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Ultrastrong-coupling phenomena beyond the Dicke model
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We study effective light-matter interactions in a circuit QED system consisting of a single LC resonator,
which is coupled symmetrically to multiple superconducting qubits. Starting from a minimal circuit model, we
demonstrate that, in addition to the usual collective qubit-photon coupling, the resulting Hamiltonian contains
direct qubit-qubit interactions, which have a drastic effect on the ground- and excited-state properties of such
circuits in the ultrastrong-coupling regime. In contrast to the superradiant phase transition expected from the
standard Dicke model, we find an opposite mechanism, which at very strong interactions completely decouples
the photon mode and projects the qubits into a highly entangled ground state. These findings resolve previous
controversies over the existence of superradiant phases in circuit QED, but they more generally show that the
physics of two- or multiatom cavity QED settings can differ significantly from what is commonly assumed.
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I. INTRODUCTION

The Dicke model (DM) is frequently used in atomic
and solid-state systems as a minimal model to describe
phenomena related to the collective coupling of many emitters
to a single radiation mode [1,2]. When extended to the
ultrastrong-coupling regime, where the collective coupling
becomes comparable to the atomic and optical frequencies,
the ground state of the DM undergoes a phase transition into
a superradiant state [3—5]. This state is characterized by a
nonvanishing field expectation value and a uniform atomic
polarization and is commonly considered the hallmark of
ultrastrong-coupling physics. While this superradiant phase
transition (SRT) is well understood and has been observed
with engineered Hamiltonians in driven atomic systems [6—8],
the validity of the Dicke model for describing also the ground
states of equilibrium cavity QED systems is still the subject of
debate [9—14]. This question has regained considerable interest
with the development of circuit QED systems [15-18], where
superconducting two-level systems are strongly coupled to
microwave photons. In particular, it has been argued [19] that
the equivalent of the so-called A? term—which supposedly
prevents the SRT in atomic systems [9]—does not play a
crucial role in these artificial circuit QED devices. However,
these predictions have also been questioned on very general
grounds [20] or based on concrete models [21]. While recently
the ultrastrong-coupling regime for single qubits has been
experimentally achieved [22-26], the nature of the ground
states of collective circuit QED systems remains open.

In this work we investigate a multiqubit generalization of
a circuit QED system, where N charge qubits are coupled
symmetrically to a single microwave mode. In the limit
of weak coupling the system reduces to the standard DM
and thus such circuits have been proposed for studying the
superradiant phase transition [19,27,28], which is expected
to occur when either the coupling strength or the number
of qubits is increased. The important finding of this work is
that the full Hamiltonian for this circuit necessarily contains
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additional direct qubit-qubit interactions, which have been
ignored in many previous studies but become nonnegligible as
one approaches the ultrastrong-coupling regime. The analysis
of the ground-state properties of this extended Dicke model
(EDM) reveals surprising new effects, which completely
contradict our existing intuition about light-matter interaction.
Instead of undergoing a transition into a superradiant phase
with increasing coupling strength, the system first gradually
evolves into a hybridized qubit-photon state, but without
broken symmetry. At even higher interaction strengths, an
opposite effect can take place, where the photonic component
of the ground state completely decouples, while the qubits
collapse into a highly entangled Dicke state with vanishing
dipole moment. We explain these findings with an effective
low-energy theory, which reveals the existence of separate
manifolds with an exponentially large number of nearly degen-
erate states. Together with the high degree of entanglement,
this feature makes the EDM considerably more involved than
the well-studied DM and imposes many new challenges for
theoretical and experimental research on ultrastrong-coupling
physics.

The analysis presented in this work is primarily focused
on a minimal model for a charge-coupled circuit, which is
motivated by previous studies on this subject and allows a
simple physical interpretation of the predicted effects. It also
establishes a direct connection to the single-mode Hopfield
model that is used to describe ultrastrong-coupling effects
in other electrically coupled cavity QED settings [29-31], or
related models for coupled quantum dots [32], and shows the
broader scope of our findings. However, the EDM can also
be derived for inductively coupled circuits (although not for
all [33]) based on the flux qubit design. For this type of a qubit,
the ultrastrong-coupling regime is already experimentally
accessible today [25,26], and using the tunability of the
coupling [25,26,34] in these setups, it should be possible to
dynamically test the predicted new effects for N = 2 or more
qubits, over a wide range of coupling strengths, including
the scaling of the qubit-qubit interaction strength, light-matter
decoupling, and ground-state properties.

The remainder of the paper is structured as follows. In
Sec. Il we derive the exact Hamiltonian for a minimal collective
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FIG. 1. (a) Circuit model for N charge qubits coupled to a single
lumped-element resonator. (b) Sketch of the energy levels of a single
charge qubit as a function of the applied gate voltage and for Ec >
E;. (c) Plot of the coupling parameter ¢ = (g/gus.)> as a function
of C,/C, and a specific set of circuit parameters C, = 10 fF, C, =
0.5 fF, and L, = 1 nH. For the upper two lines E;/h = 2 GHz and
the condition E;/E¢ < 1 is fulfilled over the whole range of plotted
values. The lower line represents the transmon limit (E,;/Ec > 1)
given in Eq. (7) for N = 1.

circuit QED systems and in Sec. III we discuss the meaning
of superradiant states, first for the example of a single qubit.
In Sec. IV we then analyze the ground-state properties of the
collective model and explain the origin of the light-matter
decoupling effect. In Sec. V we briefly describe alternative
circuit implementations based on the flux qubit design and
demonstrate the robustness of the observed effects with respect
to experimental imperfections. Finally, Sec. VI summarizes the
main conclusions of this work.

