.e., �1 = �2 ≡ �.

We see from Eq. (14) that the interaction contains terms
which oscillate at frequencies ωp − � and ωp + �. If the
density of modes of the phonon reservoir is large only in
the vicinity of the laser field detuning �, then ωp ≈ �. In
such a case, the interaction Hamiltonian reduces to resonant,
nonoscillating terms, and nonresonant terms oscillating at
frequency 2�. We can make the rotating-wave approximation
in which the resonant terms play a dominant role whereas the
nonresonant terms make much smaller contributions and can
be omitted. The interaction Hamiltonian VR(t) then simplifies
to

VR(t) =
∑

p

gp

ωp

{[
�̃1b

†
pei(ωp−�)t

− �̃2bpe−i(ωp−�)t
]
S+ + H.c.

}
. (15)

Having derived the effective interaction Hamiltonian of
the driven QD with the phonon reservoir, we now turn to
the derivation of the master equation for the reduced density
operator of the quantum dot,

ρ(t) = TrF W (t), (16)

where W (t) is the density operator of the total system, the
QD plus the phonon bath. We choose an initial state with no
correlations between the QD and the phonon bath modes,

W (0) = ρF (0) ⊗ ρ(0), (17)

and specify the phonon bath as a vacuum thermal bath with
the following correlations,

〈bp〉 = 〈b†p〉 = 0, 〈b†pbp′ 〉 = n̄δ(p − p′),

〈bpb
†
p′ 〉 = (n̄ + 1)δ(p − p′), (18)

where n̄ is the average number of phonons.
After tracing over the phonon bath operators, and using the

standard Born-Markov approximations, we arrive at the master
equation,

∂

∂t
ρ = −i[VL(t),ρ] + Lbρ + Lpρ, (19)

in which

VL(t) = �(t)S+ + H.c. (20)

is the interaction of the quantum dot with the bichromatic field,

Lbρ = 1
2�(2S−ρS+ − S+S−ρ − ρS+S−) (21)

represents the damping of the quantum dot at the rate � by
spontaneous emission to vacuum radiation modes, other than
the phonon modes, and

Lpρ = γs(2S−ρS+ − S+S−ρ − ρS+S−)

+ γn(2S+ρS− − S−S+ρ − ρS−S+)

− γm(2S+ρS+e2iφ + 2S−ρS−e−2iφ) (22)

represents the damping of the quantum dot by a reservoir
mediated by the phonon bath modes and the bichromatic field.
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Here, the parameters are defined as

γs = γ1n̄ + γ2(n̄ + 1), γn = γ1(n̄ + 1) + γ2n̄,

γm = (2n̄ + 1)
√

γ1γ2, 2φ = φ1 + φ2, (23)

with

γi = 2π |�̃i |2
∑

p

(
gp

ωp

)2

δ(ωp − �), i = 1,2. (24)

The assumption of the Born approximation, valid to second
orders in the quantum dot environment coupling strengths,
|gp|2 and |fk|2, where fk is the coupling strength of the
kth radiation mode to the quantum dot, restricts the master
equation to weak-system reservoir coupling regimes. The
assumption of the Markov approximation restricts the master
equation to times t longer than the time �t required for a
phonon to traverse the quantum dot, t � �t = l/u, where l

is the size of a quantum dot and u is the speed of sound.
Based on the typical sizes of experimental samples of an
InAs or GaAs quantum dot of l = 5 nm, �t ≈ 1 ps. For the
Markov approximation to be valid, the time �t should be
shorter than any relaxation time in the system. In practice
this may well be a reasonable assumption. For example, the
radiative recombination time of the exciton, determined by
1/�, is usually 500–800 ps [11,21].

The Liouvillian (22) has a structure analogous to the
damping of a two-level system by a squeezed reservoir. The
parameters γs and γn correspond to incoherent damping and
incoherent pumping rates, respectively, and γm corresponds to
the strength of two-photon correlations. A close look at the
parameters in Eq. (23) reveals that not always γs constitutes
the incoherent rate at which a population is damped by the
reservoir. We can have γs > γn as well as γn > γs . Which
of these takes place depends principally on whether γ2 > γ1

or γ1 > γ2. For γ2 > γ1, we have γs > γn. In this case, γs

can be viewed as the incoherent damping rate. Otherwise,
when γ2 < γ1, we have γn > γs that the incoherent pumping
rate exceeds the damping rate. In this case, the reservoir is
formed from a bath of inverted harmonic oscillators, and the
rate of transferring the population from the ground state |1〉
to the upper state |2〉 is larger than the rate of transferring
the population from |2〉 to |1〉. It is easy to see from Eq. (23)
that the condition of γ1 > γ2 can be achieved when the Rabi
frequency �̃1 of the bichromatic field component tuned above
the resonance exceeds the Rabi frequency �̃2 of the component
tune below the resonance. Figure 2 illustrates the role of the

|g>

|e>

γs

γn ω0

(a)

|g>

|e>

γn

γs ω0

(b)

FIG. 2. Illustration of the role of the parameters γs and γn in the
dynamics of the quantum dot for (a) γ2 > γ1 and (b) γ1 > γ2.

parameters γs and γn in the dynamics of the quantum dot. It
is seen that the roles of the parameters reverse when γ2 > γ1

reverses to γ1 > γ2.
Apart from the damping by the squeezed reservoir there

is also a contribution from the damping by the radiation field
modes, Eq. (21). If the phonon bath modes occupy all modes
to which the quantum dot is coupled, � ∼ |fk|2 = 0, then
the quantum dot is damped solely by the squeezed reservoir.
However, if there is a small fraction of modes not occupied
by the phonon bath modes, � = 0, then the quantum dot is
damped by both the squeezed reservoir and the “unsqueezed”
radiation modes.

