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Evolution of an electromagnetic field in the presence of a mobile membrane
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We consider a one-dimensional cavity composed of two perfect, fixed mirrors and a mobile membrane in
between. Assuming that the membrane starts to move from rest and that the membrane moves appreciably in
a time scale much larger than the time scale in which the cavity electromagnetic field evolves appreciably,
we derive simple analytic formulas that describe to good approximation the evolution of the field and that
provide an intuitive physical picture. These formulas take into account the position, velocity, and acceleration of
the membrane and are valid for arbitrarily large displacements of the membrane along the cavity axis. Also, we
deduce the conditions under which the field can be described to good approximation by a single instantaneous
mode.
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I. INTRODUCTION

Optomechanics studies systems composed of a mechan-
ical oscillator, such as a mobile mirror or membrane, and
an electromagnetic field interacting by means of radiation
pressure or thermal forces [1]. Some of the main attractions
of this area come from the facts that it provides systems
that can interact with other quantum systems such as cold
atoms [2], that can serve as microwave-to-optical converters
in quantum information networks [3], and that are very
promising for studying the quantum physics of macroscopic
objects [1]. In order to do the latter, one needs to create
and manipulate quantum states of motion in the mechanical
oscillator. In particular, the mechanical oscillator has already
been prepared in its quantum ground state of motion in various
optomechanical systems by either cryogenic cooling [4–6]
or laser cooling using cavity fields [7,8], and it has also
been prepared in a squeezed state [9–11]. Moreover, some
experimental setups have demonstrated single-phonon control
in the mechanical oscillator using a superconducting qubit
[4], nonclassical correlations with longer lifetimes between
single photons and phonons from the mechanical oscillator
[6], the generation of entanglement between a microwave
field and a mechanical oscillator [12], and the generation
of quantum squeezed states of light [13,14]. Some of the
technical difficulties of these experiments consist in the
production of quantum states with sufficiently long lifetimes
and that they operate at very low temperatures. The situation
is now more encouraging because mechanical resonators for
optomechanics that may allow studies in the quantum regime
and at room temperature have recently been developed [15].

Optomechanical systems are usually described in terms of a
harmonic oscillator model [1] where the mechanical oscillator
can only have small displacements around an equilibrium
position. Nevertheless, there are works that go beyond this and
describe other physical phenomena arising from coupling the
electromagnetic field with the motional degrees of freedom
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of the mechanical oscillator; see [16–23] and references
therein. In particular, [18] develops a scattering theory that
allows the description of a pointlike scatterer (e.g., an atom
or mobile mirror with infinitesimal thickness) coupled to
the electromagnetic field through radiation pressure, while
[19] presents a model from first principles to describe a
mobile mirror with nonzero thickness interacting with the
electromagnetic field. In this article we use the model of [19]
to describe a one-dimensional cavity composed of two perfect,
fixed mirrors and a mobile membrane with nonzero thickness
in between. This setup is frequently referred to in the literature
as the membrane-in-the-middle optomechanical setup [24]. In
fact, it is one of the paradigmatic optomechanical systems
because it has been noted to combine good properties of the
cavity (e.g., highly reflective mirrors) with good properties of
the mechanical oscillator (e.g., a very thin, light membrane that
can be moved easily by radiation pressure). The objective of
this work is to determine how the cavity electromagnetic field
evolves in the presence of the mobile membrane. This has the
purpose of improving and extending the understanding of the
electromagnetic field in the presence of moving boundaries.
In particular, the work uses a model deduced from first
principles, where the membrane is not restricted to small
deviations around an equilibrium position. Furthermore, we
establish how, why, and when the electromagnetic field follows
adiabatically a single cavity mode, and we deduce and give
a physical picture of how and why other cavity modes are
excited. Moreover, we obtain simple analytic formulas that
describe the cavity field to good approximation and that
provide physical insight to its evolution. We note that some
results were presented without giving any proofs in the
conference [22].

The article is organized as follows. In Sec. II we present
the physical system under consideration and we establish the
equation governing the evolution of the electromagnetic field.
It is a wave equation modified by terms that arise from the
fact that the membrane’s properties are altered when it is in
motion. In Sec. III we review the evolution of the field when
the membrane is fixed and, in particular, we introduce the
modes of the cavity. In Secs. IV and V we determine to good
approximation the evolution of the field when the membrane
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FIG. 1. Schematic representation of the system under considera-
tion. The outer slabs are the perfect, fixed mirrors of the cavity, while
the slab in the middle is the membrane. The interior of the cavity
goes from x = 0 to x = L, where the boundaries of the mirrors are
located. The midpoint of the membrane along the x axis at time t is
q(t) and the membrane has thickness δ0. The y axis points into the
page.

can move and when only one mode is initially excited. In
Sec. VI we extend the results to the case of several initially
excited modes. Finally, a summary and the conclusions are
given in Sec. VII.

II. THE MODEL

We consider a one-dimensional cavity composed of two
perfect, fixed mirrors and a mobile membrane in between;
see Fig. 1. Here we are assuming that the mirrors and the
membrane are slabs of infinite length and width that are parallel
to each other and that there is vacuum between the membrane
and the mirrors. This system is frequently referred to in
the literature as the membrane-in-the-middle optomechanical
setup [24]. To describe, it we consider a coordinate system
such that the x axis is perpendicular to the faces of the mirrors
and the membrane, the interior of the cavity extends from
x = 0 to x = L, where the boundaries of the perfect mirrors
are located and the midpoint of the membrane along the x

axis at time t is denoted by q(t); see Fig. 1. In the rest of
the article we refer to q(t) as the position of the membrane
and we assume that the membrane is a linear, isotropic,
nonmagnetizable, nonconducting, and uncharged dielectric
of thickness δ0 when it is at rest. Moreover, the electric
susceptibility of the membrane is denoted by χ [x − q(t)] and
we assume that it is piecewise continuous with a piecewise
continuous derivative, non-negative and that it vanishes outside
of the membrane, that is, we assume that

χ [x − q(t)] = 0 if |x − q(t)| � δ0

2
. (1)

We emphasize that the membrane is free to move throughout
the interior of the cavity, but only along the x axis. In particular,
the membrane is not restricted to small displacements around
an equilibrium position. The motion can be due to an external
agent or to the radiation pressure exerted by an electromagnetic
field inside the cavity.

Inside the cavity there is an electromagnetic field and we
use Gaussian units to describe it. We assume that it can be

deduced from vector and scalar potentials of the form

A(x,t) = A0(x,t)ẑ, V (x,t) = 0, (2)

where ẑ is a unit vector in the direction of the positive z axis.
Hence, the electric and magnetic fields are given by

E(x,t) = −1

c

∂A
∂t

(x,t) = −1

c

∂A0

∂t
(x,t)ẑ,

B(x,t) = ∇ × A(x,t) = −∂A0

∂x
(x,t)ŷ. (3)

Here c is the speed of light in vacuum and x̂ and ŷ are
unit vectors in the direction of the positive x and y axes,
respectively.

We now introduce the equation governing the dynamics of
the potential A0(x,t). In order to do this, we first assume that

(i) λ0 is the characteristic wavelength of the electromag-
netic field,

(ii) ν0 is the characteristic frequency of the field and
satisfies λ0ν0 = c,

(iii) A00 is a characteristic value of A0(x,t),
(iv) ν−1

osc is the time scale in which q(t) varies appreciably.
In the rest of the article we measure lengths in units of λ0

and time in units of ν−1
0 . Hence, the nondimensional position

ξ and time τ are given by

ξ = x

λ0
, τ = ν0t. (4)

These quantities allow one to introduce the following nondi-
mensional quantities:

Ã0(ξ,τ ) = A0(λ0ξ,ν−1
0 τ )

A00
, q̃(τ ) = q(ν−1

0 τ )

λ0
,

ξL = L

λ0
, δ̃0 = δ0

λ0
,

χ̃[ξ − q̃(τ )] = χ{λ0[ξ − q̃(τ )]},
ε̃[ξ − q̃(τ )] = 1 + 4πχ̃ [ξ − q̃(τ )],

εpert = νosc

ν0
. (5)

First, observe that Ã0(ξ,τ ), q̃(τ ), ξL, and δ̃0 are the nondi-
mensional potential, position of the membrane, length of the
cavity, and thickness of the membrane, respectively. Moreover,
recall that χ [x − q(t)] is the electric susceptibility of the
membrane and that we have assumed that it vanishes outside of
the membrane; see (1). Hence, χ̃ [ξ − q̃(τ )] and ε̃[ξ − q̃(τ )]
are the electric susceptibility and the dielectric function of
the membrane with a nondimensional argument [ξ − q̃(τ )],
respectively.