II. COLLECTIVE CIRCUIT QED

We consider a superconducting circuit as depicted in
Fig. 1(a), where N charge qubits [18,35] are coupled symmet-
rically to a single-mode lumped element resonator with capac-
itance C, and inductance L,. Each qubit is represented by a
Cooper pair box with capacitance C, and Josephson energy E;
and coupled to the LC resonator via an additional capacitance
C,. The whole circuit is described by the Lagrangian

cd? P J . Cy .
L=t Ly(®i,0) + S5 (D, — )|,
> 2Lr+;[q( )+ 55 )}
(1)
where @, (1) = fioo Vy(s)ds is the generalized flux [36]
associated with the voltage V,, at each node, n =r,1,...,N

[see Fig. 1(a)]. The Lagrangian for each qubit is

L,(®,d) = ‘f(cb Vg)—l—chos(;:) (2)
0

where Vg is the applied gate voltage and @y = h/(2e) is
the reduced flux quantum. We emphasize that apart from the
coupling of each individual qubit to the cavity, our model
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in Eq. (1) does not contain any direct capacitive interactions
among the qubits themselves.

To obtain a quantized circuit model, we follow the
standard quantization procedure and replace the ®, and the
conjugate node charges Q, = 9L/ BCD with operators obeying
[®,,0,] = ihs,,. For the resulting Hamllton operator H =

Zn 0,V, — L we then obtain (see Appendix A)
2 N
H Q Hl Qr Ql + Z Ql Q]
2Cy,
i#]
where Q; = Q; + C,V is the displaced charge and
. 2 0]
H’:g—chos 4)
720, CDO

is the Hamiltonian for an individual qubit. The modified
capacitances that appear in Eqs. (3) and (4) are given
by C,=C?/[C,+Cy+(N—1)C,C,/(Cys+Cy)l, Cr=
C?/(C, + Cy), Cy =C?*/C,, Cyy = (Cy +C,)C?/C?, and
C? = C,C, + C,(C, + NCy).

Equation (3) first shows that the coupling of individual
qubits to a common resonator mode renormalizes the bare
resonator and qubit energies. This is analogous to the effect of
the A? term, which in atomic cavity QED systems increases
the photonic field energy proportional to the number of atoms
and can thereby prevent an SRT [9]. Interestingly, here the
coupling lowers the charging energies, i.e., C_',,q > C, 4, which
is exactly the opposite effect and would, at first glance, favor
a SRT. However, from the last term in Eq. (3) we also see that
the Legendre transformation from voltage to charge variables
introduces additional direct qubit-qubit interactions, the effect
of which we analyze in the following.

In the final step we express Q, = Q(’)(aT +a) and &, =
i0,/(C,@,)(a" —a) in terms of annihilation and creation
operators, a and a’, where @, = l/\/L,C_', and Qf =
VhC,@,/2. We further restrict each qubit to the two lowest
states |0) and |1) (at this stage, without further justification),
which are separated by an energy h@,. For the examples
considered below we can then write H, =~ ha,o!/2 and
Q; ~ Qlol, where Qf = (1/Q|0) and the o are the usual
Pauli operators. Under these assumptions and by introducing

collective spin operators Sy = %Zl o}, we finally obtain
(h=1)

H >~ &,a'a + @,S, + gla+a")S, + DS?, (5)

where g =2050¢4/(hC,) and D = 2(Q3)*/(hCy,). Equa-
tion (5) thus represents the minimal model for N > 2 qubits
that are coupled capacitively to a single microwave mode.
Below we show that identical models can be derived for basic
flux-coupled circuits, and these models are also discussed in
other cavity QED implementations [30,31]. In the absence
of the last term, Eq. (5) reduces to the standard DM, which
exhibits a superradiant ground state for couplings +/Ng >
8use [5], where we use guse = /@,®, to define the onset of
the ultrastrong-coupling regime for a single qubit. However,
since they have the same physical origin the qubit-qubit
interaction strength D and the qubit-resonator coupling g are
not independent. In view of C,, = C;/C, in Eq. (3), we obtain
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the exact relation
D=—, (6)

which demonstrates the significance of this additional term in
the limit of very strong interactions.