To investigate how efficient the phonon bath together with
the bichromatic field is in the creation of a squeezing-type
reservoir to the quantum dot, we compare the master equation
(22) with the equation when a two-level system is illuminated
by a squeezed vacuum field produced by an external squeezing
source, such as an optical parametric oscillator [47–49]. The
squeezed vacuum field is characterized by the correlation
functions [40–44],

〈aka
†
k′ 〉 = (N + 1)δk,k′ ,

〈a†
kak′ 〉 = Nδk,k′ ,

〈akak′ 〉 = |M|e−2iδ2ks−k,k′ ,

〈a†
ka

†
k′ 〉 = |M|e2iδ2ks−k,k′ , (25)

where ak(a†
k) is the annihilation (creation) operator for mode

k of the squeezed field, N is the number of photons in
the field, the parameter |M| determines the degree of two-
photon (squeezing) correlations between modes symmetrically
located about the squeezing carrier mode 2ks , and  is the
phase of the field. The parameter |M| may fall into one of the
two separate regions:

|M| − N < 0 or N < |M| �
√

N (N + 1). (26)

If |M| falls into the region of |M| < N , the field corresponds
to the so-called classically squeezed field in the sense that
fluctuations in one of the quadratures of the field amplitudes
are reduced but not below the shot-noise level. If |M| falls
into the region of N < |M| �

√
N (N + 1), the field is then a

quantum squeezed field in the sense that the fluctuations of one
of the quadratures are suppressed below the shot-noise level.
The equality |M| = √

N (N + 1) corresponds to maximal
correlations, an ideal squeezed field. Thus, there are lower and
upper limits, |M| = N and |M| = √

N (N + 1), respectively,
for the quantum correlations of the squeezed field.

The interaction of a two-level system with a reservoir
characterized by the correlation functions (25) leads to the
following master equation [40–44]:

Lpρ = 1
2γ (N + 1)(2S−ρS+ − S+S−ρ − ρS+S−)

+ 1
2γN (2S+ρS− − S−S+ρ − ρS−S+)

− 1
2γ |M|(2S+ρS+e2i + 2S−ρS−e−2i), (27)

where γ is the spontaneous emission rate of the atomic
transition.
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Matching coefficients in Eqs. (22) and (27), we find that for
γ2 > γ1,

γs − γn → 1
2γ, γn → 1

2γN, γm → 1
2γ |M|. (28)

Similarly, for γ1 > γ2,

γn − γs → 1
2γI , γs → 1

2γIN, γm → 1
2γI |M|, (29)

where the subscript “I” stands for inverted harmonic oscillator.
Thus, the effective squeezing-type reservoir can be described
by field operators bk and b

†
k satisfying the following correlation

functions (γ2 > γ1):

〈bkb
†
k′ 〉 = γs

γ2 − γ1
δk,k′ ,

〈b†kbk′ 〉 = γn

γ2 − γ1
δk,k′ ,

〈bkbk′ 〉 = γm

γ2 − γ1
e−2iφδ2ks−k,k′ ,

〈b†kb†k′ 〉 = γm

γ2 − γ1
e2iφδ2ks−k,k′ . (30)

As we have mentioned above, there are lower and upper
limits for the quantum correlations of the squeezed field. If we
evaluate the lower limit |M| − N according to Eq. (28), we
find the result,

|M| − N =
√

γ1 − n̄(
√

γ2 − √
γ1)√

γ1 + √
γ2

, (31)

and

|M| − N =
√

γ2 − n̄(
√

γ1 − √
γ2)√

γ1 + √
γ2

, (32)

if we evaluate the limit according to Eq. (29). It is seen from
Eqs. (31) and (32) that for |M| to fall into the region of quantum
squeezing, |M| − N > 0, it is necessary that

n̄ <

√
γ1√

γ2 − √
γ1

, γ2 > γ1,

n̄ <

√
γ2√

γ1 − √
γ2

, γ1 > γ2, (33)

and if these conditions hold, then N < |M| �
√

N (N + 1).
Thus, the phonon bath with the help of the bichromatic field
creates a squeezed reservoir which can be unique to the
quantum field.