We now discuss the interpretation of the parameter εpert in
(5). Observe that the time scale in which the electromagnetic
field evolves appreciably can be taken to be 1/ν0. Therefore,
εpert is the time scale 1/ν0 in which the field evolves apprecia-
bly divided by the time scale 1/νosc in which the membrane
moves appreciably. Since the electromagnetic field usually
evolves more rapidly than the membrane, one usually has
1/ν0 � 1/νosc or, equivalently, 0 � εpert = νosc/ν0 � 1. For
example, using the parameters of the membrane-in-the-middle
optomechanical setup in [24], one has ν0 = 2.82×1014 Hz,
νosc = 1.34×105 Hz, and, consequently, εpert = 4.8×10−10.
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Before proceeding it is important to give an interpretation
of the first and second derivatives of q̃(τ ) with respect to τ .
From the fact that λ0ν0 = c and from (5) one has

q̃ ′(τ ) = q̇(ν−1
0 τ )

c
, q̃ ′′(τ ) = q̈(ν−1

0 τ )

cν0
. (6)

Here the q̃ ′ and q̃ ′′ denote the first and second derivatives of
q̃ with respect to its argument τ , while q̇ and q̈ denote the
first and second derivatives of q with respect to its argument
t = ν−1

0 τ . Throughout the article f ′(x) denotes the derivative
of f (x) with respect to x. For example, ω′

N [q̃(τ )] denotes the
derivative of ωN (q̃) with respect to q̃ and evaluated at q̃(τ ).

Notice that (6) indicates that q̃ ′(τ ) is the velocity of the
membrane divided by the speed of light in vacuum, while q̃ ′′(τ )
is the acceleration of the membrane divided by the product of
the speed of light in vacuum times the characteristic frequency
of the electromagnetic field. With this in mind, in the following
we assume that q̃ ′(τ ) and q̃ ′′(τ ) are quantities whose absolute
value is small (that is, much less than 1). In other words, we
assume that the membrane has a speed much smaller than that
of light in vacuum and that the membrane has an acceleration
whose absolute value is much smaller than the product of the
speed of light in vacuum times the characteristic frequency of
the electromagnetic field. Notice that this is compatible with
the usual situation where εpert � 1.

Using a relativistic treatment, [19] established a general
equation that governs the dynamics of Ã0(ξ,τ ) for all possible
values of the velocity and acceleration of the membrane. In
particular, it also showed that, to first order in q̃ ′(τ ) and q̃ ′′(τ ),
that equation is given by

∂2Ã0

∂ξ 2
(ξ,τ ) = ε̃[ξ − q̃(τ )]

∂2Ã0

∂τ 2
(ξ,τ )

+ 8πq̃ ′(τ )χ̃[ξ − q̃(τ )]
∂2Ã0

∂ξ∂τ
(ξ,τ )

+ 4πq̃ ′′(τ )χ̃[ξ − q̃(τ )]
∂Ã0

∂ξ
(ξ,τ ). (7)

We note that [17] and some references therein also present (7)
for the special case of a constant electric susceptibility. Notice
that Ã0(ξ,τ ) satisfies a wave equation with a nondimensional
position- and time-dependent coefficient ε̃[ξ − q̃(τ )] and that
is modified with terms proportional to the nondimensional
velocity q̃ ′(τ ) and acceleration q̃ ′′(τ ) of the membrane. In
(7), the (nondimensional) position of the membrane q̃(τ ) can
be determined either by an external agent or by an equation
involving the radiation pressure exerted by the field [19]. Our
results are valid for both cases because further below we
assume that εpert � 1 and this allows us to solve (7) using
the method of multiple scales [25].

In order to take into account the perfect, fixed mirrors of
the cavity, one must supplement the equation for Ã0(ξ,τ ) in
(7) with the following boundary conditions:

Ã0(0,τ ) = 0, Ã0(ξL,τ ) = 0. (8)

Recall that ξL is the length L of the cavity in units of the
characteristic wavelength λ0 of the electromagnetic field; see
(5). The boundary conditions in (8) come from applying the
usual boundary conditions for electric fields at interfaces

between different media [26]. Explicitly, they come from
the following two requirements: (i) the electric field E(x,t)
given in (3) must vanish inside the perfect mirrors and (ii) the
component of the electric field tangent to the surface of each
mirror must be continuous across the boundary of each mirror.

In the next sections we solve the boundary value problem
(7) and (8) to good approximation.

III. EVOLUTION WITH A FIXED MEMBRANE

In this section we briefly review the evolution of the field
in the case where the membrane is fixed and, in particular, we
introduce the modes of the cavity. The results of this section
are important because they will be compared with those of
the next sections, where the case of a mobile membrane is
considered.

In this section and only this section we assume that

q̃(τ ) = q̃0 ∈
[
δ̃0

2
, ξL − δ̃0

2

]
. (9)

Notice that q̃0 is fixed in the interval shown in (9) because
q̃0 is the midpoint of the membrane along the x axis and the
membrane has (nondimensional) thickness δ̃0.

The equation governing the evolution of Ã0(ξ,τ ) is obtained
from (7) by using (9). One obtains the well-known wave
equation for Ã0(ξ,τ ):

∂2Ã0

∂ξ 2
(ξ,τ ) = ε̃(ξ − q̃0)

∂2Ã0

∂τ 2
(ξ,τ ). (10)

Solving (10) by separation of variables [27], imposing the
boundary conditions in (8), and using the results of Sturm-
Liouville theory [28,29] (in particular, see Chapter 8 of [28]),
one finds the following results.

(1) The cavity has a countable set of (nondimensional)
angular frequencies {ωn(q̃0)}+∞

n=1 with ωn(q̃0) > 0 for all n and

lim
n→+∞ ωn(q̃0) = +∞. (11)

Moreover, the frequencies can be ordered so that ωm(q̃0) <

ωn(q̃0) if m < n. Observe that the notation indicates that
ωn(q̃0) depends on the (fixed, nondimensional) position of
the membrane q̃0. Also, it can be shown that ωn(q̃0) are
continuously differentiable functions of q̃0; see Appendix A.

(2) The cavity has a set of modes {Gn(ξ,q̃0)}+∞
n=1 consisting

of functions that satisfy the following boundary value problem:

∂2Gn

∂ξ 2
(ξ,q̃0) = −ωn(q̃0)2ε̃(ξ − q̃0)Gn(ξ,q̃0),

Gn(0,q̃0) = 0, Gn(ξL,q̃0) = 0. (12)

Here the notation indicates that Gn(ξ,q̃0) depends on the (fixed,
nondimensional) position of the membrane q̃0 and ωn(q̃0) is
the nondimensional angular frequency associated with mode
Gn(ξ,q̃0). Also, it can be shown that Gn(ξ,q̃0) are continuously
differentiable functions of q̃0; see Appendix A.

(3) The modes {Gn(ξ,q̃0)}+∞
n=1 can be chosen to be real-

valued functions that satisfy the following orthonormalization
relation:∫ ξL

0
dξ ε̃(ξ − q̃0)Gn(ξ,q̃0)Gm(ξ,q̃0) = δnm. (13)
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Here and in the following δnm is the Kronecker δ (equal to 0 if
n �= m and equal to 1 if n = m).

(4) Each nondimensional angular frequency ωn(q̃0) is
nondegenerate. In other words, there is only one linearly
independent mode Gn(x,q̃0) associated with each ωn(q̃0).

We expand Ã0(ξ,τ ) in terms of the modes Gn(ξ,q̃0) of the
cavity

Ã0(ξ,τ ) =
+∞∑
n=1

cn(τ )Gn(ξ,q̃0). (14)

One can reduce Eq. (10) for Ã0(ξ,τ ) to a set of uncoupled
equations for the coefficients cn(τ ) by taking the following
sequence of steps: (i) substitute the expansion of Ã0(ξ,τ )
given in (14) into the differential equation for Ã0(ξ,τ ) given
in (10); (ii) use the differential equation for the modes in
(12) to eliminate second-order derivatives with respect to ξ ;
(iii) multiply the resulting equation by Gm(ξ,q̃0); (iv) integrate
with respect to ξ from ξ = 0 to ξ = ξL; and, finally, (v) use
the orthonormalization relation for the modes in (13) to get rid
of the summations involved. One obtains that

c′′
m(τ ) + ωm(q̃0)2cm(τ ) = 0. (15)

Observe that these are the well-known independent harmonic
oscillator equations for each of the coefficients cm(τ ) of the
modes Gm(ξ,q̃0) in (14). The equations in (15) are easily solved
[29] to give

cm(τ ) = α1me−iωm(q̃0)τ + α2meiωm(q̃0)τ , (16)

where α1m and α2m are complex constants that are determined
by the initial conditions.

Substituting (16) in the expansion of Ã0(ξ,τ ) given in (14)
and demanding Ã0(ξ,τ ) to be a real quantity, one obtains that

α2m = α∗
1m. (17)

Here and in the following the complex conjugate of a quantity
g is denoted by g∗. Consequently,

Ã0(ξ,τ ) =
+∞∑
n=1

[α1ne
−iωn(q̃0)τ + α∗

1ne
iωn(q̃0)τ ]Gn(ξ,q̃0). (18)

To end this section we assume that only mode N is initially
excited; that is, we assume that

cm(0) = g0NδmN, c′
m(0) = g1NδmN . (19)

Here g0N and g1N have to be real quantities because, according
to (16) and (17), the cm(τ ) are real quantities.

Substituting (16) into (19) one obtains that

α1m =
[
g0N

2
+ ig1N

2ωN (q̃0)

]
δmN . (20)

Notice that the Kronecker δ indicates that only the mode that
is initially excited remains excited.

Substituting the expressions for α1m given in (20) into the
expansion of Ã0(ξ,τ ) given in (18), one obtains

Ã0(ξ,τ ) = bN0e
−i[ωN (q̃0)τ−
N0]GN (ξ,q̃0) + c.c., (21)

where we have taken bN0 and 
N0 to be the amplitude and a
phase of α1N , that is, α1N = bN0e

i
N0 , with

bN0 =
∣∣∣∣g0N

2
+ i

g1N

2ωN (q̃0)

∣∣∣∣,

N0 = arg

[
g0N

2
+ i

g1N

2ωN (q̃0)

]
. (22)

Here arg(z) is an argument or phase of complex number z and
c.c. indicates the complex conjugate.