III. ULTRASTRONG COUPLING

Before we proceed with the multiqubit model let us first
evaluate the value of the single-qubit coupling parameter
¢ = (g/guse)* that can actually be achieved for a specific
circuit design. We first do so for the frequently used transmon
qubit [37], which is operated in the regime E; > E¢ =
e?/ (ZC'q) and Vi = 0. In this case the two lowest eigenstates
are well approximated by harmonic oscillator states with

@y ~ «/8EcE; and Qf ~ v'hC,®,/2 and we obtain
2
= Cg <1
C(Cy + C) + Co(Cy + NCy)

¢ @)
This shows that, independently of the circuit parameters, the
single-qubit ultrastrong-coupling regime cannot be reached.
Such a limit on the coupling parameter is consistent with more
general no-go theorems discussed in Ref. [20] or the absence
of an SRT found in other explicit multiqubit circuit QED
models [21]. It can be traced back to the fact that in harmonic or
weakly nonlinear systems the coupling g ~ /@, @; is directly
related to the qubit and the resonator frequency. To break
this relation we now consider instead the charge qubit limit
E; € Ec and C;Vi/(2e) = 1/2 [see Fig. 1(b)]. In this case
the qubit states are superpositions of charge states, i.e., |0) =
(|0e) + | —2¢))/+/2 and |1) = (|0e) — | — 2¢))/+/2, where
|0e) and | — 2¢) denote the states with zero and one excess
Cooper pair on the island, respectively. Then Qf ~e is
approximately independent of @, ~ E; and we obtain

4C§ Ec
= X —.
Co(Cq + C,)+ Co(Co + NC,)  Ey

Therefore, while in practice there might be additional con-
straints on the achievable parameters, there is no fundamental
limit that prevents one from reaching the ultrastrong-coupling
regime even for a single qubit, for example, by simply lowering
E ;. This is explicitly shown in Fig. 1(c) for a concrete set of
realistic parameters and is in agreement with many previously
analyzed circuits [34,38,39] based on the highly nonlinear flux
qubit design [18,40].

¢ ®)

A. Superradiant charge states

Given the ability to reach the ultrastrong-coupling regime
g > gus for asingle qubit, it is instructive to develop a physical
picture for the ground state in this regime. To do so we consider
a semiclassical model Hy.(o) = (| H |}, where a and af are
replaced with the classical field amplitudes o and «*. For
N = 1 this model reads

o)
He(@) = &ylal’ + Slo. + 2@+ oo )
In Fig. 2(a) we plot the two eigenenergies Ei(«) of Hy (o),
which can be interpreted as Born-Oppenheimer potentials for
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FIG. 2. (a) Plot of the two energy levels E.(«) obtained from
the diagonalization of the semiclassical qubit Hamiltonian H,.(«) for
N = 1. (b) Illustration of the classical charge configurations, which
correspond to the two superradiant ground states |G ).

a classical resonator with amplitude «. For g = 0 the lowest
potential curve is simply quadratic, with a minimum at &« = 0.
This corresponds to the normal phase, where both the qubit
and the resonator state are in the ground state. For values
g > gusc the lowest potential curve exhibits two minima,
at o ~ +g/(2@,). The two essentially degenerate ground
states |G1) = | & a)|F), where |&) = (|0) & [1))/+/2, then
correspond to the superradiant states with a nonvanishing field
expectation value.

The physical interpretation of the abstract states |G4) is
given in Fig. 2(b), which shows the corresponding classical
charge configurations in the limit where all the inductive
energies can be neglected. In this limit the charge expectation
values for these states are given by (Gi|Q,|Gi) =~ =e,
(G_1Q4|G-) =0, and (G4+|Q4|G+) =2 —2e. Most impor-
tantly, this simple electrostatic picture clearly illustrates that
the main difference in the two configurations is the sign of the
polarization charge on the coupling capacitance C,. Although
the system is in a superradiant state, the voltage across the
resonator capacitance C, vanishes. Thus the meaning of a
finite field expectation value (a) # O in the ground state of
a capacitively-coupled circuit QED system is that of a finite
polarization charge, while the voltage state of the resonator is
unchanged. A closely related observation about the difference
between the electric field and the polarization field has
previously been pointed out in Ref. [11] for atomic cavity
QED systems, but it can be understood here in terms of even
simpler electrostatic arguments.

IV. GROUND STATES OF THE EXTENDED DICKE MODEL

Let us now return to the full circuit QED Hamiltonian (5).
Note that for N > 1 neither Eq. (7) nor Eq. (8) prevents
one from reaching the collective ultrastrong-coupling regime,
N¢ > 1, but now the additional qubit-qubit interactions
~D must be taken into account. Following the standard
approach [5], we first consider the limit N > 1 and use
the Holstein-Primakoff approximation to replace spins with
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harmonic operators, i.e., S, — b — N/2and S, — \/N(b +

b")/2, where [b,b'] = 1. In this case we obtain the quadratic

Hamiltonian (see Appendix B),

Hup = @,a'a + d,b'b + G(a + a')(b + bY) + Dy (b + b,
(10)

where G = g+/N/2 and Dy = N D /4. This Hamiltonian can

be diagonalized by a Bogoliubov transformation [5,30,31],
from which we obtain the two eigenmode frequencies

ot = 4o} + & £ /(@2 - ) + 16G20,0,]. (1)

where Qj = @y(&®4 + 4Dy). The SRT occurs when the ground
state of Hyp becomes unstable, i.e., when w_ vanishes.
This requires G*> > ®.8,/4 or, equivalently, N(g*/&,) >
ND + &4, and for D =0 we recover the usual transition
point mentioned above. However, in view of relation (6),
the excitation frequencies of the EDM remain positive for all
parameter values. This means that in the present circuit QED
setup an SRT in the conventional sense does not occur, and it is
prevented by a mechanism which is analogous to the effect of
polarization interactions discussed, for example, in the context
of intersubband polariton systems [30,31]. Since this effect is
absent for a single qubit, there is a fundamental difference
between single- and multiqubit cavity QED settings, which
does not follow from otherwise closely related studies of the
A? term [9,19,20].

