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Multiple scattering of polarized light in disordered media exhibiting
short-range structural correlations
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We develop a model based on a multiple scattering theory to describe the diffusion of polarized light in
disordered media exhibiting short-range structural correlations. Starting from exact expressions of the average
field and the field spatial correlation function, we derive a radiative transfer equation for the polarization-resolved
specific intensity that is valid for weak disorder and we solve it analytically in the diffusion limit. A decomposition
of the specific intensity in terms of polarization eigenmodes reveals how structural correlations, represented via
the standard anisotropic scattering parameter g, affect the diffusion of polarized light. More specifically, we find

that propagation through each polarization eigenchannel is described by its own transport mean free path that

depends on g in a specific and nontrivial way.
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I. INTRODUCTION

Electromagnetic waves propagating in disordered media are
progressively scrambled by refractive index fluctuations and,
thanks to interference, result in mesoscopic phenomena such as
speckle correlations and weak localization [1,2]. Polarization
is an essential characteristic of electromagnetic waves that,
considering the ubiquity of scattering processes in science,
prompted the development of research in statistical optics
[3,4] and impacted many applications, from optical imaging
in biological tissues [5] to material spectroscopy (e.g., rough
surfaces) [6], and radiation transport in turbulent atmospheres
[7,8]. Although the topic has experienced numerous develop-
ments and outcomes in the past decades, recent studies have
revealed that much remains to be explored and understood on
the relation between the microscopic structure of scattering
media and the polarization properties of the scattered field.
In particular, it was found that important information about
the morphology of a disordered medium is contained in the
three-dimensional (3D) polarized speckles produced in the
near-field above its surface [9-11] and in the spontaneous
emission properties of a light source in the bulk [12,13].
Similarly, the light scattered by random ensembles of large
spheres was shown to exhibit unusual polarization features
due to the interplay between the various multipolar scatterer
resonances [14].

The fact that light transport is affected by the microscopic
structural properties of disordered media is well known.
Structural correlations, coming from the finite scatterer size
or from the specific morphology of porous materials [15-17],
typically translate into an anisotropic phase function p(cos6)
which describes the angular response of a single scattering
event with the scattering angle 6. The average cosine of the
phase function, known as the anisotropic scattering factor,
g = (cosO) (with —1 < g < 1), then leads to the standard
definition of the transport mean free path (the average distance
after which the direction of light propagation is completely
randomized) as £* = £/(1 — g), where £ is the scattering mean
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free path (the average distance between two scattering events).
Single scattering anisotropy naturally affects how the polar-
ization diffuses in disordered media, one of the most notable
findings being that circularly polarized light propagates on
longer distances compared to linearly polarized light in disor-
dered media exhibiting forward single scattering (g > 0)—the
so-called “circular polarization memory effect” [18-20].

Recent observations in mesoscopic optics also motivate
deeper investigations on polarized light transport in correlated
disordered media. Indeed, numerical simulations revealed that
uncorrelated ensembles of point scatterers cannot exhibit 3D
Anderson localization due to the vector nature of light [21,22].
By contrast, it was found that the interplay between short-range
structural correlations and scatterer resonances could yield
the opening of a 3D photonic gap in disordered systems
[23,24] and promote localization phenomena at its edges [25].
To date, the respective roles of polarization and structural
correlations on mesoscopic optical phenomena remain largely
to be clarified.

Theoretically describing the propagation of polarized light
in disordered media exhibiting structural correlations is a
difficult task. A first approach consists in using the vector
radiative transfer equation [26—28], in which electromagnetic
waves are described via the Stokes parameters and the
scattering and absorption processes are related via energy
conservation arguments. The various incident polarizations
(linear, circular) and the single scattering anisotropy are
explicitly implemented, thereby allowing the investigation of a
wide range of problems [29,30]. A second approach relies on
a transfer matrix formalism based on a scattering sequence
picture, where each scattering event (possibly anisotropic)
yields a partial redistribution of the light polarization along
various directions [31-33]. The approach is phenomenolog-
ical, yet very intuitive, making it possible to gain important
physical insight into mesoscopic phenomena such as coherent
backscattering [31].

The most ab initio approach to wave propagation and
mesoscopic phenomena in disordered systems is the so-
called multiple scattering theory, which directly stems from
Maxwell’s equations and relies on perturbative expansions
on the scattering potential [1,2]. The formalism is often
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used to investigate mesoscopic phenomena, such as short-
and long-range (field and intensity) correlations or coherent
backscattering, in a large variety of complex (linear or
nonlinear) media, including disordered dielectrics and atomic
clouds. Unfortunately, it also rapidly gains in complexity when
the vector nature of light is considered. In fact, multiple
scattering theory for polarized light has so far been restricted
to uncorrelated disordered media only [34—40].

