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Molecular spectra in collective Dicke states
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We introduce a model describing the competition of interactions between N two-level systems (TLSs) against
decoherence. We apply it to analyze dye molecules in an optical microcavity, where molecular vibrations provide
a local source for decoherence. The most interesting case is when decoherence strongly affects each individual
TLS, e.g., via broadening of emission lines as well as vibrational satellites; however, its influence is strongly
suppressed for large N due to the interactions between TLSs. In this interaction-dominated regime we find unique
signatures in the emission spectrum, including strong O(

√
N ) level shifts, as well as 1/N suppression of both

the decoherence width and the vibrational satellites. These effects are most pronounced in the unexplored regime
near 50% polarization of the TLSs.
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I. INTRODUCTION

The dynamics of quantum two-level systems (TLSs) has
always been at the focus of interest, but recently, it has attracted
increased attention because of ideas of quantum computing [1].
A crucial requirement is the preservation of phase coherence in
the presence of a noisy environment. The resulting spin-boson
models have been extensively studied (see the reviews [2,3]). In
many systems the interactions between TLSs lead to collective
behavior, such as Dicke superradiance [4].

In this article we describe the competition between local
decoherence, on the one hand, and interaction between N

TLSs (see Fig. 1), on the other. We consider molecules in a
two-dimensional optical microcavity. A TLS excitation may
hop between molecules via emission and absorption of virtual
cavity photons. These are effectively two-dimensional massive
bosons [5], and as a result, the interaction acquires a finite
length scale � [6]. In this paper we assume that there is a
large number N of molecules within this interaction range
(see [7,8]).

As a starting point, we observe that as a result of interac-
tions, the ground state becomes a large quantum superposition
of states with a given total number of excited TLSs Nex � N

coherently shared between the N TLSs, referred to as the
“Dicke state.” Under the simplifying assumption of a constant
all-with-all interaction I (see Fig. 1), our model reduces to
the (isotropic version of the) Lipkin-Meshkov-Glick (LMG)
model [9], which originated in the context of nuclear physics
but became popular in many other fields [10–13]. We then
can use the language of spin states to exploit the resulting
approximate permutation symmetry, where the collective
Dicke state corresponds to the “large-spin” state.

The energy difference between these many-body states
depends on an interaction parameter I and also scales with
N . Such interactions between a small number (N = 2,3)
of qubits have been implemented, e.g., in superconducting
circuits [14,15], and it was suggested that these systems could,
in principle, be scalable to larger N and realize the LMG
model [16]. The question then is the fate of these states in the
presence of a noisy environment.

Our model is relevant for the dye-filled microcavity ex-
periments of Klaers et al. [17]. Each dye molecule contains

both an electronic excitation approximated by a TLS and a set
of vibrational states (see Fig. 1). In addition, the molecules
are coupled to the environment: phonons of the solvent or
substrate.

As we calculate, the coupling to the environment allows for
transitions between the various collective states (e.g., between
the largest spin state and smaller spin states) or, equivalently,
to a randomization of the phases in the quantum superposition
state. However, although the local decoherence could be so
strong [18] as to prevent coherent behavior of a single TLS, it
is reasonable to think that since each TLS is coupled to O(N )
other molecules, for large enough N decoherence will become
the subdominant perturbation compared to the many-body
interaction [6]. In this paper we substantiate this idea with
explicit calculations of the collective-level decay rates and
their consequences for the molecular spectra. Conventionally,
molecular spectra contain broadening and satellite vibrational
peaks with the associated Franck-Condon effect. We find that
when a collective state forms, the emission-line shape has
(i) a 1/N suppression of the width, (ii) a 1/N suppression
of vibronic satellites, and (iii) O(

√
N ) shifts of the position

of the peak. These effects directly imply that transitions
observed in the emission are not intra- but rather intermolecular
processes.

The essence of the competition between decoherence and
interaction can be understood as follows: for a single TLS
the effect of decoherence is a fluctuating phase φ in the
quantum superposition state | ↑〉 + eiφ| ↓〉, where | ↓〉,| ↑〉
are the ground and excited states of a single TLS. This phase
does not change the energy. However, once multiple TLSs
interact, the phase does modify the energy: for example,
for N = 2 TLSs, one can consider a quantum superposition
| ↑↓〉 + eiφ| ↓↑〉; in this case eiφ = +1 and −1 correspond
to triplet and singlet spin states, respectively, which have
different interaction energies. For sufficiently large N such
energy differences scale as N and can exceed the thermal
energy that can be supplied by the environment, and hence,
these “large-spin states” become stable against decoherence.

Many-body states with defined total spins can also appear
in gases of ultracold spinor atoms, with no coupling to the
cavity modes. A mechanism for their stabilization, based on
quantum interference, is proposed in Ref. [19].
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FIG. 1. Maximally connected graph describing N TLSs, with
all-to-all interaction I , where each TLS is superimposed on a quasi-
continuous set of vibration levels representing local environments and
internal vibrational-rotational degrees of freedom of the molecules.

This paper is organized as follows. In Sec. II B we
present the model, its collective states, and its relation to
the familiar Dicke model. Then, in Sec. III we treat the
effect of decoherence due to the environment and compute
the decay rate and associated level widths of the collective
states. We show that decay to other spin states becomes
negligible for a large enough effective interaction parameter
(NI ) exceeding the thermal energy kBT . In Sec. IV we discuss
the consequences of the interactions in the emission spectrum,
which, as we claim in Sec. V, can be observed in experiment.
We conclude in Sec. VI.

II. MODEL

A. Cavity-photon-mediated dipole-dipole interaction

We start with the motivation of the all-with-all interaction
I in our central model [Eq. (11)]. Consider a two-dimensional
optical cavity created between two mirrors of area L2 and
separation d (see Fig. 1 of Ref. [6]). The free-space dispersion

relation νk = c
√

k2
x + k2

y + k2
z now becomes [5]

νk = εg + c2k2

2εg

= εg + k2

2m
, k = (kx,ky), (1)

where εg = c
nzπ

d
is the cutoff frequency of the cavity (� =

1) and nz is a fixed standing wave number. Now we place
molecules acting as TLSs in the cavity at positions (xi,yi,zi) =
(ri,zi), − L/2 � xi,yi � L/2,0 � zi � d. Our model is

Hcav = ω

2

∑
i

σ z
i +

∑
k

νka
†
kak +

∑
k,i

(γkiakσ
+
i + H.c.), (2)

where a
†
k creates a photon at mode k and

γk,i = γ eik·ri sin(πnzzi/d). (3)

We define the detuning


 = εg − ω (4)

and assume it to be sufficiently large and positive such that
photons become virtual excitations in the cavity.