A. Light-matter decoupling

Having established the absence of an SRT in the linearized
regime, we are now interested in the actual ground state of
Hamiltonian (5) under the constraint D = g2/®, + 8, but
for otherwise arbitrary coupling parameters. The inclusion
of an additional offset § > 0 is motivated by more general
circuits discussed in Sec. V. In Figs. 3(a) and 3(b) we plot
the expectation values of the mean photon number (a'a) and
the spin expectation values (S,) and (Sf) as a function of the
coupling g and for N = 9 and N = 10 qubits. The plot shows
a gradual increase in the photon number, which—as expected
from the analysis above—varies smoothly across the SRT
point g = ,/@,@,/N. This behavior can be fully understood
from the linearized Hamilton Hyp, from which we derive the
approximate initial scaling (see Appendix B)

i N gzd)q
(a'a) =~ — — — —.
U@, + @y l@y + N(D — g2/@,)]
The validity of this result requires a low excited-state pop-
ulation of each individual qubit, i.e., g < @, + @,. Beyond
this point nonlinear effects start to play a significant role,
and surprisingly, for an even number of qubits we observe a
sudden decrease in the photon number and lim,_, o (ata) = 0.
At the same time the qubits remain in a highly excited state,
ie., (S;) &0, with a vanishing polarization along x, i.e.,
(Sx),(S)%) — 0. In Fig. 3(c) we also plot the entanglement
entropy, Sg(p) = —Tr{p log,(p)}, for the reduced qubit den-
sity operator and for the density operator of a single qubit.
This shows that while the spin and cavity subsystems become
decoupled at large g, the qubits remain highly entangled among
themselves.

(12)
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FIG. 3. Ground-state expectation values of (a) the photon number
and (b) the collective spin operators as a function of the coupling
g. The dotted line indicates the prediction from the Dicke model
(DM); dashed lines, results obtained from Hyp in Eq. (10) and H.g
in Eq. (15) in the weak- and strong-coupling limit, respectively.
(c) Entanglement entropy Sk(p) = —Tr{plog,(p)} in the ground
state |G) of Hamiltonian (5) evaluated for the reduced density matrix
of the qubit subsystem, p, = Tr{|G)(G|}, and for the reduced density
matrix of a single qubit, p; = Try_;{p,}. (d) Plot of the Q function
Q(n) = {n|p,|n), where 7 is a unit vector on the Bloch sphere and
|71) is the corresponding coherent spin state. Note that in (b)—(d) only
the results for N = 10 are shown, and for all plots &, /&, = 0.5 and
& = 0 have been assumed.

We remark that other light-matter decoupling mechanisms
have recently been described in extended multimode sys-
tems [12,41,42]. There the inclusion of A%-like terms expels
the relevant field modes from the coupling region, an effect
which can already be described within a linearized model.
In the present single-mode setup such a mechanism is not
possible, and the above observations already indicate that here
the field decoupling is a highly nonlinear and nonclassical
effect. A heuristic explanation for this behavior can be obtained
by considering the limit D > g,®,,, where the qubit-qubit
interaction is the dominant energy and therefore favors the
state |m, = 0), where Sy |m,) = m,|m,), as the ground state.
Since the coupling to the field ~S,, it then also vanishes and
the resonator mode decouples. This is illustrated in Fig. 3(d),
in terms of the Q function of the reduced qubit state on the
Bloch sphere, which approaches a circle in the x = 0 plane for
large g. For odd N, there is no m, = 0 state, which explains
why this decoupling mechanism does not take place for the
example of N = 9 qubits.

B. Effective low-energy model

Let us now develop a more accurate description of the
system in the regime g/&@, > 1. We write H = Hy + H,,
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FIG. 4. Plot of the lowest two energy levels E,. obtained from
the diagonalization of the semiclassical qubit Hamiltonian Hy. (o) =
(a|H|o) and for g/, =3.5, &,/®, =1, and N =4. Arrows
indicate first- and second-order processes induced by H, = @,S; on
the otherwise degenerate ground-state manifold.

where H; = @,S;. The first term, Hy, commutes with S,
and therefore it can be diagonalized exactly, Hy|W; ) =
E, n|Ws.m,.n) (see Appendix C). The eigenstates are given by

— 2 (af—a)s,

|\Ijs,mx,n) =e o |s,mx)|n), (13)

where |n) are photon number states and |s,m,) are col-
lective spin states of given total spin s =0,...,N/2 and
projection quantum number m, = —s, ...,s. Therefore, the
eigenstates of Hy are simply harmonic oscillator states, which
are displaced by the amount —m,g/®,. The corresponding
eigenenergies are