In this article, we present a model based on multiple
scattering theory that describes how the diffusion of polar-
ized light is affected by short-range structural correlations,
thereby generalizing previous models limited to uncorrelated
disorder. We do not aim at developing a complete theory
for polarization-related mesoscopic phenomena in correlated
disordered media but at showing that, by a series of well-
controlled approximations, important steps toward this objec-
tive can be made. Starting from the (exact) Dyson and the
Bethe-Salpeter equations for the average field and the field
correlation function, we derive a radiative transfer equation
for the polarization-resolved specific intensity in the limit
of short-range structural correlations and weak scattering. To
analyze the impact of short-range structural correlations on the
diffusion of polarization, we then apply a P, approximation
and decompose the polarization-resolved energy density into
“polarization eigenmodes,” as was done previously for uncor-
related disordered media [36,39,40]. An interesting outcome
of this decomposition is the observation that each polarization
eigenmode is affected independently and differently by short-
range structural correlations. More precisely, each mode is
characterized by a specific transport mean free path, and thus
a specific attenuation length (describing the depolarization
process) for its intensity. The transport mean free path of each
eigenmode depends nontrivially on the anisotropy factor g,
and differently from the (1 — g)~! rescaling well known for
the diffusion of scalar waves.

The paper is organized as follows. The radiative transfer
equation for polarized light is derived ab initio in Sec. II. The
diffusion limit and the eigenmode decomposition are applied
in Sec. III. In Sec. IV, we discuss the model and the results
deduced from it, paying special attention to the consistency of
the approximations that have been made. Our conclusions are
given in Sec. V. Technical details about the average Green’s
function, the range of validity of the short-range structural cor-
relation approximation, and the particular case of uncorrelated
disorder are presented in Appendixes A—C, respectively.

II. RADIATIVE TRANSFER FOR POLARIZED LIGHT
A. Spatial field correlation

We consider a disordered medium described by a real
dielectric function of the form €(r) = 1 + §¢(r), where de(r)
is the fluctuating part with the statistical properties

(8e(m) =0, (Se(r)de(r)) = uf(r—r), (D

where (. . .) indicates ensemble averaging. The function f(r —
r’) describes the structural correlation of the medium and u
is an amplitude whose expression will be derived below. We
assume that the medium is statistically isotropic and invariant
by translation. Considering a monochromatic wave with free-
space wave vector kg = w/c = 21 /A, w being the frequency, A
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the wavelength, and c the speed of light in vacuum, the electric
field E satisfies the vector propagation equation

V x V x E(r) — kZe(®E(r) = i powj(r), )

where the current density j(r) describes a source distribution
in the disordered medium. Introducing the dyadic Green’s
function G, the ith component of the electric field reads

Ei(F) = i juow / G (e.)ju()dr, 3)

where implicit summation of repeated indices is assumed. The
spatial correlation function of the electric field (Ei(r)E]*.(r/))
obeys the Bethe-Salpeter equation

(E/(0)EX())
— (E,(0)(E}()) + k§ / (Gin(r — )G, — 1))

X Dyunrs (01,17, 12, 15)(E (1) E (¥h))dr 1 dY drpdry,  (4)

which can be derived from diagrammatic calculations [1,2]. In
this expression the superscript » denotes complex conjugation,
and Iy, s the four-point irreducible vertex that describes all
possible scattering sequences between four points. In Eq. (4),
the first term on the right-hand side corresponds to the ballistic
intensity, which is attenuated due to scattering at the scale of
the scattering mean free path £, and the second term describes
the multiple scattering process. Note that at this level, Eq. (4)
is an exact closed-form equation.

It is also interesting to remark that the field correlation
function (E;(r)E ;(r/)) is one of the key quantities in statistical
optics (where it 1s usually denoted by cross-spectral density
matrix), since it encompasses the polarization and coherence
properties of fluctuating fields in the frequency domain [3,4].
The study of light fluctuations in 3D multiple scattering
media has stimulated a revisiting of the concepts of degree
of polarization and coherence [41-45], initially defined for 2D
paraxial fields.

To proceed further, we assume weak disorder, such that the
scattering mean free path £ is much larger than the wavelength
(ko€ >> 1). In this regime, only the two diagrams for which the
field and its complex conjugate follow the same trajectories
(the so-called ladder and most-crossed diagrams) contribute
to the average intensity. The ladder diagrams are the root of
radiative transport theory, which describes the transport of
intensity as an incoherent process. The most-crossed diagrams
are responsible for weak localization and coherent backscat-
tering. In the ladder approximation and assuming independent
scattering, the four-point irreducible vertex reduces to

L s (T1,7],12,15)
= (8€(r))3e(r)))8(r) — r2)8(ry — 15)8,,85s
= uf(ry — r)d(r; — r2)8(ry — r5)8,,8us, ®)
yielding
(Ei(DE;()) = (E:(0)(E}(X))

bk [ (Gontr = 1) (G5, 1))

x f(r1 — F(E,(r) E;(r)))dridry. (6)
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We consider the source to be a point electric dipole located at
ro, such that