Similar to Ref. [20], which studied dipole-dipole in-
teraction induced in a one-dimensional optical cavity (see
also Ref. [21]), here we consider the two-dimensional case.
Consider an initial state with no photons and one excited TLS
at some molecule i0. The state after time t is

|ψ(t)〉 =
∑

i

bi(t)| ↓↓↑i↓↓〉|0〉 +
∑

k

bk(t)| ↓↓ · · · ↓〉|k〉,

(5)

where bi(0) = δi,i0 ,bk(0) = 0, and |k〉 = a
†
k|0〉. These ampli-

tudes evolve according to the Schrödinger equation

iḃi = ω

2
(2 − N )bi +

∑
k

bkγk,i ,

iḃk =
[
νk + ω

2
(−N )

]
bk +

∑
i

γ ∗
k,ibi . (6)

Using bi(t) = bi(E)ei Nω
2 t−iEt ,bk(t) = bk(E)ei Nω

2 t−iEt , solving
the Schrödinger equation for bk(E), and substituting into the
equation for bi(E), we obtain

Ebi = ωbi −
∑

j

Iij (E)bj , Iij (E) =
∑

k

γkiγ
∗
kj

νk − E
. (7)

Using Eq. (3), we obtain, after the angular integration over k,

Iij (E) = sin(πnzzi/d) sin(πnzzj /d)
L2γ 2

2π

∫ 1/d

0
dkkJ0(kr),

where r = |ri − rj | is the distance between molecules i and j

projected to the xy plane. The Bessel function J0 dictates
the relevant k vectors to be k < 1/r . Since the quadratic
dispersion (1) applies only for k � 1/d, the interaction
between two molecules at short distances r � d isnot well
described by our approximation. This corresponds to the
three-dimensional free-space near-field interaction. For r � d

we have

Iij (E) = sin(πnzzi/d) sin(πnzzj/d)
L2γ 2m

π
K0[r/�(E)],

(8)
1

2m�2(E)
= 
 − E.

We note a few points: (i) From the asymptotic behavior of the
Bessel K function K0(x) → √

π
2x

e−x at large x, we see that
the interaction decays exponentially over the length �(E). (ii)
In general one should solve the transcendental Schrödinger
equation for E. However, for large detuning 
 � |E| one can
ignore the energy dependence of Iij (E) and of �(E). Hence,

� = 1√
2m


. (9)

(iii) As long as the separation between molecules δ � d,� and
if � � d, then typical distances between molecules exceed d,
and we may disregard near-field interaction. (iv) The prefactors
sin(πnzzi/d) sin(πnzzj/d), which depend on the z positions
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of the molecules, will lead to randomness in the interaction Iij .
In this paper we will focus on the average effect and ignore
these factors.

Under these assumptions, the starting point for this paper
is the situation [6] where a number of molecules N whose
separation is smaller than � interact with a nearly coordinate-
independent two-body interaction I ∼ L2γ 2m. Due to the
dimensionality mismatch between the molecules, which are
spread in the three-dimensional space of the cavity, as opposed
to the photons that mediate the interaction, which are two-
dimensional due to fixed nz, the number of molecules in this
correlation length becomes [6]

N ∼ �2d

δ3
. (10)

This paper deals with effects originating from large values of
this number.

B. The model

With the above motivation, we consider the model Hamil-
tonian H = H0 + V , with H0 = HS + Hv and

HS = ω

2

N∑
i=1

σ z
i − I

N∑
i,j=1

σ+
i σ−

j ,

Hv =
N∑

i=1

∑
l

Elv
†
l,ivl,i , (11)

V =
N∑

i=1

∑
l

σ z
i (Clvl,i + H.c.).

Here HS describes N TLSs with Pauli operators σa
i ,a = z,±

(i = 1, . . . ,N ). The TLSs are connected via the all-to-all cou-
pling term I , which leads to collective eigenstates described
below. The second term, Hv , accounts for the local baths of
bosonic modes (vibrations) with energies {El}, created by v

†
l,i ,

with mode l at TLS i. The bosonic modes can represent either
internal vibrational-rotational molecular degrees of freedom or
phonons in the solvent or substrate. We emphasize that there is
one independent bath attached to each TLS, and correlations
between phonons interacting with different molecules are
neglected. Finally, V describes the (linear) coupling between
each TLS and its environment, which is an N -spin extension
of the usual spin-boson models [2,3].

Due to the permutation symmetry of the model the TLS part
of the Hamiltonian HS can be conveniently written in terms
of total spin operators Sz = 1

2

∑N
i=1 σ z

i ,S± = ∑N
i=1 σ±

i , using
the relation S+S− = S2 − (Sz)2 + Sz, as

HS = ωSz − I (S2 − Sz2 + Sz). (12)

The model (12) when restricted to a specific total spin S, with
S2 = S(S + 1), is known as (a special case of) the LMG model.
However, in our system there are many different values of S

that N TLSs can form, leading to the spectrum in Fig. 2. As
we will discuss below, the environment can cause transitions
between these states.

The energy of the eigenstates of HS

ES,Sz = ωSz + I [Sz2 − Sz − S(S + 1)] (13)

FIG. 2. Energy levels of the LMG model (12) (here ω = 0).
Different parabolas correspond to different total spin S. The largest
spin state S = N/2 is the lowest in energy, with a gap δE = NI to
the next spin S = N/2 − 1 state. For nearly 50% polarization with
|Sz| < N 1/2, we have an energy window IN , in which the large-spin
states are well separated (in energy) from all other states.

depends on the total spin S and on the polarization Sz. The
maximal total spin formed out of N TLSs, each of which
behaves as an elementary spin- 1

2 , is Smax = N/2. As can be
seen in Fig. 2 this large spin state gains the maximal interaction
energy of −I (N/2)(N/2 + 1) when I > 0. The next large spin
state, with S = N/2 − 1, has a reduced interaction energy gain
−I (N/2 − 1)(N/2) and so on. Thus, typical energy spacings
between collective states are given by IN , scaling with the
number of TLSs. While in this paper we consider I > 0, which
is a result of the second-order perturbation theory for 
 > 0
and yields a large-spin ground state, let us remark that in the
opposite case (I < 0), the ground state corresponds to the
minimal possible total spin S = |Sz| for given Sz.