If we evaluate the upper limit for the correlations, |M|2 −
N (N + 1) = 0, which determines the maximal two-photon
(squeezing) correlations in the field, we find

|M|2 − N (N + 1) = −n̄(n̄ + 1), (34)

for both γ2 > γ1 and γ1 > γ2 cases. We see that maximal
correlations are achieved only at n̄ = 0. For n̄ = 0 the
reservoir appears as an imperfectly squeezed reservoir with the
correlations decreasing with an increasing n̄. It is interesting
to note that the upper limit for the correlations is independent
of γ1 and γ2, whereas the lower limit, as seen from Eqs. (31)
and (32), varies with γ1 and γ2.

Figure 3 shows the ratio |M|/N as a function of n̄ and γ2/γ1

for the case of γ2 > γ1. Values |M|/N > 1 signal the quantum
nature of the correlations. The correlations increase with an

0
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FIG. 3. The ratio |M|/N plotted as a function of n̄ and γ2/γ1.
The quantum nature of the correlations (|M|/N > 1) occurs for n̄ <

1/(
√

γ2/γ1 − 1).

increasing γ2/γ1 and can reach large values but the largest
increase of the correlations above the classical limit occurs for
weak squeezed fields, i.e., for large γ2/γ1 at which N is small.
The correlations are very sensitive to n̄. For not too large γ2/γ1,
the ratio decreases slowly with n̄ so that the quantum nature of
the correlations persists at large n̄. However, for large γ2/γ1,
the decrease of the ratio with n̄ is considerably more rapid than
it is for small γ2/γ1 that the quantum correlations decrease
rapidly with n̄. Beyond n̄ = 1/(

√
γ2/γ1 − 1), the ratio falls

below the lower limit for quantum correlations.
The case γ1 = γ2 has to be treated separately. In the limit

γ1 = γ2 ≡ γ0, the coefficients in Eq. (22) are

γs = γn = γm = (2n̄ + 1)γ0. (35)

When compared with the coefficients of Eq. (27), we find

γs → 1
2γ (N + 1), γn → 1

2γN,

γm → 1
2γ |M| = √

γnγs → 1
2γ

√
N (N + 1). (36)

Since γs = γn, this limit can be regarded as corresponding to a
very strong squeezed field, N � 1, with maximal correlations
|M| = √

N (N + 1). We see that in this case the upper limit of
the squeezing correlations is achieved for any values of n̄.

III. DYNAMICS OF THE QUANTUM DOT

Let us now apply these considerations explicitly to the
dynamics of the quantum dot interacting with the engineered
squeezed reservoir. The dynamical response of the quantum
dot interacting with the squeezed reservoir is best described
in terms of the expectation values of the dipole components
which obey the following optical Bloch equations:

˙〈Sx〉 = − (
1
2� + γs + γn + 2γm cos 2φ

)〈Sx〉
+ 2γm sin 2φ〈Sy〉,

˙〈Sy〉 = − (
1
2� + γs + γn − 2γm cos 2φ

)〈Sy〉
+ 2γm sin 2φ〈Sx〉,

˙〈Sz〉 = − (
γs − γn + 1

2�
) − 2

(
γs + γn + 1

2�
)〈Sz〉, (37)
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where Sx = (S− + S+)/2 and Sy = i(S− − S+)/2 are the
dipole polarization components. Te effect of squeezing is best
seen through the quadrature phase components,

Sφ(t) = Sx(t) sin φ + Sy(t) cos φ,

Sφ+ π
2
(t) = Sx(t) cos φ − Sy(t) sin φ. (38)

When Eq. (37) is integrated, we obtain

〈Sφ(t)〉 = 〈Sφ(0)〉e−( 1
2 �+γs+γn−2γm)t ,

〈Sφ+ π
2
(t)〉 = 〈Sφ+ π

2
(0)〉e−( 1

2 �+γs+γn+2γm)t ,

〈Sz(t)〉 = − γs − γn + 1
2�

2
(
γs + γn + 1

2�
)

+
[
〈Sz(0)〉+ γs−γn+ 1

2�

2
(
γs+γn+ 1

2�
)
]
e−2( 1

2 �+γs+γn)t .

(39)

The components display simple exponential decays; the
component 〈Sφ(t)〉 is damped at a reduced rate γφ = 1

2� +
γs + γn − 2γm, while 〈Sφ+ π

2
(t)〉 is damped at an enhanced

rate γφ+ π
2

= 1
2� + γs + γn + 2γm. The population inversion

〈Sz(t)〉 decays to a steady-state value which depends strongly
on the relation between γs and γn.