Jk(r) = —iwpd(r — o), )

where p; is the dipole moment along direction k.
Equation (3) simplifies into E;(r) = wow? Gix(r — ro) Pk
and the Bethe-Salpeter equation (6) can be rewritten in terms
of the dyadic Green’s function in the form

(Gir(r — 19) G (' —19))
= (Gi(r — 1) (G (r' —10))

+uky / (Gin(® — 1)) (G, (¥ —F) f(r) — 1))

X (Gui(ry — r9)G (X] — 10))dr1dY]. 8)

Using the change of variables r —rp =R+ X/2 and
r —ro = R — X/2, and transforming Eq. (8) into reciprocal
space, with K and q the reciprocal variables of R and X,
respectively, we finally obtain

(a3 )on(a-3))
~(eufar3)en(a-3))
oo o 0-5)
< [ ra- q’><Gmk (q/ + %)G;, (q/ - %))%

€))

A direct resolution of Eq. (9) is possible for f(q — q') =1,
and this approach was used in Ref. [40] to study the coherence
and polarization properties of light in an uncorrelated
disordered medium. In the case of a medium with structural
correlations, a direct resolution is out of reach and we need to
follow a different strategy.

B. From field correlation to radiative transfer

In this section we derive a radiative transfer equation for
polarized light. We proceed by evaluating the average Green’s
tensor (G), which obeys the Dyson equation [1]. In its most
general form, it reads [46]

(G(@) = [K1— ¢°P@) — (@] (10)

with I the unit tensor, P(q) = I — § ® q the transverse projec-
tion operator, § = q/q, and ¢ = |q|. X(q) is the self-energy,
which contains the sum over all multiple scattering events
that cannot be factorized in the averaging process. As shown
in Appendix A, for arbitrary structural correlations, X(q) is
nonscalar. The problem can be simplified by assuming short-
range structural correlations, in which case X (q) = X(q)I. The
average Green’s tensor can then be written as

_4%®4q > 1
ki — () (an

with (G(q)) = [ké — q2 — %(q)]"! the scalar Green’s func-
tion. In a dilute medium, the scattering events are assumed

(Gl@) = (G(q)>(l -
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to take place on large distances compared to the wavelength
(near-field interactions between scatterers can be neglected).
In this case, the average Green’s tensor (G(q)) can be reduced
to its transverse component [47], yielding

(G(@) = (G(Q)P(@). 12)

After some simple algebra, the first term on the right-hand side
in Eq. (9) can be written as

(a3 orfa-2))

MM (G(q +K/2)) — (G*(q — K/2))
TG K+ 2@+ K/2) — 24 (q - K/2)

13)

where we have defined the polarization factors M;;, = §;x —
(qi + Ki/2(qe + Kie/2)/1a+ K/21 and M), =8 — (q; —
K;/2)(q — K;i/2)/1q — K/2|?. In a dilute medium, we can
assume that |K| < |q|. This means that there are two different
space scales in the correlation function of Green’s tensor:
a short scale associated with q and corresponding to the
dependence on direction of the specific intensity that we will
introduce in Eq. (18), and a large scale associated with K and
corresponding to the dependence of the specific intensity on
position. This leads to

oo 5 )

(G(Q) — (G (@)

- . (14
2q - K + 2i Im[X(q)]

= Bix — §ig)S1 — ;41

The self-energy X(q) renormalizes the propagation constant
in the medium by defining a complex effective permittivity
€ett = 1 — X(q)/ k3. The real part of ¥ yields a change in the
phase velocity, and the imaginary an attenuation of the field
amplitude due to scattering. Hence, we can write

1
(G(q)) = k(% Re[Geff] — q2 + lk(% Im[eeff] . (15)

Since Im[eqr] < Re[eetr] in a dilute medium, we can rewrite
Eq. (15) using the identity

) 1
l1m—=PV[

- i| —imd(x — xg), (16)
e=>0Xx — X9 —1€E

X — X9

where PV stands for principal value. Defining ¢, =
ko~/Relecs] as an effective wave vector, Eq. (14) becomes

(oo 3)orfa-3))

78(q? — ¢
= (G = 406 ~ a5 7 K(felm[qzzq)]. (17)

In order to derive a radiative transfer equation, we then
introduce the quantity L;;; by the relation

(on(a+5)5(a-3))

_ 472

qe

8(q; — ¢*)Liju(K.q.Q). (18)
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Here, we assume that the correlation function of Green’s tensor propagates on shell, i.e., with a wave vector ¢ = ¢g.. The
impact of the on-shell approximation, which is the key step to solving the Bethe-Salpeter equation in the presence of structural
correlations, will be discussed in Sec. IV. From Egs. (17) and (18), we can rewrite the Bethe-Salpeter equation (9) in the form