There are generically multiple energy-degenerate states
with the same values of S and Sz that can be formed out
of N TLSs. This number is given by [22]

fS(N ) = N !(2S + 1)(
N
2 + S + 1

)
!
(

N
2 − S

)
!
. (14)

We label these states by t = 1, . . . ,fS(N ), and thus, a general
state is labeled |S〉 = |S,Sz,t〉. There is a single large-spin
state fN/2(N ) = 1 and N − 1 states with S = N/2 − 1 and so
on.

If I = 0, the states with different S are energy degenerate
and can be transformed to another set of energy-degenerate
states, corresponding to defined individual spin and vibrational
states of each molecule. However, the energy splitting due to
finite I (see Fig. 2) invalidates such a transformation, and
the individual states become undefined. A similar effect of
spin-independent coordinate-dependent interactions between
particles has been noticed already by Heitler [23].

We will see below a protection of the large-spin states
against the influence of decoherence.

C. Relation to the Dicke model

Model (12) can be derived from the Dicke model

HD =
∑

k

νka
†
kak + ωSz +

∑
k

(γ akS
+ + H.c.), (15)
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which is just Eq. (2) in the limit where all the molecules
under consideration are at the same point. As we now describe,
the LMG model (12) is obtained for large enough εg , where
the photons can be “integrated out” and lead to an effective
interaction between the N TLSs.

Indeed, the Dicke Hamiltonian commutes with (i) the total
number of excitations Nex = ∑

k a
†
kak + ∑

i

σ z
i +1
2 and with

(ii) the total spin operator S2 = S(S + 1). For every value of
(Nex,S), as long as Nex � N , there can be nph = 0,1, . . . ,Nex

photons, with the energy cost � nphεg . When εg > ω and
εg − ω � kBT , only the zero-photon nph = 0 states survive in
the low-energy limit. Then Nex = Sz + N

2 (nph = 0). However,
one can gain energy from virtual creation and annihilation
of photons. The transition amplitude from a state with Sz

to Sz − 1 via emission of a virtual photon involves the
well-known factor

S−|S,Sz〉 =
√

S(S + 1) − Sz(Sz − 1)|S,Sz − 1〉. (16)

Hence, in second-order perturbation theory we obtain a
correction to the energy,

δE = −I [S(S + 1) − Sz(Sz − 1)] + O(γ 4), (17)

which is just the LMG model with

I =
∑

k

γ 2

νk − ω
. (18)

The emergence of the LMG model as the low-energy limit of
the Dicke model is illustrated in Fig. 3.

We mention that the Dicke model displays a phase transition
with spontaneously excited photons [24]. Here we will not
discuss this superradiant state. The absence of this phase
transition is guaranteed (i) at zero temperature for Nγ 2

0 < ωεg ,
where γ 2

0 = ∑
k

εg

νk
γ 2, and, otherwise, (ii) by T > Tc, where

Tc is given by tanh ω
2kBTc

= εgω

γ 2
0

[24]. However, even in the

superradiant phase, there are virtual photons that will mediate
the interaction between TLSs.

D. Two-state vibration toy model

Before moving to a study of the effects of decoherence
in the next section, we here incorporate effects of discrete
vibrational modes within a simplified model amenable to
exact diagonalization for small systems. In this model we keep
only two vibrational states per molecule labeled by τ z

i = ±1,
generalizing the Dicke model (15) to

H ′
D = ωSz +

N∑
i=0

(
ετ z

i + Cσz
i τ x

i

)

+
(∑

k

γ akS
+ + H.c.

)
+

∑
k

νka
†
kak. (19)

We now use this tractable model to test the fate of the collective
levels in the presence of coupling to discrete vibrational
modes.

1 2 3 4 5 6 7 8 9 10 Nex

1

2

3

4

5

6

7

8

9

10

E

Εg

FIG. 3. Full energy spectrum of the single-mode Dicke
model (15) obtained by exact diagonalization, with εg = 1,ω =
0,N = 10, and γ = 0.2. One can see that the n-photon states are
approximately quantized in units of εg . The n = 0 states are repelled
to a negative energy. The fit of the zero-photon states to the LMG

model (12) with I = γ 2

εg
is shown by solid parabolic lines (different

colors correspond to different values of S as in Fig. 2).
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After integrating out the photons, assuming large detuning

 = minkνk − ω � ε,C, we obtain

Heff = ωSz +
∑

i

(
ετ z

i + Cσz
i τ x

i

) + Hint,

(20)
Hint = −I

∑
ij

σ+
j σ−

i ,

where I is given in Eq. (18). Conventionally, one first diagonal-
izes the local vibration Hamiltonian Hτ (σ z) = ετ z + Cσzτ x

for each state of the electronic TLS σ z = ±1. Thus, we may
define two bases for the vibrational Hilbert space as eigenstates
of Hτ (σ z) for either value of σ z = ±1:

Basis 1: Hτ (1)|±↑〉 = ±
√

ε2 + C2|±↑〉,
(21)

Basis 2: Hτ (−1)|±↓〉 = ±
√

ε2 + C2|±↓〉.
Then, while the local part of the Hamiltonian is diagonal, the
interaction creates vibrational transitions

Hint = −I
∑
i,j

σ+
j σ−

i

× (|+↑〉 |−↑〉)j
(〈+↑|+↓〉 〈+↑|−↓〉

〈−↑|+↓〉 〈−↑|−↓〉
)(〈+↓|

〈−↓|
)

j

× (|+↓〉 |−↓〉)i
(〈+↓|+↑〉 〈+↓|−↑〉

〈−↓|+↑〉 〈−↓|−↑〉
)(〈+↑|

〈−↑|
)

i

. (22)

Explicitly, the matrix elements are(〈+↑|+↓〉 〈+↑|−↓〉
〈−↑|+↓〉 〈−↑|−↓〉

)
=

(
cos(α) sin(α)

− sin(α) − cos(α)

)
, (23)

where tan(α) = C/ε. We see that in the local eigenbasis, the
interaction σ+

j σ−
i , which flips two TLSs at molecules i,j , also

creates transitions in the vibrational states. The squares of
the matrix elements (23) are our two-state model version of
Franck-Condon factors. This leads to eigenstates of the full
system in which vibrations and electronic TLSs are generally
entangled.