Ep,n = 8m} + @pn, (14)

which for § — 0 become independent of the spin quantum
numbers. This means that in this limit each » manifold contains
a set of 2V degenerate qubit states. The energy penalty from
the S? term is exactly compensated by a lowering of the
interaction energy when the resonator mode is displaced. This
isillustrated in Fig. 4, where we plot the lowest two eigenvalues
of the semiclassical qubit Hamiltonian, H.(«), for s = N/2.
Compared to the double-well potential structure for the
single-qubit case, the lowest Born-Oppenheimer potential now
displays a multiwell potential landscape with (2s + 1) nearly
degenerate minima. Again, this large degree of degeneracy
can be understood from the corresponding classical charge
configurations, as illustrated in Fig. 5 for the case N = 2. For
both qubit configurations, which correspond to different values
of m,, the electrostatic energy is concentrated only in the
gate and coupling capacitances C, and C,, and it is therefore
identical. Note that the DM with D = 0 would energetically
favor states with |m,| = 1 over a m, = O state and lead to
inconsistencies with basic electrostatic considerations.

To model the low-energy properties of H we now focus
on the ground-state manifold, » = 0, and include quantum
corrections due to H;. This term first couples neighboring
my levels within this manifold, i.e., (W, 0|S;|Ws.m +1.0) =
o820} (s,my|S;|s,m, = 1). In addition, H; also couples to
states in energetically higher manifolds, n > 0. This effect can
be treated in second-order perturbation theory as detailed in
Appendix C. These second-order corrections predominantly
lead to an energy shift N[mi —s(s + 1)]@26),/(2g2), which
singles out the s = N /2 states as the lowest energy manifold.
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FIG. 5. Illustration of the classical charge configurations, which
correspond to two different qubit states with different values of m,.
In both cases the capacitive energies are the same, which, when
generalized to N qubits, explains the existence of 2V -fold degenerate
manifolds in the limit g — oo. As in the single-qubit case, the average
voltage across the resonator capacitance C, vanishes for all those
states.

By defining operators S via the relation (Wm0l Skl Wy m0) =
(s,m’|Sk|s,m,), we obtain within this manifold the effective
collective spin Hamiltonian

_2 -~
(O -2~
¥ )Sﬁ + o TS (15)

Hefy 2<5 +

From this model we immediately see that for g/o, > 1
the coupling to neighboring m, states is exponentially
suppressed, and for even N the ground state is indeed
|G) = |[YN/2,m,=0,n=0) With a vanishing photon number.
By taking into account first-order corrections from states
[Wn /2,m,=+1,n=0) WE obtain the approximate scalings

- -2

_ r@
e 8% AE~ — 4 (16)

NN +2)g°
282"

t

ta'a) 2w}
where AE = E| — Ej is the gap between the ground and
the first excited state. Note that this nonexponential clos-
ing of the energy gap is very atypical for qubit-resonator
models in the ultrastrong-coupling regime. For an odd
number of qubits there is no m, = 0 state and the ground
state is |G) > (W 2m =—1/2.1=0) + [N /2.m,=1/2.1=0))/V/2
and (ata) ~ g%/ (45)3) simply increases in the large-g limit.
The next-higher state is the corresponding antisymmetric
superposition and therefore the energy splitting now exhibits
the usual exponential scaling, i.e., AE >~ (N + l)cbqe’gz/z“_’?.
Although for certain quantities the admixture of higher n
levels must be taken into account (see Appendix C), we
find that, within its range of validity, /s(s + 1) < g*/(&,@,)
and g/, > 1, the effective model H.g provides an accurate
description of the low-energy properties of an ultrastrongly
coupled collective circuit QED system.

C. Energy spectrum

Apart from the above-described changes in the ground-state
properties, the appearance of the DS? term will also change
the excitation spectrum of multiqubit circuit QED systems in
the ultrastrong-coupling regime. This is exemplified in Fig. 6
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FIG. 6. The lowest excitation energies AE, = E, — E; of the
EDM, (5), for N = 2 qubits are plotted as a function of the coupling
strength g and for &, = @,. Dashed lines show the corresponding
excitation energies for the standard DM, where D = 0.

for the case N = 2, where the lowest few excitation energies
AE, = E, — E are plotted as a function of the coupling g
and compared with the corresponding results for the DM. One
clearly sees the emergence of the 2" -fold degenerate manifolds
for large g, which already for two qubits is in clear contrast
to the twofold degenerate energy manifolds known from the
DM. Spectroscopically, the difference between the two models
becomes most significant in the region 1 < g/&®, < 2, where
the crossover from the strong- to the ultrastrong-coupling
regime takes place.