IV. EXPANSION IN TERMS OF THE
INSTANTANEOUS MODES

In this section we return to the case of a mobile membrane.
First recall that we introduced in Sec. III the set of (nondimen-
sional) angular frequencies {ωn(q̃0)}+∞

n=1 of the cavity and the
corresponding set of modes {Gn(ξ,q̃0)}+∞

n=1 in the case where
the membrane is fixed at q̃0. Letting the position q̃(τ ) of the
membrane vary, we obtain the instantaneous (nondimensional)
angular frequencies {ωn[q̃(τ )]}+∞

n=1 of the cavity and the
corresponding set of instantaneous modes {Gn[ξ,q̃(τ )]}+∞

n=1.
In all that follows we refer to the instantaneous modes
{Gn[ξ,q̃(τ )]}+∞

n=1 and angular frequencies {ωn[q̃(τ )]}+∞
n=1 of the

cavity simply as the modes and frequencies of the cavity. Also,
recall from items (1) and (2) in Sec. III that ωn[q̃(τ )] and
Gn[ξ,q̃(τ )] are continuously differentiable functions of q̃(τ ).

One can expand Ã0(ξ,τ ) in terms of the modes
{Gn[ξ,q̃(τ )]}+∞

n=1 as follows:

Ã0(ξ,τ ) =
+∞∑
n=1

cn(τ )Gn[ξ,q̃(τ )]. (23)

Before proceeding it is convenient to define the following
set of mode-dependent quantities:

�mn[q̃(τ )] =
∫ ξL

0
dξ ε̃[ξ − q̃(τ )]Gm[ξ,q̃(τ )]

∂Gn

∂q̃(τ )
[ξ,q̃(τ )],

θmn[q̃(τ )] =
∫ ξL

0
dξ4πχ̃ [ξ − q̃(τ )]Gm[ξ,q̃(τ )]

∂Gn

∂ξ
[ξ,q̃(τ )],

�mn[q̃(τ )] = �mn[q̃(τ )] + θmn[q̃(τ )]. (24)

Notice that these are all nondimensional, real quantities,
because we chose the modes to be real-valued functions.

We now deduce the equations for the coefficients cn(τ ) of
the modes Gn[ξ,q̃(τ )] in (23). One has to follow the same steps
used in Sec. III for the case of a fixed membrane. Substituting
the expansion of Ã0(ξ,τ ) given in (23) into the equation for
Ã0(ξ,τ ) given in (7), neglecting terms of order n � 2 in q̃ ′(τ )
and q̃ ′′(τ ), and using the orthonormalization relation for the
modes given in (13), one obtains

c′′
m(τ ) + ωm[q̃(τ )]2cm(τ )

= −
+∞∑
n=1

�mn[q̃(τ )][2q̃ ′(τ )c′
n(τ ) + q̃ ′′(τ )cn(τ )]. (25)

We note that Eq. (7) for Ã0(ξ,τ ) was obtained by neglecting
terms of order n � 2 in q̃ ′(τ ) and q̃ ′′(τ ). This is the reason
why terms of these orders were neglected to obtain Eq. (25).
Therefore, (25) is correct to first order in q̃ ′(τ ) and q̃ ′′(τ ).
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The equations in (25) reveal that all the coefficients cm(τ ) of
the modes are coupled due to the term on the right-hand side.
Nevertheless, notice that this coupling is small if both |q̃ ′(τ )|
and |q̃ ′′(τ )| are small, which is the case under which Eq. (7)
for Ã0(ξ,τ ) was deduced. In order to exhibit this smallness
explicitly, it is convenient to first define the quantity

˜̃q(τosc) = q
(
ν−1

oscτosc
)

λ0
. (26)

Recall that ν−1
osc is the time scale in which the membrane moves

appreciably. Therefore, τosc = νosct is a nondimensional time
and ˜̃q(τosc) is the nondimensional position of the membrane
where time is measured in units of the time scale ν−1

osc in which
the membrane moves appreciably.

Using the definition of the nondimensional time τ in (4)
and the definitions of εpert in (5) and ˜̃q(τosc) in (26), it follows
that the relation between q̃(τ ) and ˜̃q(τosc) and their derivatives
is given by

q̃(τ ) = ˜̃q(εpertτ ),

q̃ ′(τ ) = εpert ˜̃q ′(εpertτ ),

q̃ ′′(τ ) = ε2
pert

˜̃q ′′(εpertτ ). (27)

With (27) we are all set to exhibit the smallness we alluded to
in the paragraph before Eq. (26). Expressing (25) in terms of
the quantities on the right-hand side of (27), one obtains

c′′
m(τ ) + ωm[ ˜̃q(εpertτ )]2cm(τ )

= −2εpert ˜̃q ′(εpertτ )
+∞∑
n=1

�mn[ ˜̃q(εpertτ )]c′
n(τ )

− ε2
pert

˜̃q ′′(εpertτ )
+∞∑
n=1

�mn[ ˜̃q(εpertτ )]cn(τ ). (28)

We emphasize that the equations in (28) are equivalent to
the equations in (25). Nevertheless, the equations in (28)
have a more transparent interpretation. They reveal that
the coefficients cm(τ ) of the modes approximately satisfy
uncoupled harmonic oscillator equations with a slowly varying
time-dependent frequency ωm[ ˜̃q(εpertτ )] if 0 < εpert � 1, a
result that should be expected because the cm(τ ) indeed satisfy
harmonic oscillator equations when the membrane is fixed
(see Sec. III). Also, it is explicitly seen that all of the cm(τ ) are
weakly coupled due to the term on the right-hand side of (28)
if 0 < εpert � 1.

In the rest of the article we assume the following three
conditions.

(1) 0 < εpert � 1.
Since εpert = νosc/ν0, with ν0 the characteristic frequency

of the field and 1/νosc the time scale in which the membrane
evolves appreciably (see Sec. II), this condition indicates that
there are two clearly defined and separate time scales: a fast
time scale 1/ν0 in which the electromagnetic field evolves and
a slow time scale 1/νosc in which the membrane evolves. Also,
as a consequence of this assumption, the equations in (28) have
coefficients that vary very slowly in the (nondimensional) time
τ and the cm(τ ) satisfy perturbed harmonic oscillator equations
with a slowly varying frequency. These properties indicate that

the system of differential equations in (28) can be solved by
the method of multiple scales [25].

(2) The initial conditions for the coefficients cm(τ ) of the
modes are

cm(0) = g0NδmN, c′
m(0) = g1NδmN, (29)

where g0N and g1N are real numbers and N is a fixed, positive
integer.

Notice that the initial conditions in (29) indicate that only
mode N is initially excited. In Sec. VI (29) will not hold
because we consider the case of several initially excited modes.

(3) The membrane is initially at rest; that is, q̃ ′(0) =
εpert ˜̃q ′(0) = 0.

Notice that this assumption combines with the one in the
previous item so as to consider the following physical situation:
The membrane is initially fixed and the field is found in one of
the modes; afterwards, the membrane starts to move from rest
either by an external agent or by radiation pressure. Moreover,
we used (27) to relate q̃ ′(0) to ˜̃q ′(0).

In Sec. VI we consider the case of several initially excited
modes. In that section the following physical situation is
considered: The membrane is initially fixed and the field is
found in several modes; afterwards, the membrane starts to
move from rest either by an external agent or by radiation
pressure.

Using the assumptions above and the method of multiple
scales one can solve to good approximation the initial value
problem posed in (28) and (29). This is what we do in the next
section.

V. EVOLUTION WITH A MOBILE MEMBRANE

In this section we first describe briefly how the initial value
problem in (28) and (29) can be solved by the method of
multiple scales. The details are provided in Appendix B for
the case of two time scales and in Appendix C for the case of
three time scales. We treat the case of three time scales in order
to have an approximate solution that is accurate for very long
times, while the case of two time scales is presented because
some of its results are used in the case of three time scales. In
the subsequent sections we only present the results and discuss
them.

The method of multiple scales is applicable whenever there
are several separate time scales involved in a system, that is,
when there are parts of a system that evolve much faster than
others. The method consists in appropriately separating the
parts of the system that evolve with the different time scales and
deducing the differential equations that govern the evolution
of each part. For example, in the weakly damped harmonic
oscillator there are two clearly defined time scales: the fast
oscillation of the harmonic oscillator and the slow decay of
its amplitude. In the method of multiple scales one separates
the original differential equation for the harmonic oscillator
into two differential equations, one for the fast oscillation and
one for the slow decay of the amplitude. Since εpert � 1 [see
item (1) in Sec. IV], we have a similar situation in the system
under consideration. The analogue of the fast oscillation of
the harmonic oscillator is the evolution of the electromagnetic
field with a fixed membrane, while the analogue of the slow
decay of the amplitude is the dependence on the motion of the

033846-5
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membrane. From (28) it is clear that the slow time scale in our
system is given by

t2(τ ) = εpertτ, (30)

since all of the coefficients of cm(τ ) in (28) are functions
of εpertτ . The deduction of the fast time scale is a bit more
elaborate, but using the assumption that only mode N is
initially excited [see item (2) in Sec. IV], it can be shown
(see Appendix B) that it is given by

t1N (τ ) =
∫ τ

0
ωN [q̃(τ ′)]dτ ′. (31)

Physically, this result is very reasonable, as we now explain.
First imagine that the membrane is fixed at q̃0 and that only
mode N is initially excited. In this case the exact solution was
calculated in (21). Observe from that equation that the time
dependence of Ã(ξ,τ ) is of the form

ωN (q̃0)τ =
∫ τ

0
ωN (q̃0)dτ ′. (32)

If the membrane can move, then ωN (q̃0) becomes position
dependent and changes to ωN [q̃(τ )]. As a consequence, (32)
changes to (31).