However, this coupling between TLSs and vibrations can be
strongly suppressed in the regime of dominating interactions.
Assuming that the interaction I is large enough, we can neglect
mixing of states with different S. If we are in the lower-energy
large S = N/2 spin state, which is permutation symmetric,
we can replace the operator σ z

i in the interaction term ∝ C in
Eq. (20) by

σ z
i → 2Sz/N (24)

(see Sec. IV B). Then for the large-spin state the Hamiltonian
becomes independent of the spin states of individual molecules

H → HS(S,Sz) +
∑

i

(
ετ z

i + 2Sz

N
Cτx

i

)
= HS(S,Sz)

+
√

ε2 +
(

2Sz

N
C

)2

×
∑

i

[| +Sz

(i)〉〈+Sz

(i)| − | −Sz

(i)〉〈−Sz

(i)|]. (25)

-0.30

-0.32

-0.34

10      20       30

FIG. 4. Spectrum of model (19) for N = 5,I = 1,ε = C = 0.15
obtained by exact diagonalization (squares). Each level of the LMG
model as in Fig. 2 splits to 2N vibrational states. Circles are fit to
Eq. (25). The inset shows the 32 energy levels corresponding to
Sz = −1/2,S = 5/2 versus Eq. (25).

Here the vibrational eigenfunctions |±Sz〉 and their eigenen-
ergies depend only on the total many-body spin projection,
unlike the eigenstates in Eq. (21), which depend on the
individual spins. In the vibrational ground state all the
molecules are in the |−Sz〉 state. The first vibrational excitation
of the full system corresponds to exciting one molecule to the
state |+Sz〉.

This separation of the spectrum into the sum of the
decoupled TLS part and the vibration part, which depends
only on Sz, is confirmed by an exact diagonalization of the
model (19), as shown in Fig. 4. We can see that it matches the
energy levels of the large-spin S = N/2 manifold as well as
smaller-spin states. This decoupling is not exact; it relies on the
formation of large spin, which is justified for large IN � C.

We will return to this simplified model in Sec. IV to
explicitly demonstrate the suppression of vibrational satellites
in the emission spectrum.

III. DECAY RATES OF COLLECTIVE STATES

To study how the many-body states are influenced by
coupling to a continuum of bath modes, we integrate out
the latter and obtain an effective theory of the spin system.
We keep referring to these bosonic modes as “vibrations,”
although their origin can be different, as in general spin-boson
models [2,3].

We use the resolvent formulation whose poles give the
spectrum of the system. Expanding the resolvent of the full
system R(z) = (z − H )−1 in powers of V and tracing over the
vibrations, one obtains (for details see, for example, Ref. [25])

R(z) = 1

z − HS − �(z)
, (26)

with the self-energy

�(z) =
∑
{v}

nB(E{v})V (z + E{v} − H0)−1V. (27)

Here nB (E) ∝ e−E/(kBT ) is the normalized Boltzmann distribu-
tion. The imaginary part of �(z) gives the Fermi’s-golden-rule
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transition rate between different spin states mediated by
exchange of vibration quanta. We denote

�S = −Im�(z = ES,Sz + iδ) (28)

as the inverse half-life time of the spin state |S〉. As discussed
in more detail in Appendix A, the selection rules, mediated
by V , allow exclusively for S → S,S ± 1 transitions. They
provide three terms in the decay rate of the collective state,

�S,Sz = 2π

2S + 1

∑
S ′

{
δS ′,S

[
(N/2 + S + 1)

Sz2

S
+ (N/2 − S)

Sz2

S + 1

]
A(0)

+ δS ′,S+1(N/2 − S)
(S + 1)2 − Sz2

S + 1
A(ES+1,Sz − ES,Sz ) + δS ′,S−1(N/2 + S + 1)

S2 − Sz2

S
A(ES−1,Sz − ES,Sz )

}
. (29)

In the case of N = 1,S = S ′ = Sz = 1/2, this equation gives
the level width of a single molecule [26],

�1/2,1/2 = πA(0) = 1

2T2
. (30)

Then the spectral function A(0) is related to the single-
molecule relaxation time T2.

Equation (29) is the main result of this section. We now dis-
cuss its content. The terms ∝ δS ′,S±1 correspond to transitions
S → S ′ �= S. Starting from a large-spin state S ∼ N/2 and for
a nearly unpolarized state |Sz| � S, we see from the overall
coefficients that transitions S → S + 1 are suppressed by a
factor (N

2 − S) (which exactly vanishes for S = N/2), while
transitions S → S − 1 have an increased rate ∝ N , which is
the phase space corresponding to the number of possible final
states with smaller spin, Eq. (14). However, transitions from
the large-spin state require a finite energy to be extracted from
the vibrational baths. The thermal energy kBT will be exceeded
by the required energy difference ES−1,Sz − ES,Sz = IN for
large enough N . Thus, A(E) ∝ nB(E) → 0 for

IN � kBT . (31)

Then the large-spin state becomes stable.
The most prominent regime to study this large-spin state is

near the unpolarized state where (Sz)2 � N . As can be seen in
Fig. 2, this corresponds to the lowest-energy window of size
δE = (IN ), which includes only the large S = N/2 manifold,
with ∼ √

N states.
In this large interaction regime only the terms ∝ A(0) in

Eq. (29), leaving S fixed, contribute. These terms, however,
are of order (Sz)2

S
, that is, are suppressed for large N . Thus,

�S,Sz ∼= 1

NT2
[S = N/2,Sz = O(1)]. (32)

Thus, the large-spin state enjoys a 1/N reduction of the
dephasing rate.

We note that the result (29) is not valid for I = 0 since
it assumes initial and final collective states, while for I = 0
processes of decoherence happen within a single molecule or
in its near vicinity. Self-consistently, to ensure the stabilization
of collective states we demand IN � �S,Sz .

The real part of the self-energy � = �′ + i�′′ provides
information on energy shifts of the spin states due to their
coupling to the vibrations. In Appendix B we estimate these
corrections and find that they are subdominant; namely, they

are of order O(1), compared to the O(N ) energy difference
between collective states.