V. FLUX QUBIT CIRCUITS AND EXPERIMENTAL
IMPLEMENTATIONS

The results presented so far have been explicitly derived for
a charge coupled circuit, but the appearance of a DS? term in
multiqubit circuits is a more general phenomenon. In Fig. 7(a)
we show an equivalent circuit model for N flux qubits coupled
inductively to a single LC resonator. The Lagrangian for this

FIG. 7. Circuit model for a collective QED system with in-
ductively coupled flux qubits. Expressed in terms of the flux
across each qubit, AP; = §; — ®,_,, the magnetic energy (P, —
> A®D;)*/(2L,) associated with the inductance L, leads to qubit-
resonator as well as qubit-qubit interactions, with the relation D =
g2/@, + 8, where § > 0. (b) Specific realization of a flux qubit based
on the design used in Refs. [25,26] to reach the ultrastrong-coupling
regime.
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circuit is
C, 2 D2 (D, — Dy)

ﬁ =
2 2L, 2L,

N
+ ) L (AD;, AD).
i=1
(17

Here £, denotes the Lagrangian for a single flux qubit, which
is a function of the phase difference A®; = &; — ®;_; and,
depending on the exact design, of additional local degrees
of freedom [18,34,38-40]. Since for this circuit there are
no capacitive couplings between the individual components,
the derivation of the corresponding circuit Hamiltonian can
be performed in a straightforward manner. In particular,
by writing ®y = >, A®;, one immediately sees that the
resulting inductive interaction between &, and ®y can be
grouped as

(®, — dy)? @2 AD; D, AD;AD;
2L, 2L, Z L, +Zj: 2L, 1®

The first A2-like term leads to a renormalization of the
resonator inductance L, — L, = (L,L,)/(L, + L,), which,
however, does not scale with N. The other two terms
represent the collective qubit-photon coupling and the col-
lective qubit-qubit interactions, respectively. By writing ®, =
Jh/ 2C,&,(a’ + a), and within the validity of the two-level
approximation, i.e., A®; = GDSJ;, we recover the EDM, (5),
with the more general relation

2 L 2
D:g_<1+L_g>=‘?_+s, (19)

Wy r wy

where § > 0, as assumed in the analysis above.

The flux qubit circuit shown in Fig. 7(a) is also very
promising for first experimental realizations of the described
models. Compared to capacitive interactions, where g/, ~
V' Z./Rk [Rx = h/(e?) is the quantum resistance], the induc-
tive coupling g/®, ~ +/ Rg / Z, scales more favorably with the
resonator impedance Z, = L,/C, [17]. Figure 7(b) shows a
sketch of a three-junction flux qubit with an additional tunable
inductance. This design has been used in recent experiments to
demonstrate ultrastrong-coupling conditions in a single-mode
setup [25] as well as for an open transmission line [26] and
exhibits a large degree of tunability. The addition of a second
qubit in such setups would already allow the observation of the
described decoupling effect, either by looking at the excitation
spectrum shown in Fig. 6 or by measuring the predicted
anticorrelations of the qubit flux states in the ground state
of the system.

A. Other experimental considerations

In our analysis so far we have assumed identical couplings
gi = g and identical qubit frequencies (I)é = @y, which can
be hard to realize in practice [43,44]. However, in Fig. 8 we
reevaluate the light-matter decoupling effect for a disordered
system, where we allow for individual variations of the g; and
d)g. We see that even at a very high level of disorder there
are small quantitative differences, but almost no qualitative
changes of the predicted features. Surprisingly, even the parity
oscillations, which we explained above in terms of a fully
symmetric coupling, are very robust with respect to variations
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4 5
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FIG. 8. (a) The ground-state photon number (a'a) is plotted for
a disordered system, where the qubit frequencies c?)j[ are randomly
chosen from a uniform distribution in the interval [@®, — 0.5®,,&, +
0.5@,]. (b) The same as (a), but with a random distribution of coupling
constants g; chosen from the interval [g — 0.3g,g + 0.3g]. Other
parameters for this plot are the same as in Fig. 3. (c) Circuit model for
two flux qubits, which are connected via a wire of finite inductance
L,, and capacitance C,,. The frequencies &, and w. are identified
with the lower and higher resonator frequencies and g is identified
with the coupling of the first qubit with the lower resonator mode.
Other coupling constants are identified as g;x, where i = 1,2 stands
for the qubits, k = 1,2 for the modes, and k = 1 is the lower and
k = 2 the higher. Thus, under this naming convention g = gy;. All
of the parameters can be derived from the circuit by diagonalizing
the harmonic part of the circuit’s Hamiltonian. (d) Ground-state
photon number in the presence of a higher mode. For the plot
we use L, = L,/3, C,, = C, /87, wex/®, =21.56, g12/8 = 2.69,
g21/¢ = 1.00, g»,/g = —8.04 (blue curve), L, = L,, C,, = C, /29,
Wex /@, = 10.86, g12/g = 3.35, 821/ = 1.02, g22/g = —3.30(green
curve),and L,, = 3L,, C,, = 3C, /29, wex /&, = 7.61, 812/8 = 5.15,
821/8 = 1.08, g2n/g = —1.59 (red curve). For all curves we have
chosen L, = 1.5nH and C, = 0.25 pF. The dotted line displays
the single-mode result. Values for L, and C, in the three curves
correspond to an ~200-um-long (blue curve), ~500-um-long (green
curve,) and ~1-mm-long (red curve) wire between the qubits. For
all curves qubit parameters have been adjusted to give the same
frequency, &, = @, /2.

in the coupling constants and all curves are still clearly distinct
from the sharp increase in (afa) expected from the DM.
Therefore, the predicted effects should be observable even
in systems with only a limited amount of tunability.