The decay rates depend also on �. Because it is precisely
the effect of the phonon bath on the dynamics of the quantum
dot that interests us most here, in what follows, we shall
assume γs,γn � � and set � = 0. This is justified if one
notices from Eq. (24) that γs and γn increase with an
increasing �̃i . Thus, we may increase the Rabi frequencies
of the bichromatic field such that γs,n � �. This situation
can be achieved in current experiments since the radiative
lifetime 500–800 ps corresponds to � ∼ 1.2 GHz. Using the
definition J (ω) = ∑

p g2
pδ(ω − ωp), which is equivalent to

J (ω) = αω3 exp[−(ω/ωc)2], where ωc = √
2u/l is the cutoff

frequency [37], the damping parameters γi can be estimated
by writing [26]

γi = 2π |�̃i |2
∑

p

(
gp

ωp

)2

δ(ωp − �) = 2π�̃2
i α�. (40)

For the Rabi frequencies of the bichromatic field we choose
the average value �i = 70 GHz [26]. For the phonon bath we
assume n̄ = 0.5 and a temperature T = 2.35 K, and take ωc =
1500 GHz [37]. These give �(= ωp) = 490 GHz. Taking α =
2.535 × 10−7 (GHz)−2 [7,26], the damping parameters γi are
then γi = 4 GHz, which are larger than � = 1.2 GHz.

As discussed in Sec. II, the manner in which the squeezed
reservoir can affect the dynamics of the quantum dot depends
on the relation between γ1 and γ2. There are three distinct
regimes of the parameters at which the effective squeezed
reservoir can have significantly different properties: (A.) γ2 >

γ1, (B.) γ1 > γ2, and (C.) γ1 = γ2.

A. The case, γ2 > γ1

This limit corresponds to γs > γn that the effective reservoir
is formed from a phonon bath of the ordinary harmonic
oscillators. As shown in Sec. II, there is in this case a direct

correspondence between the engineered squeezed reservoir
and that produced by an external source of the squeezed
vacuum field. Therefore, the effects of the engineered squeezed
reservoir on the dynamics of the quantum dot are expected to be
analogous to those which are well known for a two-level atom
damped by a squeezed vacuum field produced by an external
source. However, there are some subtle differences. For
example, if an external source produces a squeezed field with
maximal correlations, |M| = √

N (N + 1), the correlations
remain maximal independent of the value of N . However,
in the squeezed reservoir engineered from a phonon bath,
an increase of the number of phonons n̄ is accompanied by
a decrease of the two-photon correlations |M|, as seen from
Eq. (34). As a consequence, ideally squeezed reservoir at n̄ = 0
becomes an imperfectly squeezed reservoir when n̄ = 0. Thus,
we lose the option of having an ideally squeezed reservoir
when n̄ = 0. Under this circumstance, many effects unique to
the quantum nature of the squeezed field may not be observed
due to the presence of thermal phonons.

In order to determine the range of the parameters, n̄ in
particular, at which the effects unique to the quantum nature
of the squeezed field still could be observed in the presence of
thermal phonons, we write N = Ns + Nb such that Ns(Ns +
1) = |M|2. Thus, Ns corresponds to the number of phonons in
the maximally squeezed field and Nb is the number of excess
phonons, which are not correlated, and therefore correspond
to a thermal (background) field. When this division of N is
applied to Eq. (22), it is straightforward to find from Eq. (23)
that

Ns =
√

4n̄(n̄ + 1)u2 + w2 − 1
2 ,

Nb = (2n̄ + 1)w −
√

4n̄(n̄ + 1)u2 + w2, (41)

where u = 2
√

γ1γ2/γ and w = (γ1 + γ2)/γ . The Liouvillian
(22) can then be written in the form,

Lpρ = 1
2γ (2ϒρϒ† − ϒ†ϒρ − ρϒ†ϒ)

+ 1
2γNb(2S−ρS+ − S+S−ρ − ρS+S−)

+ 1
2γNb(2S+ρS− − S−S+ρ − ρS−S+), (42)

where

ϒ =
√

Ns + 1S−e−iφ +
√

NsS
+eiφ. (43)

Thus, the Liouvillian (22) describing the damping of the
quantum dot by an imperfectly squeezed reservoir has been
divided into two parts, one describing damping by the
maximally squeezed reservoir, the first term in Eq. (42),
and the other describing damping by the background thermal
reservoir, the second and third terms in (42). In other words,
the interaction of the quantum dot with an imperfect squeezed
reservoir may be viewed as the interaction with two separate
reservoirs, a maximally correlated squeezed reservoir and a
thermal reservoir. Which reservoir dominates in the interaction
depends on the ratio Nb/Ns . If Ns is much larger than Nb,
then significant effects of the squeezed reservoir should be
observable. For example, both Nb and Ns contribute to the
damping rate of the quantum dot. Therefore, the reduction
of γφ below the standard quantum limit is possible only for
Nb < |M| − Ns . Viewed as a function of n̄, the inequality
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FIG. 4. The ratio of the number of the background thermal
phonons Nb to the degree of quantum squeezing correlations |M| −
Ns plotted as a function of n̄ and γ2/γ1.

Nb < |M| − Ns becomes n̄ < 1/(
√

γ2/γ1 − 1) which is, as
one could expect, the same as the condition (33) for quantum
squeezing.

Figure 4 shows the ratio Nb/(|M| − Ns) as a function of
n̄ and γ2/γ1. The grow of the ratio with n̄ depends strongly
on γ2/γ1 and the effect of increasing γ2/γ1 is to decrease the
range of n̄ over which the ratio is smaller than 1.