IV. MOLECULAR EMISSION SPECTRUM

A. Spectral line widths and shifts

We now discuss physical signatures of the collective states
in the emission spectrum. For comparison, for a single
TLS the emission spectrum has a Lorentzian line shape
with W (E) ∝ [E − (ω + 
ω) + (1/T2)2]−1, where 
ω is
an energy shift and T2 results from decoherence. Both the
position and width of the peak are modified in a system of N

TLSs (see, for example, related studies involving plasmons
or polaritons [27,28]). Here we will identify the role of
interactions and pinpoint how these effects in the emission
spectrum scale with N .

For simplicity consider an identical coupling of the N TLSs
to classical light,

δH = �
∑

i

σ−
i eiEt + H.c. = �S−eiEt + H.c. (33)

Notice that we are implicitly distinguishing the emitted
photons from the cavity photons mediating the interaction.
The latter are emitted and absorbed multiple times, which is
assisted by the cavity. On the contrary, the emitted photons
contributing to the emission spectrum W (E) propagate in free
space and yet have a finite coupling to the TLSs inside the
cavity.

Emission occurs via transitions Sz → Sz − 1. Consider
the system in an initial state |i〉 = |S,Sz,t〉. As shown in
Appendix C, the transition rate to the final state |f 〉 =
|S,Sz − 1,t ′〉 is proportional to

W (E) ∝ �2|〈f |S−|i〉|2

× �i + �f

[ω + 2I (Sz − 1) + �′
i − �′

f − E]2 + (�i + �f )2
.

(34)

The level widths �i,j and the level shifts �′
i,f were introduced

in the previous section; it is assumed that the width is
dominated by the vibrational modes rather than by the coupling
� to the emitted light, namely, �i,f � �. A few effects
apparent in Eq. (34) should be noted.
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Sz 1 2 3 N

1 T2

1

NT2

2 4 6 ... 2 N

E
I

W E

FIG. 5. Schematic depiction of the emission spectrum of N

interacting TLSs. Different peaks correspond to different initial values
of Sz with the peak positions given in Eq. (36) up to O(1) additional
level shifts. In the large-S regime the level width increases with Sz as
� ∼ [(Sz)2/S] × 1/T2, reaching values of order 1/T2 for Sz ∼ N 1/2

and values of order 1/(NT2) for Sz � S.

(i) The Dicke factor [see Eq. (16)] strongly depends on Sz:

|〈f |S−|i〉|2 ∝
{
N, Sz ∼ N/2,

N2, Sz = O(1).
(35)

This Dicke enhancement factor is independent of the interac-
tions between the TLSs.

(ii) The energy of the transition (S,Sz) → (S,Sz − 1),

ωSz = ES,Sz − ES,Sz−1 = ω + 2I (Sz − 1), (36)

is strongly shifted by the interactions depending on the
polarization state Sz. Focusing on the lowest-energy window
δE = NI in Fig. 2, with |Sz| < O(

√
N ), this shift is of order√

N . It overcomes the level shifts �′
i,f of order unity.

(iii) Following Eq. (32), the width of the emission line
�i + �f is strongly suppressed. Specifically, the peak width is
N times sharper than the single-molecule linewidth 1/T2 for
Sz = O(1) and becomes of order 1/T2 for Sz ∼ √

N . This is
depicted schematically in Fig. 5.

Along the cascade of decay due to emission, Sz → Sz −
1 → Sz − 2, which can be analyzed, e.g., by solving rate
equations, the system is in a probabilistic superposition of
collective states with different Sz. Then the emission spectrum
also contains a superposition of peaks whose positions and
widths are shown in Fig. 5. They will become well isolated
if IN � 1

T2
. The relative peak heights in Fig. 5 along this

cascade were not calculated here.

B. Vibrational structure of the emission spectra

1. Suppression of satellites for permutation-symmetric spin states

Transitions between discrete vibrational levels typically
lead to additional peaks in the emission spectrum, here referred
to as Franck-Condon “satellites.” We have ignored these
satellites above. However, we now demonstrate that this was
done with a good reason: in the large-interaction limit these
satellites are suppressed as 1/N .

5 4 3 2 1 1

E
El

W E

FIG. 6. Schematic depiction of the emission spectrum of one
molecule, including (i) vibrational satellites (for one mode l) accord-
ing to the Franck-Condon factor (40) and (ii) additional broadening
1/T2 = 0.5El (brown) and 0.1El (blue). Here Cl/El = 0.6.

The emission spectrum

W (E) =
∑
Ef i

a(Ef i)δ(E + Ef i) (37)

contains several peaks. The peak intensities a(Ef i) are
determined by the matrix elements of the interaction (33) with
the classical field as

a(Ef − Ei) = 2π�2|〈�f |S−|�i〉|2. (38)

Here |�i〉 and |�f 〉 are eigenstates of the Hamiltonian (11),
corresponding to the total spin projections Sz and Sz − 1,
respectively, and Ei and Ef are their eigenenergies.

For one molecule, vibrational transitions occur due to the
linear coupling Cl in Eq. (11), which we write for clarity for
one mode of energy El as

Hvib,↑ = Elv
†
l,ivl,i + (Clvl,i + H.c.),

(39)
Hvib,↓ = Hvib,↑ − 2Cl(vl,i + H.c.).

The transition from the vibrational ground state |0↑〉 to a
final excited vibrational state |n↓〉 (n � 0) corresponds to the
peak with the intensity a(ω − nEl) = 2π�2Fn(C), where the
Franck-Condon factor is explicitly given by

Fn(C) = |〈n↓|0↑〉|2 = 1

n!

(
2Cl

El

)2n

exp

(
−4C2

l

E2
l

)
. (40)

The resulting emission lines are shown in Fig. 6.
For many molecules the Hamiltonian (11) commutes with

Sz, and all its terms, except for V , commute with S. In the
limit of large IN , the large energy gaps between states with
different S (see Fig. 2) allow us to neglect their coupling and
consider the projection of the Hamiltonian (11) to the states
|S,Sz,t〉,

Hvib,S,Sz =
∑

t

|S,Sz,t〉〈S,Sz,t |(Hv + V )

×
∑

t ′
|S,Sz,t ′〉〈S,Sz,t ′| (41)
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4 3 2 1 1

E p

El

W E

FIG. 7. Schematic depiction of the emission spectrum as in
Fig. 6 but for N = 10 molecules. Here 1/T2 = 0.5El , and ωp is
an additional polaronic shift.