With the two time scales t1N (τ ) and t2(τ ) one can solve
to good approximation the initial value problem in (28) and
(29), and this is done in Appendix B. The problem with just
considering these two time scales is that the approximate
solution obtained might not be accurate for very long times.
In fact, the theory of multiple scales [25] indicates that the
approximate solutions obtained with the two time scales are
accurate at least for times

0 � εpertτ � O(1) ⇔ 0 � t � O

(
1

νosc

)
. (33)

Here and in the following O is the big O [25] and (33) means
that 0 � t � D/νosc for some D > 0.

To remedy this, we introduce an even slower time scale
t3(τ ) given by

t3(τ ) = ε2
pertτ. (34)

These three time scales allow one to obtain an approximate
solution of the initial value problem in (28) and (29) that is
accurate for long times. This is done in Appendix C, where it is
shown that the approximate solution of (28) and (29) obtained
by the method of multiple scales is accurate at least for times
τ = ν0t such that

0 � ε2
pertτ � O(1) ⇔ 0 � t � O

(
1

εpertνosc

)
. (35)

Recall that 0 � εpert � 1 and that 1/νosc is the time scale in
which the mirror moves appreciably; see item (iv) in Sec. II and
item (1) in Sec. IV. Hence, (35) indicates that the approximate
solutions obtained using the method of multiples scales with
the three time scales t1N (τ ), t2(τ ), and t3(τ ) will be accurate
for long times. Explicitly, at least for times t greater than 0 and
less than or equal to D/(εpertνosc) with D > 0.

With the three time scales t1N (τ ), t2(τ ), and t3(τ ) defined
above, one then proposes an asymptotic expansion for each of

the cm(τ ) as follows:

cm(τ ) ∼ Ym0[t1N (τ ),t2(τ ),t3(τ )]

+ εpertYm1[t1N (τ ),t2(τ ),t3(τ )]

+ ε2
pertYm2[t1N (τ ),t2(τ ),t3(τ )] + · · · . (36)

The next step is to substitute (36) into the initial value problem
given in (28) and (29). One then equates equal powers of εpert

and solves the resulting initial value problems for the new
variables t1N , t2, and t3. If one only retains the first n terms in
the asymptotic expansion in (36), then one speaks of an n-term
approximation. Therefore, cm � Ym0 is a first-term approxi-
mation, cm � Ym0 + εpertYm1 is a two-term approximation, so
on and so forth. Moreover, the (n + 1)-term approximation is
going to be more accurate than the n-term approximation. We
mention that the value of the multiple-scales method is that
it allows one to identify the contributions to cn(τ ) in order
of importance; that is, it permits one to obtain more accurate
approximations by adding more terms from the asymptotic
expansion and this allows one to identify which physical
phenomena are introduced and have larger effects than others.

We now present the results for the case of three time scales.
As mentioned above, the deduction of these is presented in
detail in Appendix C. Moreover, we note that the one- and two-
term approximations using three time scales are exactly the
same as the one- and two-term approximations using two time
scales. This suggests that (at least) the one-term approximation
is accurate for times longer than (35).

A. The first-term approximation

The first-term approximation c(1)
n (τ ) to cn(τ ) is given by

c
(1)
N (τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0] + c.c.,

c(1)
m (τ ) = 0 (m �= N ), (37)

with t1N (τ ) given in (31) and

αN [q̃(τ )] =
√

ωN [q̃(0)]

ωN [q̃(τ )]
exp

{
−

∫ q̃(τ )

q̃(0)
dy�NN (y)

}
,

bN0 =
∣∣∣∣g0N

2
+ ig1N

2ωN [q̃(0)]

∣∣∣∣,

N0 = arg

{
g0N

2
+ ig1N

2ωN [q̃(0)]

}
. (38)

Recall that (37) is accurate at least for the times given in (35).
Notice that bN0 and 
N0 are exactly the same real quantities

as in (22) if q̃(0) = q̃0. Also, recall that g0N and g1N are real
constants given by the initial conditions in (29). Observe that
they define the initial amplitude bN0 and phase 
N0 of mode N .
As before, arg(z) denotes an argument (or phase) of complex
number z and c.c. indicates the complex conjugate. Finally,
notice that αN [q̃(τ )] is a real quantity.

From the expansion of Ã0(ξ,τ ) in terms of the modes given
in (23) and the approximate value of cn(τ ) given in (37), it
follows that the first-term approximation Ã

(1)
0 (ξ,τ ) to Ã0(ξ,τ )

is given by

Ã
(1)
0 (ξ,τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0]GN [ξ,q̃(τ )] + c.c.

(39)
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Comparing (39) with the result for Ã0(ξ,τ ) in the case of a
fixed membrane given in (21) and (22), we find the following.

(a) The electromagnetic field follows mode GN [ξ,q̃(τ )]
with a frequency and an amplitude that depend on the position
of the membrane.

Notice that (39) embodies the physically expected result:
An electromagnetic field initially in mode N will follow mode
N if the membrane moves slowly.

(b) The amplitude changes from bN0 to αN [q̃(τ )]bN0.
Since the membrane moves, the amplitude of mode N

depends on the position of the membrane. Also, observe that
αN [q̃(τ )]bN0 reduces to bN0 if q̃(τ ) = q̃(0) for all τ , that is, if
the membrane is fixed.

(c) The phase of the electromagnetic field changes from
[ωN (q̃0)τ − 
N0] to [t1N (τ ) − 
N0], with t1N (τ ) given in (31).

Notice that this is physically reasonable because the field
follows the instantaneous mode GN [ξ,q̃(τ )] and the frequency
ωN [q̃(τ )] associated with it depends on the position of the
membrane; see also the discussion in the paragraph following
Eq. (31).

We now turn to the two-term approximation. It gives a
more accurate description of the electromagnetic field and it
provides us with a criterion to determine when the first-term
approximation is an accurate description of the field.

B. The two-term approximation

The two-term approximation c(2)
n (τ ) to cn(τ ) is given by

c
(2)
N (τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0]

{
1 + iq̃ ′(τ )

ω′
N [q̃(τ )]

4ωN [q̃(τ )]2

}
+ c.c.,

c(2)
m (τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0−π/2]

× q̃ ′(τ )
2�mN [q̃(τ )]ωN [q̃(τ )]

ωm[q̃(τ )]2 − ωN [q̃(τ )]2
+ c.c. (m �= N ),

(40)

where αN [q̃(τ )], bN0, and 
N0 are given in (38) and t1N (τ ) is
given in (31). Recall that (40) is accurate at least for the times
given in (35). Moreover, during that time interval it is more
accurate than the first-term approximation.

From the expansion of Ã0(ξ,τ ) in terms of the modes given
in (23) and the approximate value of cn(τ ) given in (40), it
follows that the two-term approximation Ã

(2)
0 (ξ,τ ) to Ã0(ξ,τ )

is given by

Ã
(2)
0 (ξ,τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0]GN [ξ,q̃(τ )]

×
{

1 + iq̃ ′(τ )
ω′

N [q̃(τ )]

4ωN [q̃(τ )]2

}

+αN [q̃(τ )]bN0e
−i[t1N (τ )−
N0−π/2]q̃ ′(τ )

×
+∞∑
n=1
n �=N

2�nN [q̃(τ )]ωN [q̃(τ )]

ωn[q̃(τ )]2 − ωN [q̃(τ )]2
Gn[ξ,q̃(τ )] + c.c.

(41)

Comparing the two-term approximation of Ã0(ξ,τ ) given
in (41) with its first-term approximation given in (39), we find
the following facts.

(a) All other modes m �= N of the electromagnetic field
are (weakly) excited. Only modes m with ωm[q̃(τ )] in a small
band around ωN [q̃(τ )] can have a non-negligible excitation.

The most evident change from the first-term approximation
to the two-term approximation is that all the other modes m �=
N of the electromagnetic field are now excited. Nevertheless,
this excitation must be small if our results are to hold. The
reason for this is that the order of the asymptotic expansion
in (36) must be preserved; that is, each term εn+1

pert Ym(n+1) must
be smaller than the term εn

pertYmn before it. Since the first-term
approximation c(1)

m (τ ) with m �= N is zero [see (37)], it must
occur that the two-term approximation c(2)

m (τ ) with m �= N

must be small. We now explain why it does indeed happen that
all modes m �= N have negligible excitation except for those
with frequency ωm[q̃(τ )] in a small band around ωN [q̃(τ )].