4r? 718(612 - qz)
8(q? — ¢*) Liju(K,q.q) = - ¢
4e ( L iq- K — Im[Z(q)]

+ ukySim — GiGm)(Sjn — 4Gn)

|:(8ik — GG ) — 441

/

4 dq
3

7[2
/ f(q - q,)s (qz - q/z)Lmnkl(queq/)_} . (19)
qe 8w

Integrating both sides of the equation over ¢, performing the integral on the right-hand side over ¢’, and using the relation

Jo° f®)8G* — rridr = ro f (x = rof)/2, we obtain

. qe 1
Liju(K,q.q) =

47 iq.q - K — Im[Z(g.Q)]

[(&'k —4iq)Sj —q;q1)

uk? R A o )
+ 4_;(81111 - qi%n)(éjn - qqul)f f(Qe(q —-q ))Lmnkl(Kaqeq/)dq i| . (20)

The quantity L;jx;(K,q.q) is proportional to the specific
intensity introduced in radiative transfer theory [26], and has
the meaning of a local and directional radiative flux. Actually,
Eq. (20) can be cast in the form of a radiative transfer equation,
as we will now show.

Since the disordered medium is statistically isotropic and
translational invariant, the correlation function f only depends
on |4 — q|, orequivalently on q - §'. It is directly related to the
classical phase function p(§ - §') of radiative transfer theory
as

flgela—ah=Ap@-4q), @2y

where A is a constant whose value is determined by energy
conservation, and | p(q - §)dq = 4x. To order (ko)~! and
for short-range structural correlations, one has Im[X(g.q)] =
—q./¢andu = 61/ k(‘;Z (these results are derived in Appendix
A). This allows us to rewrite Eq. (20) in its final form

n 1 N 1 . n =
[zq K+ Z]Lijkl(K»q) = E(Sik = 4ig )81 —4;q1)

+ oA (é JiGm)(8 9jqn)
Sl im q4iqm)\0jn qiqn
X /p(q : q/)Lmnkl(Ka(Al,)dq/s

(22)

where an implicit summation over m and »n is assumed. This
expression takes the form of a radiative transfer equation (RTE)
for the polarization-resolved specific intensity. It differs from
the standard vector radiative transfer equation [26] in the
sense that it is not written in terms of a Stokes vector, but
using a fourth-order tensor representing the specific intensity
for polarized light, and relating two input and two output
polarization components. Nevertheless, the various terms in
Eq. (22) have a very clear physical meaning. The first and
second terms on the left-hand side respectively describe the
total variation of specific intensity along direction § and
the extinction of the ballistic light due to scattering (i.e.,
the Beer-Lambert law). The first and second terms on the
right-hand side describe the increase of specific intensity along
direction § due to the presence of a source, and to the light

(

originally propagating along direction §’ and being scattered
along q, respectively.

Conservation of energy requires the scattering losses to be
compensated for by the gain due to scattering after integration
over all angles. The energy conservation relation has to be
written on the intensity, i.e., by setting i = j and summing
over polarization components in Eq. (22), in the form

1 o
ZZ/Liikl(K»q)dq

3A

- 87'[_6 Z /(5”" - ‘?lélm)zp((l : q/)mekl(qu/)d(],d(A].

(23)

This leads to the following relation on the coefficient A:
3 1;
— Sim — Gidm)’P@-@)dg=—, (24
Sﬂ;/( @ @da = 24

where 1; is the unit vector. At this stage, we have obtained a
transport equation for polarized light [Eq. (22)] that takes the
form of a RTE. This equation stems directly from the Dyson
and Bethe-Salpeter equations, fulfills energy conservation, and
is valid for dilute media and short-range correlated disorder.

III. DIFFUSION OF POLARIZATION

A. P, approximation

In short-range correlated media, the phase function p(q - q')
is expected to be quasi-isotropic. It can therefore be expanded
into a Legendre series, which, to order § - ', reads

p@-4)=1+3g@-4q), (25)
where g is the anisotropic scattering factor, defined as
1 AINA Al IA
8= 1 P(Q-4)4-q4dq, (26)
T
and satisfying
. N
84 = — / p(q-4)4dq. 27)
/4
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Inserting Eq. (25) into Eq. (22), the RTE can be rewritten as
. 1 - 1 . A A
[lq -K+ Z]Lijkl(Kaq) = E((Sik —4iqi)(81 — 4;qr)

3A
+ _(31m

2/ _gigm)((sjn _gjgn)

3g. -
X [ngikl(K) + Hjmnkl(K) ' q],
(28)
where L( i and jij are the (polarization-resolved) irradiance
and radlatlve flux vector, respectively, defined as

1 ~ A
t(;)l)cl(K) i / Liju(K,q)dq, (29)