Finally, our model assumes the coupling of all qubits to a
single resonator mode. This is in general a good approxima-
tion for lumped element resonators, where the fundamental
electromagnetic mode can be well separated from all higher
excitations. For example, considering a typical LC resonator
of spatial extent d ~ 500 um and a fundamental mode of
@,/(2m) ~5 GHz [23,25] one expects higher order modes
at a frequency wex/(27) ~ ¢/(6d) ~ 100 GHz [46]. At the
same time such a circuit can incorporate tens of flux qubits of
size ~10 um. To understand the validity of the single-mode
approximation more quantitatively, we investigate the two-
mode setup shown in Fig. 8(c), where the ideal wire connecting
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two flux qubits is replaced with a finite inductance L, and
capacitance C,,. This circuit is used to model a higher excited
mode with frequency wex ~ 1/+4/ Ly, C,,. Figure 8(d) shows the
dependence of the photon number (a'a) in the ground state for
varying ratios wex/@,. Again, we observe a robustness of the
decoupling effect, and for the experimentally relevant regime
wex /@y = 20 (corresponding to an ~200-um -long wire) there
is no significant influence of the higher mode. This ability to
realize a single-mode setup in the ultrastrong-coupling regime
is also one of the key advantages of circuit QED, since such a
separation of modes cannot be achieved in the optical regime.

VI. CONCLUSIONS

In summary we have analyzed collective interactions in
circuit QED systems in the ultrastrong-coupling regime. Going
beyond the previously discussed A2 corrections, we have
identified the important role of qubit-qubit interactions, which
generically appear in the fundamental description of such
circuits. In particular, we have shown that the ground state
of the resulting EDM exhibits many features that are exactly
opposite to what is expected from the often considered DM
physics. Apart from the absence of a superradiant phase, this
includes light-matter decoupling at very strong interactions,
a high degree of entanglement between the qubits and the
existence of manifolds with an exponentially large number
of nearly degenerate states. These predictions can already be
tested with a minimal setup consisting of two flux qubits
coupled to a lumped element resonator, similar to existing
experimental setups [25,26].

On a broader scope, we have presented in this work a
fully microscopic derivation of a minimal model describing
multiple (artificial) atoms coupled to a single radiation mode,
where, compared to optical systems, the single-mode or
two-level approximations can be rigorously justified by an
appropriate circuit design. The resulting model is identical to
the single-mode Hopfield model, which is usually derived for
macroscopic dielectrics and has been successfully applied to
describe collective ultrastrong-coupling effects in solid-state
cavity QED systems [30]. Our analysis reveals for the first
time the highly nontrivial quantum mechanical features of this
fundamental model in the regime where each individual atom
is coupled ultrastrongly to the radiation field.
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APPENDIX A: CIRCUIT QED HAMILTONIAN

In this Appendix we provide additional details on the
derivation of the charge Hamiltonian, (3). To perform the
Legendre transformation we write the circuit Lagrangian, (1),
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as

1.t . .7 NC,V?
L=;0Co-dat ; C — Vour({ @, )),

(AL)

where ® = (&,,®1,...,dy)", Vou({®,}) is the potential
energy, and a = (0,C, Vg, ...,C, V(;)T. For the circuit shown
in Fig. 1(a) the capacitance matrix is

C,+NC, —C, -C, ... —C,
-C,  C,+C, 0 0
c-| -¢ 0 C,+Co ... 0
—C, 0 0 C,+C,
(A2)

The Hamiltonian function is obtained from the Lagrangian
via a Legendre transformation and can be written in vector
notation as
1
H=2(Q+a'CTHQ+a) + V(D)) (A3)
where Q = (Q,.,Ql.,...,QN)T is the vector of conjugate

charges Q = 0L/9®. The inverse of the capacitance matrix
is of the form

Cq+cg Cg Cg Cé’
C, X Y Y
11 o) Y X Y
o g , Ad
c=el| T T (A9
C, Y v ... X

where C? = C,C, 4+ C4(C, + NC,) and we have used the
abbreviations X = C, + C; + (N — 1)C,Cy /(Cy + Cy), Y =
C g2 /(Cq + C,). The result for the charge Hamiltonian, (3), then
follows directly from Egs. (A3) and (A4).

APPENDIX B: HOLSTEIN-PRIMAKOFF
APPROXIMATION

The Holstein-Primakoff approximation is based on an exact
mapping of collective spin operators Sy = S, £iS, and S,
onto a bosonic mode with annihilation operator b [5,45]:

S, =blyV/N — btb, (B1)
S_=+/N —bibb, (B2)
S. = (bTb — %) (B3)

Under the assumption that N >> 1 and the total number
of excitations remains small, i.e., (bTb)/N < 1, we can
approximate S, ~ +/N(b" + b)/2 in the EDM, (5), and we
obtain the quadratic Hamiltonian Hyp given in Eq. (10). This
Hamiltonian can be diagonalized and written as [5]

HHp = Z hwaclca,
a==%

(B4)

PHYSICAL REVIEW A 94, 033850 (2016)

where the excitation frequencies are given by

ol = 4o? + 9} + /(@2 - %) +166%0,0,] B

and Q] = @, (&, + 4Dy). By using the relation D = g*/@, +
6 we find that both excitation frequencies are positive as long
asé > Oand @, > 0.