Notice that the coefficient of Gn[ξ,q̃(τ )] (n �= N ) in (41)
has a factor of the form

2�nN [q̃(τ )]ωN [q̃(τ )]

ωn[q̃(τ )]2 − ωN [q̃(τ )]2
. (42)

Since ωn[q̃(τ )] → +∞ as n → +∞ [see item (1) of Sec. III],
it follows that the excitation of each mode m �= N is
negligible except in the case where ωm[q̃(τ )] � ωN [q̃(τ )].
Therefore, only modes n �= N with ωn[q̃(τ )] in a small band
around ωN [q̃(τ )] can have a non-negligible excitation. These
quasiresonant modes are weakly excited if the membrane
moves sufficiently slowly. This sufficiently slow motion of the
membrane is quantified in item (e) below.

(b) All other modes m �= N evolve with the same fre-
quency as the original mode N , but with a ±π/2 phase shift.
Since all the factors multiplying Gn[ξ,q̃(τ )] (n �= N ) in (41)
are real, except for the complex exponential e−i[t1N (τ )−
N0−π/2],
it follows that all other modes n �= N have a phase [t1N (τ ) −

N0 ∓ π/2], where −π/2(+π/2) is chosen if the product
of the real factors is positive (negative). Since the phase
of the complex exponential multiplying GN [ξ,q̃(τ )] in (41)
is [t1N (τ ) − 
N0] and t ′1N (τ ) = ωN [q̃(τ )], it follows that all
other modes n �= N evolve with the frequency ωN [q̃(τ )] of
mode N but with a ±π/2 phase shift. Furthermore, this also
happens because the multiple scales method indicates that, in
the two-term approximation, the coefficients of modes m �= N

satisfy driven harmonic oscillator equations where the driving
is determined by the initially excited mode; see Appendix C.

(c) A Doppler-like phase shift appears in the original mode.
Since all of our results are correct to first order in q̃ ′(τ ) and

q̃ ′′(τ ), one can express the coefficient cN (τ ) of GN [ξ,q̃(τ )]
given in (40) as follows:

c
(2)
N (τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0]

× exp

{
iq̃ ′(τ )

ω′
N [q̃(τ )]

4ωN [q̃(τ )]2

}
+ c.c. (43)

Comparing the first-term approximation of cN (τ ) given in (37)
with its two-term approximation given in (43), it follows that
the phase of cN (τ ) changes from [t1N (τ ) − 
N0] to

t1N (τ ) − 
N0 − q̃ ′(τ )
ω′

N [q̃(τ )]

4ωN [q̃(τ )]2
. (44)

Hence, a Doppler-like phase shift appears in mode N , since it
depends on the velocity q̃ ′(τ ) of membrane.
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(d) The two-term approximation includes information
about the velocity of the membrane.

Comparing c(1)
n (τ ) with c(2)

n (τ ) [see (37) and (40)], one
readily notices that the corrections to c(1)

n (τ ) involve terms
proportional to q̃ ′(τ ). Moreover, in the previous items we
observed that the aforementioned terms represent a Doppler-
like phase shift in the original mode and the excitation of the
other modes.

(e) The two-term approximation tells us that the first-
term approximation is accurate whenever the following two
conditions are satisfied: ∣∣∣∣q̃ ′(τ )

ω′
N [q̃(τ )]

4ωN [q̃(τ )]2

∣∣∣∣ � 1,

∣∣∣∣q̃ ′(τ )
2�mN [q̃(τ )]ωN [q̃(τ )]

ωm[q̃(τ )]2 − ωN [q̃(τ )]2
αN [q̃(τ )]bN0

∣∣∣∣ � 1,

(m �= N ). (45)

The first condition in (45) comes from demanding that the
first-term approximation c

(1)
N (τ ) of cN (τ ) must be much larger

than the added term in the two-term approximation c
(2)
N (τ ), that

is, from demanding that∣∣c(2)
N (τ ) − c

(1)
N (τ )

∣∣ � ∣∣c(1)
N (τ )

∣∣. (46)

See (37) and (40) for the definitions of c
(1)
N (τ ) and c

(2)
N (τ ).

The second condition in (45) comes from demanding that
the two-term approximation c(2)

m (τ ) of cm(τ ) (m �= N ) must be
much smaller than 1 [recall that c(2)

m (τ ) is a nondimensional
quantity], that is, from demanding that∣∣c(2)

m (τ )
∣∣ � 1 (m �= N ). (47)

See (40) for the definition of c(2)
m (τ ).

We note that we only used the first term in the definition
of c(2)

m (τ ) given in (40) to derive the conditions in (45); that is,
we omitted the complex conjugate (c.c) part.

0.5 4 7 10 13 16 19.5
q
�0.1

0.4

0.7

1

Ωn

FIG. 2. The ten lowest (nondimensional) angular frequencies ωn

of the cavity as a function of the position q̃ of the midpoint of the
membrane for the electric susceptibility in (54). The frequencies were
obtained by substituting the parameters in (59) into (58) and obtaining
the zeros of the resulting equation numerically. Notice that q̃ ranges
from q̃ = 0.5 to q̃ = 19.5 because the (nondimensional) length of the
cavity is ξL = 20 and the membrane has (nondimensional) thickness
δ̃0 = 1.

From the second condition in (45) one immediately
notices that it cannot be fulfilled if ωm[q̃(τ )] = ωN [q̃(τ )] for
some τ . It turns out that this crossing is not possible; see
Appendix A for a rigorous mathematical proof of this fact.
Also, Fig. 2 illustrates this result.

The frequencies ωn[q̃(τ )] of the modes will vary as the
membrane moves. Although they cannot cross, some may
approach the frequency ωN [q̃(τ )] of the original mode; see
Fig. 2. Hence, the factors 1/{ωn[q̃(τ )]2 − ωN [q̃(τ )]2} in the
expression for Ã

(2)
0 (ξ,τ ) can become quite large. Nevertheless,

the first-term approximation Ã
(1)
0 (ξ,τ ) given in (39) will remain

an accurate description of Ã0(ξ,τ ) if the membrane moves suf-
ficiently slowly so that the conditions in (45) hold for all time τ .

C. The three-term approximation

The three-term approximation c(3)
n (τ ) to cn(τ ) is given by

c
(3)
N (τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0]

{
1 + σ (τ )

+ iq̃ ′(τ )
ω′

N [q̃(τ )]

4ωN [q̃(τ )]2
+ ε2

pert

bN2
(
0,ε2

pertτ
)

bN0ei
N0

}
+ c.c.,

c(3)
m (τ ) = αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0−π/2]

×
{
q̃ ′(τ )

2�mN [q̃(τ )]ωN [q̃(τ )]

ωm[q̃(τ )]2 − ωN [q̃(τ )]2
+ iD(τ )

}

+ ε2
pertαm[q̃(τ )]e−it1m(τ )bm2

(
0,ε2

pertτ
)

+ c.c. (m �= N ), (48)

where αN [q̃(τ )], bN0, and 
N0 are given in (38), t1N (τ ) is given
in (31), and αm[q̃(τ )], t1m(τ ), σ (τ ), and D(τ ) are defined as
follows:

αm[q̃(τ )] =
√

ωN [q̃(0)]

ωN [q̃(τ )]
exp

{
−

∫ q̃(τ )

q̃(0)
dy�mm(y)

}
,

t1m(τ ) =
∫ τ

0
dτ ′ωm[q̃(τ ′)],

σ (τ ) = q̃ ′′(τ )
ω′

N [q̃(τ )]

8ωN [q̃(τ )]3
− q̃ ′′(0)

ω′
N [q̃(0)]

8ωN [q̃(0)]3
,

D(τ ) = q̃ ′′(τ )�mN [q̃(τ )]
ωm[q̃(τ )]2 + 3ωN [q̃(τ )]2

{ωm[q̃(τ )]2 − ωN [q̃(τ )]2}2
.

(49)

Recall that (48) is accurate at least for the times given in (35).
Moreover, during that time interval it is more accurate than
both the first- and two-term approximations.

Observe that t1N (τ ) and αN [q̃(τ )] defined in (49) coincide
with t1N (τ ) and αN [q̃(τ )] defined in (31) and (38), respectively.
Moreover, bN2(0,ε2

pertτ ) is determined by solving the O(ε4
pert)

problem. Also, bm2(0,ε2
pertτ ) (m �= N ) has two possibilities: (i)

It is identically equal to zero if q̃ ′′(0) = 0 or �mN [q̃(0)] = 0;
(ii) it is a nonzero function determined by solving the O(ε4

pert)
problem if q̃ ′′(0) �= 0 and �mN [q̃(0)] �= 0. See Appendix C.

The three-term approximation Ã
(3)
0 (ξ,τ ) to Ã0(ξ,τ ) can be

obtained by substituting (48) in the expansion (23) for Ã0(ξ,τ ).
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Comparing (48) with (40), one finds the following facts.
(a) The three-term approximation incorporates informa-

tion about the acceleration of the membrane.
This follows by observing from (48) that c(3)

n (τ ) includes the
terms σ (τ ) and D(τ ) and by noticing from (49) that both σ (τ )
andD(τ ) are proportional to the acceleration of the membrane.

(b) Modes m �= N start to evolve at their own frequency if
q̃ ′′(0) �= 0 and �mN [q̃(0)] �= 0.

If q̃ ′′(0) �= 0 and �mN [q̃(0)] �= 0, then the term multiplied
by e−it1m(τ ) on the right-hand side of the expression for
c(3)
m (τ ) (m �= N ) in (48) is nonzero and has an associated

frequency t ′1m(τ ) = ωm[q̃(τ )]; see Appendix C. Hence, each
mode m �= N has a component that evolves at its associated
frequency ωm[q̃(τ )]. In fact, notice that the term multiplied by
e−it1m(τ ) is very similar to c

(1)
N (τ ) in (37).