Jijn(K) = quijkl(K»Q)dq~ (30)

To gain insight into the effect of short-range correlations on
the propagation of polarized light, it is convenient to investigate
the diffusion limit, which is reached after propagation on
distances much larger than the scattering mean free path £.
In this limit, the specific intensity becomes quasi-isotropic.
Expanding L,y into Legendre polynomials P, to first order
in g, we have

L q =LY ]
ijk (K. @) = L;;;, (K) + Jz]kl(K) q (31
which is the so-called P, approxunatlon. Inserting Eq. (31)
into Eq. (28) and calculating the zeroth and first moments
of the resulting equation (which amounts to performing the
integrations [ —d@ and | —dq, respectively), we eventually

arrive at a pair of equations relating LE?,)(Z and jjju:

ASijan(O

2 4
K i (K) + Lf?,i,(K) S Sim + = ot (K.

(32)
T R2ALO,(K) + iK - jiju(K)

. 94 A o A Nps . Ay n
=18 g/((slm _qurn)(Sjn _qiqn)[.]mnkl(K) : Q](K : Q)dq
(33)

Here, we have defined
3 . A oAy A
S = f G — GGG — dranda, (34

and used the relations [ (8 — §iGm)(8jn — §;42)4dq = 0,
[ Giq; da = 4m/38;;, and [ §;G;4xdq = 0. The additional
complexity of the polarization mixing due to structural corre-
lations can be apprehended from Eq. (33), where the relation
between L,(.?,)d and j; jx; in terms of input and output polarization
components becomes particularly intricate as soon as g # 0.
Much deeper insight into the diffusion of polarized light can
be gained via an eigenmode decomposition, as shown below.

B. Polarization eigenmodes

Analytical expressions for all terms in the Lfo,)d(K) and
Jijx(K) tensors can be obtained by solving Egs. (32) and (33),
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which we have done imposing K to be along one of the main
spatial directions, without loss of generality, and using the
software MATHEMATICA [48]. The obtained expressions at this
stage are long and complicated, containing in particular high-
order terms in powers of K and g (which are not physical and
will be neglected below). We now introduce a polarization-
resolved energy density U, = 67/ cLE%, and decompose it
in terms of “polarization eigenmodes” as in Refs. [36,39,40]:

Uija(K) = Y UPK)ij)p (ki . (35)
P

The eigenvalues U”) provide the characteristic length and
time scales of the diffusion of each eigenmode and the
projectors |ij),(kl|,, which will be denoted by “polarization
eigenchannels,” relate input polarization pairs (k,/) to output
polarization pairs (i,). The Ujjy is represented as a 9 x 9
matrix (nine pairs of polarization components in input and
output) and is diagonalized using MATHEMATICA, leading again
to full analytical expressions.

At this stage, the obtained expressions still depend on the
coefficient A, originally defined in Eq. (21) and used to ensure
energy conservation in the RTE, Eq. (22). To predict how A
depends on structural correlations, we rely on the particular
case of the Henyey-Greenstein (HG) phase function [49]

1—¢

[1+ g2 —2g(@- @)

The HG phase function is very convenient since it provides
a closed-form expression with g as a single parameter, and
approximates the phase functions of a wide range of disordered
media (e.g., interstellar dust clouds and biological tissues).
The energy conservation equation, Eq. (24), can be solved
analytically in this case, yielding the surprisingly simple
relation

prc(@-4) = (36)

1
Apg = e 37)
Note that the modification in energy conservation due to
structural correlations appears at order g2.

We can finally insert Eq. (37) into the eigenvalues and
eigenvectors found from Eq. (35) and develop analytical
expressions valid to orders K2 (diffusion approximation)
and g (weakly correlated disorder). The eigenvectors take
the expressions already obtained for uncorrelated disorder
[36,39,40]

) ==,
kl)2,3,4 =%(5k051b — Skbi1a),
[kl)s :%(Ska(sla — SkbO1b),
lkl)6,7.8 Z%(‘Skaﬁlb + Skbia)s
[kl)o =%(5ka51a + Skpdip — 28kc01c)- (38)

The first eigenchannel is the scalar mode, relating uniformly
pairs of identical polarization components (xx, yy, and zz),
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TABLE L. Summary of the diffusion constants D”, attenuation coefficients ", and effective attenuation lengths € characterizing

the diffusion properties of the energy density through the individual polarization eigenchannels and the depolarization process. Note that all
quantities are given to order g. Quite remarkably, structural correlations, via the scattering asymmetry factor g, are found to affect each mode

differently and independently.

p 1 2 34 5,6 7.8 9
—1ct 1 9 —lece 1 3 —l¢g 7 69 —let 7 39 —let 7 29 —let
D 1-973 17 n8) T G—%8) 3 01008 T 0~ 108 3 0~ 108 3
(p) 0 1 1 3 3 3
a 4 4 ¢ ¢ ¢
£ 00 G-z 2o a-397\ie  a-SoM e a-Zo e - BTy

which describe the classical intensity, between themselves.
The other eigenchannels either redistribute nonuniformly the
energy between pairs of identical polarization (p =5 and
9), thereby participating as well in the propagation of the
classical intensity, or are concerned with pairs of orthogonal
polarizations (xy, xz, etc.), which can participate, for instance,
in magneto-optical media in which light polarization can rotate
[35,37,38].