B. The case, γ1 > γ2

The exchange γ1 ↔ γ2 leads to an exchange γs ↔ γn.
Therefore, the damping rates of the quadrature components in
Eq. (37) are formally identical with the corresponding damping
rates for γ2 > γ1, and the interpretation of the properties of the
Liouvillian (22) follows the same lines as for γ2 > γ1.

There is, however, an important difference in the evolution
of the average inversion 〈Sz(t)〉. In the parameter regime, γn >

γs , an incoherent excitation of the quantum dot is more likely to
be followed with a further excitation than with a spontaneous
decay to the ground level. The net effect of these processes is
to accumulate more population in the excited state rather than
in the ground state. In physical terms, the system behaves as
an inverted harmonic oscillator. It is clearly seen from Eq. (37)
that in the steady state the population inversion is

〈Sz〉s = γn − γs

2(γs + γn)
= γ1 − γ2

2(2n̄ + 1)(γ1 + γ2)
. (44)

Clearly, the population between the bare states of the quantum
dots is inverted. The population inversion increases with
an increasing γ1/γ2 and for γ1/γ2 � 1 can reach the total
inversion. The effect of the squeezed reservoir on the dynamics
of the quantum dot is therefore much more drastic when
γ1 > γ2 than when γ2 > γ1. The result (44) implies that the
engineered squeezed reservoir can be employed to maintain a
large population inversion necessary for laser generation in a
two-level quantum dot.

C. The case, γ1 = γ2

In this limit γs = γn = γm, and then the damping rate of
the 〈Sφ(t)〉 component,

γφ = γs + γn − 2γm, (45)

reduces to zero. Consequently, the decay of 〈Sφ(t)〉 is com-
pletely inhibited that the squeezing of the fluctuations of the Sφ

component is perfect. This shows that by a proper engineering
of the coupling of a phonon bath to a quantum dot one can
produce a coherent atomic dipole without the accompanying
quantum fluctuations and incoherent excitations associated
with the presence of phonons. Note that γφ = 0 is obtained
independent of the number of phonons n̄. It follows that 〈Sφ(t)〉
can be locked at its initial value for an arbitrary long time
independent of the temperature of the phonon bath.

On the other hand, the component Sφ+ π
2
(t) decays at the

rate γφ+ π
2

= 4(2n̄ + 1)γ0, which is enhanced and dependent
on n̄ but is not infinite. Moreover, the two-level transition
in the quantum dot becomes saturated in the steady state,
that limt→∞〈Sz(t)〉 ≡ 〈Sz〉s = 0. Thus, independent of n̄ the
population is evenly distributed between the ground and
excited levels of the quantum dot. Therefore, the interaction
of the quantum dot with the squeezed reservoir (22) offers the
possibility of both inhibiting the phase decay and an alignment
of the spin vector along the x axis.

These features are significantly different from those pro-
duced by the decay of a two-level system to a squeezed reser-
voir generated by an external source. When the Liouvillian (27)
is used instead of (22), one can easily find that the components
display the following exponential decays:

〈Sφ(t)〉 = 〈Sφ(0)〉e−γ ( 1
2 +N−|M|)t ,

〈Sφ+ π
2
(t)〉 = 〈Sφ+ π

2
(0)〉e−γ ( 1

2 +N+|M|)t ,

〈Sz(t)〉 = − 1

2N + 1
+

[
〈Sz(0)〉 + 1

2N + 1

]
e−γ (2N+1)t .

(46)

Clearly, for the inhibition of the decay of the component
〈Sφ(t)〉 one evidently requires a very strong squeezed field,
N → ∞ at which N − |M| → − 1

2 . In this limit, the decay
rate of the 〈Sφ+ π

2
(t)〉 goes to infinity. Moreover, 〈Sz〉s < 0 and

the population inversion approaches zero only in the limit of
N → ∞.

The physical reason for the changed decay behavior in the
engineered squeezed reservoir is most clearly understood by
considering the expectation value of the spin vector of the
quantum dot and its fluctuations. In the steady state, we have

〈Sφ〉s = 〈Sφ(0)〉, 〈Sφ+ π
2
〉s = 0, 〈Sz〉s = 0. (47)

Thus, the expectation value of the spin vector 〈�S〉 lies in the
x-y plane such that it forms an angle φ with the y axis:

〈Sx〉s = S sin φ, 〈Sy〉s = S cos φ, 〈Sz〉s = 0, (48)

where S = √〈Sx〉2 + 〈Sy〉2 and tan φ = 〈Sx〉/〈Sy〉.
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Assume for simplicity that φ = 0. In this case, the following
Heisenberg uncertainty principles are obeyed:√

〈(�Sx)2〉〈(�Sy)2〉 � 0, x-y plane,√
〈(�Sz)2〉〈(�Sx)2〉 � 1

2 |〈Sy〉s |, z-x plane,√
〈(�Sy)2〉〈(�Sz)2〉 � 0, y-z plane. (49)

The form of the uncertainty relations resembles very much
that occurring in a planar squeezing situation where one
can independently change fluctuations in two quadrature
components which lie in the plane of the spin vector [55–57].