(c) The three-term approximation is only valid for three
situations: (i) frequencies in a small band around the orig-
inal mode’s frequency ωN [q̃(τ )], (ii) q̃ ′′(0) = 0, or (iii)
�mN [q̃(0)] = 0 for all m �= N .

Appendix B shows that the evolution of the electromagnetic
field involves an infinite number of fast time scales, namely one
associated with each mode and given by t1m(τ ) in (49). In spite
of this, we were able to reduce the difficulty of the problem to
only one fast time scale because we assumed that only mode
N was initially excited. This allowed us to deduce the one-
and two-term approximations without any more assumptions.
Nevertheless, if one requires an n-term approximation with
n � 3, then it is shown in Appendix C that the problem of
an infinite number of fast time scales appears again and that
one way to remedy this is to demand that at least one of the
following three conditions is satisfied:

q̃ ′′(0) = 0, (50)

or

�mN [q̃(0)] = 0, (m �= N ), (51)

or

d

dt2

{
ωm[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]

}
� 0, (m �= N ). (52)

In particular, (50) is satisfied if an external agent moves the
membrane from rest in such a way that its equation of motion
is, for example, of the following forms:

(i) q̃ ′′(τ ) = −E τn

τn + 1
V ′

1[q̃(τ )],

(ii) q̃ ′′(τ ) = E τn

τn + 1
− V ′

2[q̃(τ )], (53)

where E �= 0 is a (nondimensional) constant, n > 0, V ′
j [q̃(τ )]

is the derivative of the (nondimensional) potential Vj (q̃) with
respect to q̃ and evaluated at q̃(τ ), and V ′

2[q̃(0)] = 0. Notice
that the right-hand side of (i) in (53) tends to −EV ′

1[q̃(τ )] and
that the right-hand side of (ii) in (53) tends to E − V ′

2[q̃(τ )] as
τ → +∞; that is, the right-hand side of the equations in (53)
tend to a force that comes from a potential.

On the other hand, �mN [q̃(0)] = 0 (m �= N ) could be
satisfied for some electric susceptibility functions, while the
condition in (52) is satisfied for frequencies ωm[ ˜̃q(t2)] in a
small band around ωN [ ˜̃q(t2)]. We note that one typically has

q̃ ′′(0) �= 0 and �mN [q̃(0)] �= 0 for some m �= N . The former
condition usually holds because the force on the membrane
is, in general, not initially zero. Therefore, one has to restrict
to modes with frequencies ωm[q̃(τ )] in a small band around
ωN [q̃(τ )]. Notice that modes with frequencies outside of this
band can be neglected, since the two-term approximation tells
us that they are negligibly excited.

If either one of (50), (51), or (52) is not fulfilled, then
one can only have a one- or two-term approximation for the
coefficients cn(τ ) of the modes. Given that (52) is satisfied for
frequencies ωm[ ˜̃q(t2)] in a small band around ωN [ ˜̃q(t2)], one
may think that it would be proper to make the approximation
ωm[q̃(τ )] = ωN [q̃(τ )] for all frequencies in this band. We
consider that this approximation is inappropriate because the
frequencies are, in fact, different and this approximation would
alter the system in a fundamental way. For example, the
quasiresonance factor {ωm[q̃(τ )]2 − ωN [q̃(τ )]2}−1 included in
c(2)
m (τ ) (m �= N ) in the two-term approximation [see (40)]

would not appear if ωm[q̃(τ )] = ωN [q̃(τ )] and it would be
replaced by another term that is defined for ωm[q̃(τ )] =
ωN [q̃(τ )] in a similar way to a harmonic oscillator with
resonant driving [29].

D. Physical interpretation

In this section we add up all the information provided by the
one-, two-, and three-term approximations to give a physical
interpretation of how the electromagnetic field evolves in the
presence of a mobile membrane.

Suppose (as we have done in the deduction of all formulas
up to now) that only mode N is initially excited and that
the membrane starts to move slowly from rest. In a first
approximation the electromagnetic field will follow mode N

with a phase and an amplitude that depend on the position of
the membrane. In a more accurate approximation the phase and
amplitude of mode N include small corrections depending on
the velocity and acceleration of the membrane. In particular,
the phase includes a Doppler-like shift. Also, all the other
modes become weakly excited. The reason for this is the
following. As the membrane moves, the frequencies ωn[q̃(τ )]
of each of the modes Gn[ξ,q̃(τ )] will vary. If ωn[q̃(τ )] is near
ωN [q̃(τ )], then it is easy for light to jump from mode N to
mode n and, consequently, mode n becomes excited. On the
other hand, if ωn[q̃(τ )] is far from ωN [q̃(τ )], then it is difficult
for light to jump from mode N to mode n and, consequently,
the excitation of mode n is negligible. Therefore, only modes
n with frequencies ωn[q̃(τ )] in a small band around ωN [q̃(τ )]
can have non-negligible excitation. The newly excited modes
n have a component that oscillates at the same frequency of the
original mode N but with a ±π/2 phase shift. Also, a newly
excited mode has a component that oscillates at its frequency
ωn[q̃(τ )] if q̃ ′′(0) �= 0 and �mN [q̃(0)] �= 0.

Furthermore, the field can be described to good approxima-
tion by just the initially excited mode N but with an amplitude
and a frequency that depend on the position of the membrane
if (45) holds. These conditions essentially amount to requiring
that the membrane moves sufficiently slowly so that the speed
of the membrane divided by the difference of the squares
of the frequency of mode N minus that of another mode n

is small.
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E. Illustration of the results

In this section we illustrate the results in the case where the
electric susceptibility has the form

χ̃[ξ − q̃(τ )] =
{

χ0 if |ξ − q̃(τ )| < δ̃0
2 ,

0 elsewhere.
(54)

Demanding the continuity of Gn(ξ,q̃0) and its first (partial)
derivative with respect to ξ at the boundaries of the membrane
ξ = q̃0 ± δ̃0/2, the modes can be calculated explicitly in terms
of elementary functions:

Gn(ξ,q̃0) = A1nsin(ωnξ ) if 0 � ξ � q̃0−,

Gn(ξ,q̃0) = A2nsin[ωn0(ξ − q̃0−) + φ2n(q̃0)]

if |ξ − q̃0| <
δ̃0

2
,

Gn(ξ,q̃0) = A3nsin[ωn(ξ − q̃0+) + φ3n(q̃0)]

if q̃0+ � ξ � ξL, (55)

with

ωn0 = ωn

√
1 + 4πχ0, q̃0± = q̃0 ± δ̃0

2
,

sin[φ2n(q̃0)] = A1n

A2n

sin(ωnq̃0−),

cos[φ2n(q̃0)] = A1n

A2n

cos(ωnq̃0−)√
1 + 4πχ0

,

sin[φ3n(q̃0)] = A1n

A3n

[
cos(ωn0δ̃0)sin(ωnq̃0−)

+ sin(ωn0δ̃0)cos(ωnq̃0−)√
1 + 4πχ0

]
,

ψ0n(q̃0) = cos(ωn0δ̃0)cos(ωnq̃0−)

−
√

1 + 4πχ0sin(ωn0δ̃0)sin(ωnq̃0−),

cos[φ3n(q̃0)] = A1n

A3n

ψ0n(q̃0),

A2n

A1n

=
[

1 − 4πχ0

1 + 4πχ0
cos2(ωnq̃0−)

]1/2

,

A3n

A2n

=
[

1 + 4πχ0

1 + 4πχ0

(
A1n

A2n

)2

ψ0n(q̃0)2

]1/2

.

(56)

Here A1n is obtained by requiring Gn(ξ,q̃0) to be normalized,
that is, by demanding that∫ ξL

0
dξ ε̃(ξ − q̃0)Gn(ξ,q̃0)2 = 1. (57)

An analytic expression for A1n can be given, but it is
quite lengthy and can be calculated with ease using the
expressions above and a symbolic programming language such
as Mathematica. For these reasons we have chosen not to
present it.

Moreover, ωn = ωn(q̃0) are functions of q̃0. They are the
solutions of the transcendental equation

sin[ωn(ξL − q̃0+)]

×
[

sin(ωnq̃0−)sin(ωn0δ̃0) − cos(ωn0δ̃0)√
1 + 4πχ0

cos(ωnq̃0−)

]

= cos[ωn(ξL − q̃0+)]√
1 + 4πχ0

×
[

sin(ωnq̃0−)cos(ωn0δ̃0) + sin(ωn0δ̃0)√
1 + 4πχ0

cos(ωnq̃0−)

]
.

(58)

In the rest of this section we take the following parameters:

ξL = 20, δ̃0 = 1, εpert = 10−1, λ0 = 1 cm,

χ0 = 10, g0N = 1, g1N = 0. (59)

We calculated the exact frequencies ωn numerically us-
ing the parameters in (59) and Eq. (58). Figure 2 il-
lustrates the lowest ten (nondimensional) angular frequen-
cies ωn of the cavity as a function of the position q̃ of
the midpoint of the membrane. Notice that the ωn are smooth
functions of q̃ and that there are no crossings between
frequencies.