The eigenvalues take the form of the solution of the
diffusion equation in reciprocal space

1

UP(K) = ,
) DK + pPe

(39)

where D and ;' are the diffusion constant and attenuation

coefficient of the pth polarization mode. The eigenmode
energy densities in real space therefore read

UP(R) = L exp R (40)
47rDP)R e
€

with R = |R| and €2 = v/DP /¢, which is an effective
attenuation length, describing the depolarization process.

Table I summarizes the diffusion constants, attenuation
coefficients, and effective attenuation lengths of the different
polarization eigenchannels. As in the case of uncorrelated
disorder previously studied in Ref. [40], all modes exhibit
different diffusion constants, thereby spreading at different
speeds, and only the scalar mode persists at large distances
(Zélfz = 00), all other modes being attenuated on a length scale
on the order of a mean free path.

More interestingly, our study brings new information on the
influence of short-range structural correlations on transport
and depolarization. Let us first remark that we properly
recover the diffusion constant of the scalar mode, D = c£*/3
with £* = £/(1 — g) the transport mean free path, which is
a good indication of the validity of the model. The second
and more interesting finding in this study is the fact that
the propagation characteristics of each polarization mode is
affected independently and differently by short-range struc-
tural correlations. One may have anticipated that the diffusion
constant of each polarization mode would be simply rescaled
by the (1 — g)~! factor relating scattering and transport mean
free paths. Instead, we show that a transport mean free path can
be defined for each polarization mode £*”) = 3D") /¢ and its
dependence on the anisotropy factor g can change significantly,
as shown in Fig. 1(a). This, in turn, implies that the spatial
attenuation of each polarization mode (due to depolarization)

is affected differently by structural correlations, as shown in
Fig. 1(b).

IV. DISCUSSION

Previous studies based on the multiple scattering theory
for the propagation of polarized light relied on the direct
resolution of the Bethe-Salpeter equation, Eq. (9), using an
expansion of the average Green’s tensors and its correlation
function to order K? (diffusion approximation). This strategy
is, however, possible only for uncorrelated disorder, for which
f(q@—q')=1. Here, we proposed an alternative strategy
based on the derivation of a transport equation taking the
form of a RTE, which allowed us to reach the same final goal
(eigenmode decomposition) including short-range structural
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FIG. 1. Evolution of (a) the transport coefficient 1/£*” and (b)
the attenuation coefficient 1/£.? of polarization eigenmodes with
short-range structural correlations. The coefficients are given in units
of 1/¢ and shown on a restricted range of g since the model is
expected to remain valid to first order near g = 0. The scalar mode
(p =1, cyan solid curve) has a transport coefficient scaling as
(1 — g) and an attenuation coefficient equal to zero (not shown).
The polarization modes p = 2—4 (gray dashed curves) and p = 5-9
(orange dot-dashed curves) exhibit different slopes, indicating that
both their transport properties are affected differently by short-range
structural correlations.
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TABLE II. Summary of the diffusion constants D", attenuation
coefficients (), and effective attenuation lengths £.% characterizing
the diffusion properties of the energy density through the individual
polarization eigenchannels for an uncorrelated disorder (g = 0).

p 1 2.4 59
(p) ct 4 10 ¢¢

D 5 25 75
(p) 1 3

wd 0 7 7
(p)

e 00 2¢ S0y

correlations. This strategy, however, involves an additional
approximation that has some implications. To clarify this point,
let us consider our predictions in the limit of an uncorrelated
disorder. Setting g = 0 in the predictions of Table I yields
the values reported in Table II. An alternative straightforward
derivation from Eqgs. (32) and (33), which yields the same
results, is proposed in Appendix C. Compared to previous
results (see, e.g., Ref. [40]), we observe that the eigenvectors,
or polarization eigenchannels, remain unchanged, but the
eigenvalues are now one, three, and five-fold degenerate,
yielding the same attenuation coefficients ;Lﬁf’ ) but different
diffusion constants D'?). This apparent discrepancy can be
explained by the on-shell approximation, which “smoothes
out” the polarization dependence in the correlation function
of Green’s tensor. Nevertheless, it is important to note that the
average diffusion constants for the various degenerate modes
are strictly identical:

Lt 220 =2 (41)
—| =c —cl|=2—
3\5 5 3
and
1 /230 130 290 10 ct
(22 ) === @)
5\“313 343 T 1029 773

This brings us to the conclusion that the model is consistent
with the approximations that have been made.