The ground state |G) of this Hamiltonian is characterized by
c+|G) = 0. Using this property we can calculate the average
photon number in the ground state. We obtain

i, Ccos(20)A_+ A, —4

(a'a) A ) (B6)
where we have used the short-hand notation
(2)2 _ QZ
cos (20) = - - £ , (B7)
\/(@,2 —Q2)" +16G20.a,
_ 4+ @? +w_
A = (a)+a) wr)(a)+ w ). (B8)

Wrwyw_

For small g the result for (a'a) can be further simplified to the
expression given in Eq. (12) in the text.

APPENDIX C: ULTRASTRONG-COUPLING
PERTURBATION THEORY

In this Appendix we summarize the details of the pertur-
bation theory used to describe the ground-state properties in
the ultrastrong-coupling regime g > @, ,®,. In this regime the
full Hamiltonian can be written as H = Hy + H;, where

Hy = ha,a'a + hg(a' + a)S, + hDS? (C1)

and H; = @,S,. We see that Hy commutes with S, and it can
be diagonalized by a polaron transformation, H) = U THyU,
where U = exp (—y(a' —a)S;) and y = g/&,. We obtain

2
H) = h,a‘a + <D - ?—) s2. (C2)
@y

8

Therefore, in this new frame the eigenstates are |s,m,)|n),
where s is the total spin quantum number, m, is the spin
projection along x, and |n) is the number state of the resonator
mode. The corresponding energies are E,,_,, = hio,n + hémﬁ.
After transforming back into the original frame we obtain the
eigenstates | W ,,, ») defined in Eq. (13).

For § — 0O the eigenspectrum of Hj consists of a set of
highly degenerate manifolds separated by multiples of h,.
This degeneracy is lifted by the qubit Hamiltonian H; and
in the following we are interested in the effect of H; on the
ground-state manifold spanned by the states with n = 0. To do
so we need the matrix elements

<\ys,m;,n|H1 |"Ijs,mx,0>
_Pos=nl? Y, — my)!
Vn!

To first order in H; we obtain a tunneling between neighboring
m, states within the n» = 0 manifold, i.e.,

= haye (s,m’|S;|s,my). (C3)

(W 0| Hi [ We o) = hidge™ T (s, Scls.my).  (C4)
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In terms of the effective spin operators S; we can write the first-
order correction to the effective ground-state Hamiltonian as

HY = ha 53
o = hge 7 §;. (C5)

To second order in @, the states in the ground-state manifold
are coupled to higher n states, which are separated by an
energy ha,n. These processes can be treated in second-order
perturbation theory and we obtain

N/2 s
2
He(ff) = Z Z M(ssm;’mx)|lps,m’x,O)(\ps,mx,O ,  (C6)
s=0 m,,m\,=—s
where
M(s,m,,m,)

_ i (\Ils,mfr,O | Hl |“I,s,m<v+1,n)(\ys,;11x+1,n }Hl |\Ils,mx,0>
@2my + 1)hS + haw,n

n=1

_ i <qjs,m"r,0|H1 |“I"s,mxfl,n><\ps,mx71,n | Hl i“ps,mx,0>
(—2my + A8 + hav,n

n=1
(C7)

As a main contribution we obtain a diagonal term, which for
small § and y 2 2 is approximately given by

h? Sl
— q 2 —yz V4
M(s,m,,my) = 25, [mx s(s + 1)]e ; T
hé?
~ = ;z[mi —s(s + D), (C8)
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and we obtain the second-order contribution

ha’d -
) rre2 %
off = 222 [5; - 8. (€9

Since these energy shifts are not exponentially suppressed,
H e(fo) dominates over He(flf) and determines the basic ordering of
the energy levels for g — oo. In particular, this result shows
that for given m, the maximal angular momentum state with
s = N/2 is lowest in energy. Since H preserves the total
angular momentum, it is enough to evaluate the low excitation
properties within this s = N /2 manifold.

Note that, in addition to the energy correction, we obtain
a correction to the state vectors. For most quantities these
corrections are not essential, but they can lead to addi-
tional contributions in the expectation values, which are not
taken into account in the analysis in the text. A significant
correction occurs, for example, for the qubit polarization
(Wn/2,0018:1Wn/2,0,0), Which, according to Hegr, would decay
exponentially at large g but, in reality, decays algebraically,
ie., (WUn)2.00l8:1Wn/200) & —N(N + 2)@,0,/(4g%).

Finally, we emphasize that the validity of the effective
Hamiltonian H.g requires that for each n the matrix elements
given in Eq. (C3) are small compared to the energy difference
héayn. The matrix elements are exponentially suppressed
for small n and reach maximal value for ny ~ y2. There-
fore, the validity of the perturbation theory is restricted to
parameters

A/$(s + Da, - g_2

. C10
2 oy (C10)
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