Finally, Fig. 3 illustrates the evolution of Ã0(ξ,τ ) using the
first-term approximation in (39) when the membrane follows
the motion

q̃(τ ) = 10 − 5cos(2πεpertτ ). (60)

Notice that the membrane follows a harmonic oscillation of
large amplitude centered at the midpoint of the cavity.

Figure 3(a) [3(c)] illustrates Ã0(ξ,τ ) when q̃(τ ) is closest
to the left (right) mirror, while Fig. 3(b) shows Ã0(ξ,τ ) when
q̃(τ ) is at the midpoint of the cavity. Notice that Ã0(ξ,τ ) is
larger in the left (right) side of the cavity in Fig. 3(a) [3(c)].
One may interpret this behavior as light being pushed from one
side of the cavity to the other by the motion of the membrane.
A similar effect has been studied in quantum optomechanics
[30].

VI. THE CASE OF SEVERAL MODES

In Secs. IV and V we assumed that only one mode of the
cavity was initially excited, namely mode N . In this section we
consider the case where several modes can be initially excited.

We proceed in the same way as before, first expanding the
potential Ã0(ξ,τ ) in terms of the modes [see (23)] and then
obtaining Eqs. (25) for the coefficients cm(τ ). The difference
appears in the initial conditions (29). They have to be replaced
by

cm(0) = g0m, c′
m(0) = g1m, (61)

with g0m and g1m real numbers.
Now let N be arbitrary but fixed. Consider the initial value

problem with the differential equations in (25) and the initial
conditions

cm(0) = g0NδmN, c′
m(0) = g1NδmN . (62)
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FIG. 3. The figures show Ã0(ξ,τ ) (red line) inside the cavity
for several values of τ using the electric susceptibility in (54), the
first-term approximation in (39), the parameters in (59), and q̃(τ )
given in (60). The frequency of the excited instantaneous mode is
ω7 (the seventh-lowest frequency) and it is illustrated in Fig. 2. The
corresponding values of τ are (a) τ = 0, (b) τ = 2.5, and (c) τ = 5.
The vertical blue lines indicate the boundaries of the membrane.

This initial value problem was solved to good approximation
in Secs. IV and V. Let cm,N (τ ) denote its exact solution and
c

(j )
m,N (τ ) denote the j -term approximate solution. Since the

differential equations in (25) are linear, it follows that the
exact solution to the initial value problem in (25) and (61) is
given by

cm(τ ) =
+∞∑
N=1

cm,N (τ ), (63)

while a j -term approximate solution is given by

cm(τ ) �
+∞∑
N=1

c
(j )
m,N (τ ). (64)

We now use the first-term approximation to cm,N (τ ). First
observe from (37) that

c
(1)
m,N (τ ) = {αN [q̃(τ )]bN0e

−i[t1N (τ )−
N0] + c.c.}δmN, (65)

where αN [q̃(τ )], bN0, and 
N0 are given in (38) and t1N is
defined in (49).

Substituting (65) in the expansion (23) for Ã0(ξ,τ ), we
conclude that the potential is approximately given by

Ã0(ξ,τ ) �
+∞∑
N=1

αN [q̃(τ )]bN0e
−i[t1N (τ )−
N0]GN [ξ,q̃(τ )] + c.c.

(66)

We end this section by noting that (66) is an accurate
approximation as long as (45) holds for each N with a nonzero
coefficient involved in (66).

VII. CONCLUSIONS

In this article we considered a one-dimensional cavity
composed of two perfect, fixed mirrors and a mobile membrane
in between. Moreover, we assumed that the mirrors and the
membrane are slabs of infinite length and width that are parallel
to each other with vacuum between the membrane and the
mirrors. We modeled the membrane as a linear, isotropic,
nonmagnetizable, nonconducting, and uncharged dielectric of
thickness δ0 when it is at rest. Furthermore, the membrane can
only move along the axis of the cavity, that is, along the line
perpendicular to the mirrors and the membrane (the x axis in
the article). Also, we assumed that there is an electromagnetic
field inside the cavity that can be deduced from a zero scalar
potential and from a vector potential with direction along a
line perpendicular to the axis of the cavity (the z axis in the
article).

Since the membrane can move, the evolution of the
vector potential is determined by a wave equation with time-
dependent coefficients and modified by terms proportional to
the velocity and acceleration of the membrane. Assuming
that the membrane starts to move from rest and that the
membrane moves appreciably in a time scale much larger
than the time scale in which the field evolves appreciably, we
were able to solve to good approximation the aforementioned
equation for the vector potential using the method of multiple
scales. This method allowed us to obtain simple analytic
formulas that provide physical insight for the evolution of the
electromagnetic field. We now describe the physical picture
provided by our results. Suppose that a single-mode of the
cavity is initially excited. In a first approximation the vector
potential follows the initially excited mode with an amplitude
and a phase that depend on the position of the membrane. In a
more accurate approximation, the amplitude and phase of the
original mode include small corrections due to the velocity and
acceleration of the membrane. In particular, the phase includes
a Doppler-like phase shift. Also, all the other modes are
excited because their coefficients behave as driven harmonic
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oscillators where the driving comes from the initially excited
mode. This gives the following picture. As the membrane
moves, the frequencies of the other modes may approach or
move away from that of the initially excited mode. If they
are near, then it is easy for light to pass from the initially
excited mode to the other mode and this other mode becomes
excited. On the other hand, if they are far from each other,
then it is difficult for light to pass from the initially excited
mode to the other mode and this other mode has negligible
excitation. Therefore, only those modes with frequency in a
small band around the frequency of the initially excited mode
can have non-negligible excitation. Furthermore, the newly
excited modes have a component that evolves with the phase
of the original mode with a ±π/2 phase shift and, in general,
they also have a component that evolves at their own frequency.

Also, we deduced the conditions under which the field can
be described to good approximation by just the initially excited
mode but with an amplitude and frequency that depend on
the position of the membrane. These essentially amount to
requiring that the membrane moves sufficiently slowly so that
the speed of the membrane divided by the difference of the
squares of the frequency of the originally excited mode minus
that of another mode is small. Furthermore, we generalized
the results for the case where there are several initially excited
modes.

Finally, we emphasize that the approximate solutions
obtained take into account both the velocity and the accel-
eration of the membrane and that they are valid for arbitrary
displacements of the membrane; that is, they are not restricted
to small deviations of the membrane around an equilibrium
position. In these formulas describing the evolution of the
field, the motion of the membrane can be determined by an
external agent or, alternatively, they can be substituted in the
self-consistent system of equations governing the dynamics
of the membrane and the field deduced in [19]. In particular,
the approximate expressions obtained allow one to investigate
the position- and time-dependent correction to the mass of
the membrane and the velocity-dependent force affecting the
membrane, effects that arise from the motion of the membrane
and its coupling to the field [19]. This is the subject of future
work. We emphasize that the only limitation of the results
obtained is that the membrane must move sufficiently slowly
so that the assumption of the different time scales of evolution
of the membrane and the field mentioned above holds.
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APPENDIX A: MODES

Consider the Sturm-Liouville problem in (12). Assume
that χ̃ is Lebesgue measurable, non-negative, and bounded
(this is true, in particular, if χ̃ is non-negative and piecewise

continuous). Then, for some constant c1 and any fixed q̃ ∈
[0,ξL], one has 1 � ε̃(ξ − q̃) � c1 for almost every ξ ∈ [0,ξL].

Denote by L2 the standard space of Lebesgue measurable,
square integrable functions on (0,ξL) and by L2

q̃ with q̃ ∈
[0,ξL] the space L2 endowed with the scalar product,

(ϕ,ψ)q̃ =
∫ ξL

0
ϕ(ξ )ψ(ξ )∗ ε̃(ξ − q̃)dξ. (A1)

Note that the norms of L2 and of L2
q̃ are equivalent:

‖ϕ‖L2 � ‖ϕ‖L2
q̃
� c1‖ϕ‖L2 .

Denote by H2 the second Sobolev space on (0,ξL) and by
H1,0 the first Sobolev space of functions on (0,ξL) that vanish
for ξ = 0,ξL. For the definitions, see [31]. Also, define the
following operator in L2

q̃ :

Aq̃ϕ = − 1

ε̃(ξ − q̃)

d2

dξ 2
ϕ, (A2)

with domain D(Aq̃) given by

D(Aq̃) = H2 ∩ H1,0. (A3)

The operator Aq̃ is self-adjoint. Actually, it is the operator
associated with the quadratic form

hq̃(ϕ,ψ) =
∫ ξL

0
dξϕ′(ξ )ψ ′(ξ )∗, ϕ,ψ ∈ H1,0.

See Chapter 6 of [32]. Moreover, by the Rellich compactness
theorem [31], the imbedding of D(Aq̃) into L2

q̃ is compact, and

it follows that the resolvent Rq̃(z) = (Aq̃ − z)−1 is compact for
z in the resolvent set. From the results of Sec. 6 of Chapter 3
of [32] it follows that the spectrum of Aq̃ consists of isolated
eigenvalues of finite multiplicity that can only accumulate at
∞. Note that the eigenvalues of Aq̃ are precisely the squared
eigenfrequencies ωn(q̃)2 (n = 1,2, . . .) and, hence, they are of
multiplicity one.

Denote by Jq̃ the identification operator from L2
q̃ onto L2

given by

Jq̃ ϕ(ξ ) = ϕ(ξ ), ϕ ∈ L2
q̃ .