A second point deserving a comment is the fact that the
attenuation length 1/ /Lf,p ) of the polarization eigenmodes does
not depend on g to first order, the effect of short-range
structural correlations on the spatial decay of polarization
away from the source being implemented via the definition of
mode-specific transport mean free paths. This picture contrasts
with previous studies based on the phenomenological transfer
matrix approach [32,33], which relate the depolarization
length £, for linearly polarized light to the scalar transport
mean free path via a linear relation with g. In this sense, our
model provides a different perspective on this basic problem
of light transport in disordered media. Intuitively, this picture
also appears more physically sound, since it is known that the
relation between depolarization and transport mean free path
varies with the incident polarization (linear or circular) or in
the presence of magneto-optical effects [35,37].

Related to this point, it is also important to discuss the
validity of the diffusion limit to retrieve depolarization coef-
ficients. Reaching the regime of diffusive transport typically
requires light to experience several multiple scattering events.
However, as pointed out previously (see, e.g., Ref. [30]), this
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limit can hardly be achieved for the polarization modes, for
which the depolarization occurs on the scale of a mean free
path. It is then legitimate to question the accuracy of the
expressions reported in Table I. Nevertheless, we do not expect
this question to impact our claim that different polarization
modes are individually and differently affected by short-range
structural correlations. Actually, the established RTE for the
polarization-resolved specific intensity, Eq. (22), like the
standard vector radiative transfer equation, does not assume
diffusive transport. On this aspect, our study constitutes a very
good starting point to investigate the validity of the diffusion
approximation, which may be done either numerically by
solving the RTE by Monte Carlo methods, or analytically by
adding higher-order Legendre polynomials P, in the following
steps.

Finally, let us remark that the results of our model, in
which disorder is described by a continuous and randomly
fluctuating function of position [Eq. (1)], should apply not
only to heterogeneous materials with complex connected
morphologies (e.g., porous media) but also to random en-
sembles of finite-size scatterers. Indeed, the Fourier transform
of the structural correlation f(r —r’) directly leads to the
definition of the phase function p(q - §') [Eq. (21)], which is
the same function at which one arrives when investigating light
scattering by finite-size scatterers (it is, in this case, defined
from the differential scattering cross section). For the sake of
broadness of applications and convenience, the final results
here have been given for the HG phase function [Eq. (36)], but
other phase functions (e.g., Mie for spherical scatterers) may
be used to describe specific disordered media. Note that for
ensembles of finite-size scatterers, the short-range correlation
approximation restricts the validity range of the model to small
scatterers.

V. CONCLUSION

To conclude, we have proposed a model based on multiple
scattering theory to describe the propagation of polarized
light in disordered media exhibiting short-range structural
correlations. Our results assume weak disorder (kof > 1)
and short-range structural correlations (first order in g) and
are obtained in the ladder approximation. Starting from the
exact Dyson and Bethe-Salpeter equations for the average
field and the field correlation, we have derived a RTE for
the polarization-resolved specific intensity [Eq. (22)] and
applied the P; approximation to investigate the propagation
of polarized light in the diffusion limit. Interestingly, we
have found that the polarization modes, described so far for
uncorrelated disorder only, are independently and differently
affected by short-range structural correlations. In practice,
each mode is described by its own transport mean free path,
which does not trivially depend on g (see Table I).

In essence, our study partly unveils the intricate relation
between the complex morphology of disordered media and
the polarization properties of the scattered intensity. The
road toward a possible description of polarization-related
mesoscopic phenomena in correlated disorder is long, yet
we hope that the present work, which highlights several
theoretical challenges when dealing with polarized light and
structural correlations, will motivate future investigations.
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The model may be generalized, for instance, by including
the most-crossed diagrams in the derivation to enable the
study of phenomena such as weak localization, or frequency
dependence to investigate—via a generalized RTE— the
temporal response to incident light pulses. Another line of
research could be to study the impact of short-range structural
correlations on spatial coherence properties, which appears
extremely relevant to the optical characterization of complex
nanostructured media [45].
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APPENDIX A: AVERAGE GREEN’S TENSOR

The average Green’s tensor (G) describes the propagation
of the average field in the disordered medium and is related to
the free-space Green’s tensor Gy via the Dyson equation [1,2]

(G(@) = Go(q) + Go(DE(Q(G(@), (AL)

where X is the self-energy, which contains the sums over all
multiply scattered events that cannot be factorized because of
the average process. The free-space Green’s tensor is given by

Go@ =[(k§ —¢*)I+q®q] "
=K1 - ¢’P@] ",
with P(q) = I — q ® q. The average Green’s tensor then reads
(G(@) = I - Go(Z(@] ' Go(q)
=[G - ¢’P@ — Z(@] .