(the contribution of HS is omitted here as it can lead to only an
energy shift). Suppose now that N TLSs form a large-spin S =
N/2 state. As this state |N/2,Sz〉 is symmetric with respect to
permutations of the molecular spins,

〈N/2,Sz|σ z
i |N/2,Sz〉 = 1

N
〈N/2,Sz|

∑
i

σ z
i |N/2,Sz〉. (42)

Then the vibration Hamiltonian becomes

Hvib,N/2,Sz →
∑

i

Elv
†
l,ivl,i + 2Sz

N
(Clvl,i + H.c.). (43)

One can immediately see that the shift of the vibrational
potential in the process Sz → Sz − 1 is reduced by a factor
1/N ,

Hvib,N/2,Sz−1 = Hvib,N/2,Sz − 2Cl

N
(vl,i + H.c.). (44)

This leads to dramatic effects in the emission spectrum. The
main peak, corresponding to ground vibrational modes of all
molecules in the initial and final states, has an intensity

a(ωSz ) = 2π�2

(
N

2
+ Sz

)(
N

2
− Sz + 1

)
[F0(C/N)]N.

(45)
The first satellite corresponds to a final state with an n = 1
excitation in one of the N molecules with intensity

a(ωSz − El) = 2π�2

(
N

2
+ Sz

)(
N

2
− Sz + 1

)

×N [F0(C/N)]N−1F1(C/N). (46)

Similarly, the second and higher satellites can be obtained. The
ratio of the first satellite intensity to that of the main peak is
given by

NF1(C/N)

F0(C/N)
=

(
2Cl

El

)2 1

N
. (47)

Hence, we observe a 1/N reduction of the satellites.
The emission lines based on this analysis are shown
in Fig. 7.

In order to characterize the cumulative effect of the satellite
suppression, let us introduce the total line intensity

a =
∫

W (E)dE =
∑
f

a(Ef − Ei). (48)

The summation over f can be expanded over the complete set
of states |�f 〉 since the matrix elements vanish for noncoupled
states. Then

a = 2π�2|〈�i |S+S−|�i〉|2

= 2π�2

(
N

2
+ Sz

)(
N

2
− Sz + 1

)
, (49)

and the ratio of the main peak intensity to the total one, given
by

a(ωSz )

a
= [F0(C/N )]N = exp

(
− 4C2

l

NE2
l

)
, (50)

tends to unity at large N . Below we will confirm this effect in
the two-state vibration model.

2. Calculation for the two-state vibration model

To demonstrate explicitly the picture described above for
the satellite suppression, we consider the simplified model
of discrete vibrational modes in Sec. II D. The emission
lines correspond to transitions between many-body levels
(see Fig. 4), where Sz changes by 1. Consider starting from
the initial state |�i〉, which is the vibrational and electronic
ground state with given Sz. For one molecule the electronic
transition from Sz = 1/2 to Sz = −1/2 (or | ↑〉 → | ↓〉) is
associated with two emission peaks with intensities a(ω) and
a(ω − 2

√
C2 + ε2). The first peak corresponds to a transition

from the vibrational ground state |−↑〉 [see Eq. (21)] to the
new ground state |−↓〉, with matrix element a0 = cos2(α)
[see Eq. (23)]. The satellite peak corresponds to a transition
to the excited vibrational state |+↓〉, with matrix element
a1 = sin2(α). Thus, the ratio of the satellite to the main peak
intensity is given by tan2(α) = C2/ε2. We now explore how
this ratio evolves for a few interacting molecules.

As described in Sec. II D, when I is large enough that we
are in the lowest-energy large S = N/2 spin state which is
symmetric, we can replace the operator σ z

i in the interaction
term ∝ C in Eq. (20) by σ z

i → 2Sz/N . The initial and final
Hamiltonians of the vibrations are given by Hτ (σ z) with
σ z = 2Sz/N and σ z = 2(Sz − 1)/N , respectively. We start
in the ground state of the configuration with the initial Sz

whose energy is −N

√
ε2 + (2 Sz

N
C)

2
(all N molecules in the

vibrational ground state |−Sz〉). The main peak is obtained by
going to the ground state of the new Hamiltonian with Sz − 1
in all the molecules (all N molecules in the new vibrational

ground state |−Sz−1〉), with energy −N

√
ε2 + (2 Sz−1

N
C)

2
.

Thus, the main emission peak occurs at the energy

Emain = Hint(S,Sz) − Hint(S,Sz − 1) + δE, (51)

where we have separated the vibrational contribution

δE = −N

√
ε2 +

(
2
Sz

N
C

)2

+ N

√
ε2 +

(
2

(Sz − 1)

N
C

)2

.

The nth satellite corresponds to flipping n molecules to
their vibrational excited state |+Sz−1〉 and corresponds to the
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5 4 3 2 1 1
ΔE Ε

W E

FIG. 8. Emission spectrum for the model (19) with N = 5,ε =
C = 0.01,I = 1. We start in the Sz = 1/2 ground state (belonging to
the total spin-5/2 “parabola” in Fig. 4).

emission line

δEn = −N

√
ε2 +

(
2
Sz

N
C

)2

+ (N − 2n)

√
ε2 +

(
2
Sz − 1

N
C

)2

.

This set of satellites and the main peak (n = 0) is plotted as
dashed lines in Fig. 8 and perfectly agrees with the position
of the peaks obtained by computing Fermi’s golden rule (37)
using the numerically obtained eigenstates for a small (N = 5)
system with large interaction I .

In addition, the heights of the satellites are strongly
suppressed. The height ratio of the strongest satellite to the
main peak is

N tan2 αSz − αSz−1

2
, αSz = arctan

2SzC

Nε
. (52)

The factor of N counts possible choices of the molecule,
in which the excitation |+Sz−1〉 is located in the final state,
and the remaining function is the ratio of matrix elements
|〈+Sz−1|−Sz 〉|2
|〈−Sz−1|−Sz 〉|2 = tan2 αSz −αSz−1

2 . The ratio (52) perfectly agrees
with the numerical results. Similarly, higher satellite peaks are
suppressed by a higher power of this same small factor.

For Sz = N/2 and large N this ratio tends to 1
N

(C/ε)2

[1+(C/ε)2]2 .