It is not difficult to show that in the case considered here
the Liouvillian (22) can be written as

Lpρ = 4(2n̄ + 1)γ0
(
2SφρSφ − S2

φρ − ρS2
φ

)
, (50)

from which we see that only the quadrature phase Sφ is coupled
to the reservoir. Thus, we conclude that the case γ1 = γ2

corresponds to a quantum-nondemolition-type coupling of the
quantum dot to the effective squeezed reservoir [52,58].

IV. STATIONARY STATE OF A DRIVEN QUANTUM DOT

Suppose that in addition to the bichromatic field, which
couples the quantum dot to the phonon bath, the dot is
subjected to an exciting laser field of frequency ωL which
is on resonance with the transition frequency of the quantum
dot, i.e., detuning �L = ωL − ω0 = 0. With the addition of
the exciting field, the Bloch equations (37) take the form,

˙〈Sx〉 = −γx〈Sx〉,
˙〈Sy〉 = −γy〈Sy〉 − �〈Sz〉,
˙〈Sz〉 = −(γs − γn) − γz〈Sz〉 + �〈Sy〉, (51)

where

γx = γs + γn ± 2γm, γy = γs + γn ∓ 2γm,

γz = 2(γs + γn), (52)

and � is the Rabi frequency of the exciting field. In writing
Eq. (51) we have chosen the phase of the laser φL = 0 and have
made the choices of the squeezing phase φ = 0 and φ = π/2
corresponding to the limits of the variation of the damping
rates.

Our purpose is to determine the steady-state values of
the average values of the spin components. It is clear from
Eq. (51) that the polarization component 〈Sx〉 is decoupled
from the exciting field and the other components. The equation
of motion for 〈Sx〉 can be integrated immediately to give

〈Sx(t)〉 = 〈Sx(0)〉e−γx t . (53)

It is a simple exponential decay with the rate γx , so in order
to determine the steady-state value of 〈Sx〉 we have to look at
the properties of the damping rate γx . According to Eqs. (52)
and (23), the rate depends strongly on the relation between γ1

and γ2 and the phase φ. When γ1 > γ2 or γ1 < γ2, at which
γs = γn = γm, we see that 〈Sx(t)〉 decays to zero independent
of the phase. However, in the case γ1 = γ2, that is, when γs =
γn = γm, the decay rate γx depends on the phase. It follows
that if φ = 0 then in the steady state 〈Sx〉s = 0, whereas the

component decays to a nonzero steady-state value 〈Sx〉s =
〈Sx(0)〉 if φ = π/2. This implies that the coherence between
the ground and excited states of the quantum dot is locked at
its initial value. Hence, the two choices of phase lead to widely
different behavior of the 〈Sx〉 component.

The steady-state values of the remaining two components
〈Sy〉 and 〈Sz〉 are found to be

〈Sy〉s = (γs − γn)�

γyγz + �2
, 〈Sz〉s = −(γs − γn)γy

γyγz + �2
. (54)

Provided that γs = γn, the steady-state values are different
from zero. However, if γ1 = γ2 we have γs = γn and then
〈Sy〉s = 〈Sz〉s = 0 regardless of the phase φ. Thus, for γ1 =
γ2, the steady-state value of the total spin of the system
depends solely on the initial value of 〈Sx〉. For 〈Sx(0)〉 = 0 the
polarization is locked at its initial value due to the interaction
with the perfectly squeezed field.

In this way, we may modify the steady-state population
distribution between dressed states of the driven quantum dot.
In order to show it, we introduce the semiclassical dressed
states, which are the eigenstates of the two-level system and the
classical driving field. Since the driving laser is on resonance
with the two-level transition, the dressed states are

|+〉 = 1√
2

(|g〉 + |e〉), |−〉 = 1√
2

(|g〉 − |e〉). (55)

It is easily verified that the populations of the dressed states
are related to the populations and coherences of the bare states
through the relations,

ρ++ = 1
2 (ρ11 + ρ22 + ρ12 + ρ21) = 1

2 (1 + 2〈Sx〉),
ρ−− = 1

2 (ρ11 + ρ22 − ρ12 − ρ21) = 1
2 (1 − 2〈Sx〉). (56)

We see that only the component 〈Sx〉 contributes to the
populations of the dressed states. Since in the steady state
〈Sx〉s = 〈Sx(0)〉, we see that one can polarize the dressed
state populations, i.e., create an asymmetry in populations
within dressed-state doublets simply by choosing an initial
state at t = 0 such that 〈Sx(0)〉 = 0. Particularly interesting
is the phenomenon of dressed state population trapping or
complete polarization of the dressed state populations which
happens when 〈Sx〉 = ± 1

2 . From the foregoing discussion on
the possible steady-state values of 〈Sx〉, we see that complete
polarization of the dressed state populations occurs when
φ = π/2 and initially at time t = 0, 〈Sx(0)〉 = ± 1

2 . In practice,
arbitrary initial values of 〈Sx〉 could be prepared using the
standard technique of a π/2 pulse excitation. For example, the
quantum dot could be prepared in one of the dressed states
(〈Sx(0)〉 = ± 1

2 ) using a π/2 pulse laser field that is ±π/2 out
of phase with the exciting field [59].