By identification between Eq. (A2) and Eq. (A3), one
can define an effective wave vector (e = kgfeff(q), where
esr(q) =1— X(q)/ ké is the effective medium permittivity
tensor, yielding

(G(@) = [agr — QZP(Q)]_I-

In a dilute (3D) medium, interferences between successive
scattering events can be neglected, and the self-energy can be
calculated keeping only the first term of the multiple scattering
expansion

(A2)

(A3)

(A4)

2(r,r') = k3 (8(r)Go(r — r')8e(r))

=ukj f(r — ' )Go(r — 1), (A5)
or in reciprocal space
4 / / dq/
X(q) = uky | f(q—q)Go(q )8n3' (A6)
For a §-correlated disorder, f(q — q') = 1, we have
Im X(q) = —ukt L (A7)

O6r
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The real part of X, which is typically very small for dilute
media, is scalar as well. The effective medium permittivity
then becomes a scalar quantity:

Re X(q) ,ukéq
—_— = —.

A8
k(z) (%1 (A8)

€off =~ 1—

This allows rewriting Eq. (A3), after some algebra, as [46]

(Glp) =

_q®q} (A9)

kieerr — g2 [ k€t
which is equivalent to Eq. (11).

The coherent (ballistic) intensity in a disordered medium
Ion = |(E)|? decays exponentially following the Beer-
Lambert law

Ieon(z) = Ieon(0) exp[—2ko Im(negr)z],

= Ieon(0) exp[—z/¢], (A10)
with £ = (2ko Im[nes])~" the extinction length, neg = /€t
the effective refractive index, and z the propagation direc-
tion. Since Imeer < Reeer (ie., —Im T < k3), we have
Im(ne) >~ — Im X /(2koq), thereby leading to

q 6

ImX(q) = 7’ u_kée. (A11)
For an arbitrary (non-8) correlated disorder f(q —q’) # 1,
Eq. (AS5) indicates that X should not be a scalar. Thus, the
average Green’s tensor in Eq. (A3) cannot possibly take the
form of Eq. (A9); and Eq. (A11), which introduces the mean
free path £ in the RTE [Eq. (22)], should be corrected. Our
results are therefore expected to be strictly valid only for short-
range structural correlations (close to a §-correlated potential),
i.e., for scattering anisotropy factors g close to 0.

APPENDIX B: SHORT-RANGE CORRELATION
APPROXIMATION

As explained above, due to the fact that the self-energy X
is assumed to be a scalar quantity in our model, our theoretical
predictions are expected to be valid only for short-range struc-
tural correlations, i.e., for g close to zero. The validity range
of this approximation can be apprehended by comparing the
raw prediction obtained from the eigenmode decomposition,
Eq. (35), without performing the development to order g, with
predictions from scalar theory. The eigenmode decomposition
for the scalar mode, in the diffusion approximation (i.e., to
order K?), yields a transport mean free path

<D = 10+ g(5¢ —2) ’ (B1)

10+ g(5¢g — 12)
to be compared with the expected relation, £* = ¢(1 — g)~'.
The two relations are shown in Fig. 2, where it is found that
our prediction remains fairly good for —0.3 < g < 0.3, hence
the range chosen in Fig. 1. Developing the transport coefficient
1/¢*M of Eq. (B1) to order g yields the proper (1 — g) scaling,
as reported in Table 1.
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FIG. 2. Evolution of the transport coefficient of the scalar mode,
172V, in units of 1/€, with the scattering anisotropy factor g.
We compare the raw prediction obtained from the eigenmode
decomposition, Eq. (35), before the development to order g (solid
cyan curve), with the expected 1 — g scaling relation (black dashed
curve). Our theoretical predictions are expected to be valid for
short-range structural correlations, i.e., for g close to zero.

APPENDIX C: EIGENMODE DECOMPOSITION
FOR UNCORRELATED DISORDER

For uncorrelated disorder, the scattering anisotropy factor
g equals zero, such that, from Eq. (33), we immediately

PHYSICAL REVIEW A 94, 033851 (2016)

obtain

. . 7T
iK-jijuK) = _KZZLl(';)/)(l(K)'

4 Cl)
. (

Inserting it into Eq. (32), we get
4r 4
— KL ) + = L5, (K)
2 4 (0)
= gsijkl + TSijanmnkl(K)~
Performing an eigenmode decomposition of S;jy; as

(C2)

9
Sijur = SV (k1| P,

p=1

(C3)

and similarly for L)), = ¢/(677)Uj;y, we directly find that
the diffusion of the energy density in each polarization
eigenchannel, U?), follows the solution of the diffusion
equation, Eq. (39), with

11—8»

wd = : (€4

ct 1
350 Mo

3 S’
The eigenvalues of S;; are 1, 1/2, and 7/10 with degeneracies

1,3, and 5, respectively, thereby leading to the values reported
in Table II.
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