For Sz/N � 1 this ratio becomes 1
N

C2

ε2 . In either regime we
obtain the 1/N suppression of the satellites.

To conclude, we have shown a 1/N suppression of the
vibrational satellites, which is a crucial effect of the collective
interacting set of TLSs.

V. OBSERVABILITY

We now discuss the observability of this collective effect
in a microcavity filled with dye molecules, referring to the
experimental parameters of Klaers et al. [17]. The emission
line of a single molecule has a typical frequency in the visible
range ω ∼ 500 THz and a width of the order of 50 THz. This
width corresponds to many vibrational satellites broadened by
1/T2. The system is at room temperature kBT ∼ 10 THz.

Following Ref. [6], the interaction I in our model can be
estimated using the typical emission time from a single TLS

in the cavity τ ∼ 3 ns. This rate is related via Fermi’s golden
rule to the product of the coupling constant γ 2 and the density
of states m

2π
,

1

τ
= L2γ 2m ∼ 1 GHz. (53)

Using Eq. (8), we see that the interaction is determined by the
same parameters,

I ∼ 1

τ
∼ 1 GHz. (54)

This can be negligible compared to the decoherence, which
is restricted by the width and can have a value up to 1/T2 ∼
50 THz. However, could coherence be restored due to large
N? Using Eqs. (10) and (9), we obtain

N ∼
(

c

εg

)3 1

δ3

1

(
/εg)
∼

(
d

δ

)3
εg



. (55)

Since the separation between the mirrors d = 1.5 μm exceeds
the separation between molecules δ ∼ 10 nm by two orders of
magnitude and since the detuning is naturally much smaller
than the cavity frequency εg = c

nzπ

d
≈ 1015 Hz (the standing

wave number is nz = 7), we expect large values of N , which
are required to satisfy the condition IN � 1/T2,kBT . For
example, for a detuning of 
/εg = 0.05 (5% detuning), we
obtain N ∼ 3000. As the decoherence rate is quite large
in this experiment, giving an estimate for the decoherence
to interaction ratio (1/T2)/I ∼ 104, we see that further
experimental fine-tuning is required to reach the conditions of
the present proposal, as we discuss in more detail subsequently.

While the experiment [17] concentrated on Bose-Einstein
condensation of photons at room temperature, the present
scenario requires (i) large detuning 
 > 0 so as to push
the cavity mode to high frequencies compared to the TLS
transition, (ii) lower temperature, leading to reduced 1/T2, and
(iii) a high polarization state (nearly half of the TLSs in the
excited state). In addition, our estimate of N should be taken
with a grain of salt, as it was obtained using crude assumptions
of constant interaction strength Iij , ignoring near-field effects
as well as fluctuations in its sign due the sin(zinzπ/d) factors
in Eq. (3) and the nz > 1 condition in the experiment.

VI. CONCLUSIONS

We studied a competition between local decoherence
and all-with-all interaction between N TLSs. The physical
situation considered here, where each TLS contains a separate
bath of oscillators, may be realized in an ensemble of dye
molecules in an optical microcavity. The many-body physics
studied here corresponds to a rather unexplored regime, with
nearly equal population of excited and deexcited TLSs.

The effect of interaction between TLSs is a formation of a
many-body states, which results, e.g., in a strong shift of the
emission line, level narrowing by 1/N , and a 1/N suppression
of vibrational satellites. Thus, these collective states remain
coherent despite the noise on the individual molecules.

Interactions, mediated by two-dimensional cavity modes,
also allow us to control many-body states of two-level atoms,
where the obstructing effects of molecular vibrations are
absent.
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We considered an ideal system with equal interaction
between all TLSs, ignoring effects of disorder. A more generic
model for the interaction Hamiltonian is −∑

i,j Iij σ
+
i σ−

j , with
Iij ∝ γiγj with random {γi}, e.g., due to the random {zi}
locations. We speculate that the emergence of large-spin states
separated by a large energy ∝ (IN ) from all other states is a
robust effect that survives in the presence of disorder. Proving
this assertion is left for a future study.

Note added in proof. Recently, two related works have
appeared on the ArXiv [29,30]. Following communications
with J. Keeling, we found that our work may be related to
the experiment in Ref. [31], observing coherent coupling of
molecular resonators with a microcavity mode, and subsequent
theoretical analysis [32–34].
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APPENDIX A: CALCULATION OF THE LEVEL WIDTH

The Hamiltonian H0 contains HS [see Eq. (11)], which
is independent of the molecular vibrational and translational
coordinates, and Hv , which is independent of the electronic
degrees of freedom, treated here as spins. Each of the parts
is permutation invariant. Therefore, the total many-body wave
function is represented as (see [22,35])

�̃
(S)
r{v}Sz

= f
−1/2
S

∑
t

�̃
(S)
tr{v}|S,Sz,t〉. (A1)

Here the spin |S,Sz,t〉 and spatial �̃
(S)
tr{v} wave functions form

bases of irreducible representations of the symmetric group
associated with the Young diagram λ = [N/2 + S,N/2 − S].
These representations have dimensions fS(N ) [see Eq. (14)],
and the labels of the basic functions t are standard Young
tableaux of the shape λ. For bosons, the representation of
the spatial wave functions is associated with the same Young
diagram λ, while for fermions it is associated with the
conjugate diagram [2N−S/2,1S]. This provides the correct
bosonic or fermionic permutation symmetry of the total wave
function. The Young tableaux r label different representations,
associated with the same Young diagram.

In the wave function (A1) the spatial wave functions are
represented as symmetrized wave functions of noninteracting
dye molecules in the vibrational-translational states |vi〉 with
energies Evi

. Equation (A1) neglects two-body coordinate-
dependent interactions between the molecules. In a thermal
system, multiple occupation of a translational state has
negligible probability. Thus, all vi are different, although
several molecules can be in the equal vibrational states.

States with different total spins can be mixed by interactions
which depend on both spins and coordinates. In the present
case, the relevant interaction has the form

V =
∑

i

1

2
σ z

i U (i). (A2)

Here spin-independent U (i) can describe both interactions
with internal degrees of freedom, e.g., the linear coupling
of Eq. (11), and arbitrary interactions with the environment
dependent on the internal and translational coordinates of the
molecule.