Note that the polarization effect in the system considered
here is obtained in the resonant case (�L = 0). This is in
contrast to the polarization effect found for the steady state of
a two-level atom damped by an externally generated squeezed
vacuum field, where it was shown [60,61] that the dressed-
state polarization is possible only at a nonzero laser detuning,
�L = 0.
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V. FLUORESCENCE SPECTRUM

We now consider the spectrum of the fluorescence field,
which can be written as a sum of two parts,

S(ω) = Scoh(ω) + Sin(ω), (57)

where

Scoh(ω) = 2π〈S+〉s〈S−〉sδ(ω − ω0) (58)

is the coherent (elastic) part of the spectrum, and

Sin(ω) = 2Re

{∫ ∞

0
dτ ei(ω−ω0)τ

× lim
t→∞〈δS+(t)δS−(t + τ )〉

}
(59)

is the incoherent (noise) part of the spectrum. Here, δS±(t) =
S±(t) − 〈S±(t)〉 are the fluctuation parts of the dipole
operators.

The two-time correlation function appearing in Eq. (59) can
be written as

〈δS+(t)δS−(t + τ )〉 = 〈δS+(t)δSx(t + τ )〉
− i〈δS+(t)δSy(t + τ )〉, (60)

and the correlation functions 〈δS+(t)δSx(t + τ )〉 and
〈δS+(t)δSx(t + τ )〉 may in turn be evaluated from Eq. (51)
with the help of the quantum regression theorem [62]. By
Laplace transforming of the resulting equations of motion for
the two-time correlation functions, we obtain

�(z) ≡ lim
t→∞L{〈δS+(t)δS−(t + τ )〉}

=〈δS+δSx〉s
z + γx

− i
〈δS+δSy〉s(z + γz) − �〈δS+δSz〉s

z2 + (γy + γz)z + γyγz + �2
,

(61)

where z is the Laplace transform parameter and the steady-state
averages of the various operator products arising are

〈δS+δSx〉s = 1

2

(
〈Sz〉s + 1

2

)
− 〈Sx〉s(〈Sx〉s + i〈Sy〉s),

〈δS+δSy〉s = i

2

(
〈Sz〉s + 1

2

)
− 〈Sy〉s(〈Sx〉s + i〈Sy〉s),

〈δS+δSz〉s = −1

2
(〈Sx〉s + i〈Sy〉s)(1 + 2〈Sz〉s). (62)

To illustrate the analytic structure of the spectrum in as
simple form as possible, we focus on the case γ1 = γ2 and
the strong-field limit � � γ1,γ2. The cases, γ1 > γ2 and
γ2 > γ1 lead to the spectrum which is essentially the same
as that of the fluorescence field emitted by a two-level system
whose relaxation is determined through coupling to a squeezed
vacuum field produced by an external source [41–43,50]. In
the strong-field limit, we readily find that the two roots of
the quadratic equation in the denominator of Eq. (61) are
approximately given by

z1,2 = − 1
2 (γy + γz) ± i�, (63)

and then the spectral components take the form,

Scoh(ω) = 2π〈Sx〉2
s δ(ω − ω0), (64)

and

Sin(ω) = 2Re{�(z)}z=−i(ω−ω0)

= 1

2

(
1 − 4〈Sx〉2

s

) γx

γ 2
x + (ω − ω0)2

+
1
8 (1 + 2〈Sx〉s)(γy + γz) + γz−γy

8�
(ω − ω0 − �)

1
4 (γy + γz)2 + (ω − ω0 − �)2

+
1
8 (1 − 2〈Sx〉s)(γy + γz) + γz−γy

8�
(ω − ω0 + �)

1
4 (γy + γz)2 + (ω − ω0 + �)2

,

(65)

where we have used the fact that 〈Sy〉s = 〈Sz〉s = 0.
One can see from Eqs. (64) and (65) that the amplitudes

of the spectral components are solely dependent on the
polarization (coherence) component 〈Sx〉s . We first note that
the coherent part of the spectrum is present only if 〈Sx〉s = 0.
Otherwise when 〈Sx〉s = 0 the spectrum consists only of
the incoherent part, which is always present. In general,
the incoherent part of the spectrum is composed of three
Lorentzian peaks of the widths and magnitudes varying with
the phase φ. The most interesting feature of the incoherent
spectrum is its asymmetry related to 〈Sx〉s = 0, because this
feature is not encountered at all under the damping of the
quantum dot by an externally produced squeezed vacuum field.
If we consider the variation of the spectrum with the phase,
we find for φ = 0,

γx = γz = 4(2n̄ + 1)γ0, γy = 0, 〈Sx〉s = 0, (66)

while for φ = π/2,

γx = 0, γy = γz = 4(2n̄ + 1)γ0, 〈Sx〉s = 〈Sx(0)〉. (67)

For φ = 0, the coherent part of the spectrum is suppressed,
whereas the incoherent part is composed of three peaks of
equal amplitudes. The width of the central peak is 4(2n̄ + 1)γ0

and it is twice as wide as the width of the Rabi sidebands.
Thus, the spectrum is symmetric about the laser frequency and
entirely composed of the incoherent part.