The lifetime of the many-body states is determined by the
imaginary part (28) of the self-energy, calculated with Fermi’s
golden rule,

Im�(z = ESSz + iδ) = −π
∑

{v},{v′},r ′,S ′

∣∣〈�̃(S ′)
r ′{v′}Sz

∣∣V ∣∣�̃(S)
r{v}Sz

〉∣∣2

× nB (E{v})δ

[
ES ′,Sz − ES,Sz +

∑
i

(Ev′
i
− Evi

)

]
. (A3)

The Sz dependence of the matrix elements can be extracted by
using the Wigner-Eckart theorem [see Eq. (23) in [35]]. Then
the imaginary part (A3), averaged over r , can be calculated
with the sum rules [see Eq. (37) in [35]], leading to

�S,Sz = 1

fS(N )

∑
r

�S

= π
∑
S ′

{
δS ′,SY

(S,1)[Û0,Û0] + δS ′,S+1Y
(S+1,1)[Û−1,Û−1]

+ δS ′,S−1Y
(S,1)[Û−1,Û−1]

fS−1(N )

fS(N )

}

× (
X

(S,S ′,1)
Sz0

)2 ∑
{v},{v′}

1

N

∑
i

|〈v′
i |U |vi〉|2

∏
i ′ �=i

δv′
i′ ,vi′

× nB(E{v})δ

[
ES ′,Sz − ES,Sz +

∑
i

(
Ev′

i
− Evi

)]
.

(A4)

The width contains three terms, corresponding to S ′ =S,S±1,
in agreement with the selection rules [36] for the case of
one-body interactions. Substituting the factors X and Y [see
Eq. (23) and Table I in [35]] and introducing the spectral
function

A(E) =
∑
v,v′

nB(Ev)|〈v′|U |v〉|2δ(E + Ev′ − Ev), (A5)

we get Eq. (29).

APPENDIX B: LEVEL CORRECTIONS

The real part �′ of the self-energy � = �′ + i�′′ provides
information on shifts of energy levels of the spin states due
to their coupling to the vibrations. We now demonstrate that
these level shifts do not destroy the O(IN ) energy separation
of the large-spin state from the remaining levels.

The summation over {v},{v′},r ′ and averaging over r are
done in the same way as for the imaginary part in Appendix A.
Then we get Eq. (29), where the spectral function (A5) is
replaced by∑

v,v′
nB(Ev)

|〈v′|U |v〉|2
ES ′,Sz − ES,Sz + Ev′ − Ev

. (B1)

(1) Diagonal virtual transitions S ′ = S. In this case the
denominator in Eq. (B1) is the vibration energy difference and

033848-10



MOLECULAR SPECTRA IN COLLECTIVE DICKE STATES PHYSICAL REVIEW A 94, 033848 (2016)

is independent of the spin state. The factor from Eq. (29) gives
a correction to all energy levels

δE ∝
(

N

2
+ 1

)
(Sz)2

S(S + 1)
. (B2)

This is negligible for unpolarized states Sz � S by a factor of
1/N .

(2) Off-diagonal virtual transitions S ′ = S ± 1. In this case
the energy denominator is dominated by ES±1,Sz − ES,Sz ∼
IS, leading to

δE ∝
(

N

2
+ S + 1

)
S2 − Sz2

(2S + 1)S2

− (N/2 − S)
(S + 1)2 − Sz2

(2S + 1)S(S + 1)
. (B3)

For the large-S states the first term dominates, and this
correction is of O(1), much smaller than the energy difference

between different S states IS. Furthermore, the dependence of
this correction on Sz is only of order (Sz/S)2, again strongly
suppressed for unpolarized states.

Thus, the large-spin state remains well separated from the
smaller spin states: its separation from the next levels is of
O(N ), while the level corrections are of O(1).

APPENDIX C: EMISSION RATE

We compute the transition rate between initial (i) and final
(f ) states, where Sz(i) = Sz(f ) + 1. It is related to the matrix
element (i,f ) of the evolution operator as �i→f = d

dt
|Uf i(t)|2.

The transition amplitude occurs due to the perturbation δH =
�eiEtS− + H.c., corresponding to coupling with the emitted
electromagnetic radiation.

Denoting the free evolution operator of the decoupled spin system by U0, the rate of the transition in the absence of vibrations
can be written as

d

dt
|Uf i(t)|2 = d

dt

[
〈f |

∫ t

0
dt ′U0(t,t ′)V (t ′)U0(t ′,0)|i〉〈i|

∫ t

0
dt ′′U0(0,t ′′)V (t ′′)U0(t ′′,t)|f 〉

]

= 〈f |
∫ t

0
dt ′U0(t,t ′)V (t ′)U0(t ′,0)|i〉〈i|U0(0,t)V (t)U0(t,t)|f 〉 + c.c.

= �2|〈f |S−|i〉|2e−iEt

∫ t

0
dt ′〈f |U0(t,t ′)|f 〉eiEt ′ 〈i|U0(t ′,t)|i〉 + c.c. (C1)

The free evolution operator is related to the free resolvent

U0(t,0) = 1

2πi

∫ ∞

−∞
dze−iztR0(z − iη) (t > 0), (C2)

where R0(z − iη) = (z − H0 − iη)−1. We substitute this expression, perform the t ′ integral, and use eizt−1
iz

= πδ(z) for large t .
Noting that U0(t ′,t) corresponds to evolution backwards in time and corresponds to the complex conjugate of Eq. (C2), we have

d

dt
|Uf i(t)|2 = − 1

2i
�2|〈f |S−|i〉|2

∫ ∞

−∞

dz

2πi
〈f |R(z − iη)|f 〉〈i|R(z + E + iη)|i〉 + c.c. (C3)

We now incorporate the influence of vibrations on this result by inserting the vibration-induced self-energy in the resolvents
[Eq. (26)],

d

dt
|Uif (t)|2 = − 1

2i
�2|〈f |S−|i〉|2

∫ ∞

−∞

dz

2πi

1

z − Ef − �f

1

z − E − Ei − �∗
i

+ c.c.

= − 1

2i
�2|〈f |S−|i〉|2 1

Ei + �′
i − Ef − �′

f − E + i(�i + �f )
+ c.c.

= �2|〈f |S−|i〉|2 �i + �f

(Ei + �′
i − Ef − �′

f + E)2 + (�i + �f )2
, (C4)

where �i,f = �′
i,f + i�i,f is the self-energy. Thus, we obtain Eq. (34).
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