The spectrum changes dramatically when the phase is
varied to φ = π/2. The coherent part appears and the central
peak of the incoherent part becomes a δ-type peak. The widths
of the Rabi sidebands are twice as wide as for φ = 0. Thus, for
φ = π/2, the central peak contributes to a coherent (elastic)
part of the spectrum leading to an enhancement of the coherent
scattering. The incoherent part is then effectively composed
of two peaks located at the Rabi sidebands. Depending on
〈Sx(0)〉 the number of peaks in the incoherent part can vary
from three to a single side peak located at ω − ω0 = ±�. The
disappearance of two peaks is a consequence of the complete
polarization of the dressed state population. For example,
when 〈Sx(0)〉 = 1

2 , the population is entirely in the upper
dressed state |+〉. Consequently, the central and the lower
frequency Rabi sideband peaks disappear. On the other hand,
when 〈Sx(0)〉 = − 1

2 , the population is entirely in the lower
dressed state |−〉 resulting in the absence of the central peak
and the higher frequency Rabi sideband. The disappearance
of the central peak is accompanied by an increase of the
amplitude of the coherent part of the spectrum. In other words,
the energy contained in the central peak is coherently scattered
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FIG. 5. The incoherent part of the fluorescence spectrum as a
function of 〈Sx(0)〉 for φ = π/2, � = 20γ0 and n̄ = 0.5. In order to
make the central component visible in the plot, the delta function has
been replaced by a Lorentzian of a width γ0.

by the quantum dot. The disappearance of one of the Rabi
sidebands is accompanied by an increase of the amplitude of
the opposite Rabi sideband, which after the complete transfer
of the population is twice as high as for 〈Sx(0)〉 = 0.

The features described above are easily seen in Fig. 5
which shows the incoherent fluorescence spectrum plotted as a
function of 〈Sx(0)〉 for fixed � and n̄. We see the disappearance
of the central peak and one of the Rabi sidebands when
〈Sx(0)〉 = ± 1

2 , and simultaneously the increase in the height
of the opposite Rabi sideband. We again point out that
the asymmetric spectrum and its variation with the initial
coherence are obtained under strictly resonant excitation.
The variation of the fluorescence spectrum with the initial
coherence shows clearly that the phase relationships between
the irradiating field and the initial dipole moment of the
radiating quantum dot are important even in the steady-state
fluorescence.

VI. SUMMARY

We have shown that the combined effect of a phonon
bath and a bichromatic field can result in an effective
squeezed-vacuum-type reservoir to a two-level quantum dot.
It has been found that depending on the ratio of the Rabi

frequencies of the components of the bichromatic field, one can
engineer a squeezed reservoir of ordinary or inverted harmonic
oscillators. We have shown that in the case of the inverted
harmonic oscillators the steady-state population of the bare
states of the quantum dot can be highly inverted. We have
examined the conditions for quantum two-photon correlations
characteristic of a squeezed field and have distinguished
between the quantum correlations and a form of classical
two-photon correlations which may exist at high temperatures
of the phonon bath.

When in addition to the squeezed reservoir, the quantum
dot interacts with a strong laser field, the dynamics and
the stationary state could depend critically on whether or
not a coherence between the ground and excited states is
initially present. With the coherence present, the steady-state
population distribution between the dressed states of the
driven quantum dot could be completely polarized (trapped)
in one of the dressed states. We have calculated the steady-
state spectrum of the fluorescence field and have found that
the structure spectrum depends on the initial value of the
coherence. In particular, with a nonzero initial coherence the
spectrum is asymmetric even if the quantum dot is exposed
to a resonant laser field. We have found that the asymmetric
features are the same as those exhibited by the spectrum of
a two-level system excited off resonance and damped by a
squeezed vacuum field produced by an external squeezing
source. The appearance of the asymmetric features have been
interpreted as a direct consequence of locking the coherence
at its initial value, resulting from the coupling of the quantum
dot to the perfectly squeezed field. In the absence of the initial
coherence, the spectrum was found to be composed of only
the incoherent part displaying the symmetric triplet spectrum.
With the coherence present, both coherent and incoherent parts
are present and the number of peaks in the incoherent part
becomes strongly dependent on phase. By varying the phase,
the central peak can become a δ-type peak and one of the Rabi
sidebands could be suppressed.
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[16] A. Krügel, V. M. Axt, and T. Kuhn, Phys. Rev. B 73, 035302
(2006).

[17] A. Vagov, M. D. Croitoru, V. M. Axt, T. Kuhn, and F. M. Peeters,
Phys. Rev. Lett. 98, 227403 (2007).

[18] E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe,
M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, Nat. Phys. 5,
203 (2009).

[19] A. N. Vamivakas, Y. Zhao, C.-Y. Lu, and M. Atatüre, Nat. Phys.
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