Clearly, Jq̃ is invertible with bounded inverse. Let us denote
by Bq̃ the operator,

Bq̃ = Jq̃Aq̃J
−1
q̃ . (A4)

The operator Bq̃ can be understood as the operator Aq̃ but
seen as acting on the space L2 whose norm is equivalent to
the norm of L2

q̃ . Since Bq̃ and Aq̃ are related by a similarity
transformation, they have the same spectrum. Hence, the
spectrum of Bq̃ is composed of the squared eigenfrequencies
ωn(q̃)2 (n = 1,2, . . .).

Let us assume that χ̃ is continuous for all ξ ∈ [0,ξL] \ M ,
where M is a set of Lebesgue measure zero (of course, this
will be true if χ̃ is piecewise continuous). Consequently,

lim
q̃→q̃0

ε̃(ξ − q̃) = ε̃(ξ − q̃0), ∀ ξ �∈ q̃0 + M. (A5)

Moreover, by (A5),

lim
q̃→q̃0

Bq̃ ϕ = Bq̃0 ϕ, ∀ ϕ ∈ D(Bq̃0 ) = H2 ∩ H1,0,
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where the limit is taken in the norm of L2. It follows that the
family of closed operators Bq̃ with D(Bq̃) = H2 ∩ H1,0 and
q̃ ∈ [0,ξL] is strongly continuous. Let us denote by R̂q̃(z) =
(Bq̃ − z)−1 the resolvent of Bq . By the second resolvent
equation, for any z ∈ C \ [0,∞),

R̂q̃(z) − R̂q̃0 (z)

= −
{
R̂q̃0 (z)

[
1

ε̃(ξ − q̃)
− 1

ε̃(ξ − q̃0)

]}
d2

dξ 2
R̂q̃(z).

Since D(Bq̃) ⊂ H2, we have that

∥∥∥∥ d2

dξ 2
R̂q̃(z)

∥∥∥∥ � C

for a constant C independent of q̃ ∈ [0,ξL]. Moreover, by (A5)
and since R̂q̃0 (z) is a compact operator,

lim
q̃→q̃0

∥∥∥∥ R̂q̃0 (z)

[
1

ε̃(ξ − q̃)
− 1

ε̃(ξ − q̃0)

]∥∥∥∥ = 0.

Hence, Bq̃ converges to Bq̃0 in norm resolvent sense. Then
one can take the following results in [32]: Chapter 2,
Sec. 4.2 [in particular equation (4.18)]; Chapter 4, Theorem
2.25 in Sec. 2.6 and Sec. 3.5; and Chapter 7, Sec. 1.3. It
follows that we can apply to our problem the results in
Secs. 5.1 to 5.5 of Chapter 2 of [32]. Note that in our case the
transformation operator considered in Sec. 1.3 of Chapter 7
of [32] is only required to be continuous and, moreover,
that since Bq̃ is similar to the self-adjoint operator Aq̃ , its
eigenvalues are semisimple. Then, by Theorem 5.1 in Sec. 5
of Chapter II of [32], the functions ωn(q̃) (n = 1,2, . . .) are
continuous and there are no crossings because the eigenvalues
are of multiplicity 1; that is, ωn(q̃) �= ωm(q̃) for all q̃ ∈ [0,ξL]
and n �= m (m,n = 1,2, . . .). Furthermore, the eigenvectors,
Gn(ξ,q̃) (n = 1,2, . . .) are continuous in q̃ (note that, since
the eigenvalues are of multiplicity one, the projectors onto the
λ groups are one dimensional).

Suppose, furthermore, that χ̃(ξ ) is piecewise absolutely
continuous, with bounded derivative [clearly, this will be true
if χ̃(ξ ) is piecewise continuous with piecewise continuous
derivative]. In this case the operator family Bq̃ is strongly
continuously differentiable and continuously differentiable in
norm resolvent sense. Then, by Theorem 5.4 in Chapter 2
of [32], the functions ωn(q̃) (n = 1,2, . . .) are continuously
differentiable, and, by Remark 5.10 of Chapter 2 of [32], the

eigenvectors Gn(ξ,q̃) (n = 1,2, . . .) can be taken continuously
differentiable in q̃.

APPENDIX B: TWO TIME SCALES

The purpose of this Appendix is to deduce a two-term
approximation of the solution of (28) and (29) using two time
scales. Throughout this appendix we use the mode-dependent
quantities defined in (24).

Since the coefficients of cm(τ ) in (28) are functions of εpertτ

and 0 < εpert � 1 [see item (1) in Sec. IV], it is clear that the
slow time scale is given by εpertτ , but the fast time scale remains
to be determined. Therefore, we consider the two time scales

t1N = f (τ,εpert), t2 = εpertτ, (B1)

where
(1) f (τ,εpert) � 0 for all τ � 0.

We demand this property because τ � 0 and, therefore, we
want t1N � 0.

(2) (∂f/∂τ )(τ,εpert) > 0 for all τ > 0.
We demand this property because the nondimensional time τ

is strictly increasing and we want the fast time scale t1N to be
strictly increasing.

(3) f (0,εpert) = 0.
We demand this property because we want the fast time scale
t1N to be zero when τ = 0.

(4) For fixed εpert, f (τ,εpert) is two times continuously
differentiable as a function of τ .
We demand this property because two derivatives with respect
to τ appear in the equations for cm(τ ) given in (28).

(5) For fixed τ we have εpertτ � f (τ,εpert) as εpert ↓ 0.
Here εpert ↓ 0 means that εpert tends to zero through positive
values. We demand this property because we want t1N to be
the fast time scale and t2 to be the slow time scale.

For each m = 1,2, . . . we define the function dm(t1N,t2) by

dm[t1N (τ ),t2(τ )] = cm(τ ) (τ � 0). (B2)

We are now going to deduce the initial conditions and the
system of differential equations that determine the evolution
of the dm(t1N,t2). Substituting (B2) in the initial conditions
for cm(τ ) given in (29), we obtain the corresponding initial
conditions for dm(t1N,t2)

g1NδmN = ∂f

∂τ
(0,εpert)

∂dm

∂t1N

(0,0) + εpert
∂dm

∂t2
(0,0),

g0NδmN = dm(0,0). (B3)

Substituting (B2) in the system of differential equations for
cm(τ ) given in (28), we obtain the corresponding system of
differential equations for dm(t1N,t2):

[
∂f

∂τ
(τ,εpert)

]2
∂2dm

∂t2
1N

[t1N (τ ),t2(τ )] +
[
∂2f

∂τ 2
(τ,εpert)

]
∂dm

∂t1N

[t1N (τ ),t2(τ )] + ωm[ ˜̃q(εpertτ )]2dm[t1N (τ ),t2(τ )]

+ 2εpert

[
∂f

∂τ
(τ,εpert)

]
∂2dm

∂t2∂t1N

[t1N (τ ),t2(τ )] + 2εpert ˜̃q ′(εpertτ )�mm[ ˜̃q(εpertτ )]

[
∂f

∂τ
(τ,εpert)

]
∂dm

∂t1N

[t1N (τ ),t2(τ )]

+ ε2
pert

∂2dm

∂t2
2

[t1N (τ ),t2(τ )] + 2ε2
pert

˜̃q ′(εpertτ )�mm[ ˜̃q(εpertτ )]
∂dm

∂t2
[t1N (τ ),t2(τ )]

+ ε2
pert

˜̃q ′′(εpertτ )�mm[ ˜̃q(εpertτ )]dm[t1N (τ ),t2(τ )]
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= −εpert

+∞∑
n=1
n �=m

�mn[ ˜̃q(εpertτ )]

{
2 ˜̃q ′(εpertτ )

[
∂f

∂τ
(τ,εpert)

]
∂dn

∂t1N

[t1N (τ ),t2(τ )] + 2εpert ˜̃q ′(εpertτ )
∂dn

∂t2
[t1N (τ ),t2(τ )]

+εpert ˜̃q ′′(εpertτ )dn[t1N (τ ),t2(τ )]

}
. (B4)

We now obtain f (τ,εpert) from (B4). First observe that
in the case εpert ↓ 0 all the terms of (B4) cancel out except
for those in the first line. Now recall from (5) that εpert =
νosc/ν0; that is, εpert is the time scale 1/ν0 in which the
field evolves appreciably divided by the time scale 1/νosc

in which the membrane evolves appreciably. Hence, εpert ↓ 0
describes the case where the field evolves infinitely faster than
the membrane and, therefore, corresponds to the situation
where the membrane is fixed. Moreover, we know that
the coefficients cm(τ ) = dm[t1N (τ ),t2(τ )] of the modes must
satisfy harmonic oscillator equations when the membrane is
fixed [see (15) in Sec. III]. Hence, one must recover a harmonic
oscillator equation (with angular frequency equal to 1) for
dm[t1N (τ ),t2(τ )] in the fast time scale t1N . From (B4) we see
that this happens if and only if[

∂f

∂τ
(τ,εpert)

]2

= ωm[ ˜̃q(εpertτ )]2, (τ � 0),

⇔ f (τ,εpert) =
∫ τ

0
dτ ′ωm[ ˜̃q(εpertτ

′)], (τ � 0). (B5)

Notice that to deduce the last line we used that both
(∂f/∂τ )(τ,εpert) and ωm[ ˜̃q(εpertτ )] are positive, as well as the
fact that f (0,εpert) = 0; see items (2) and (3) above and item
(1) in Sec. III.

From (B5) we find that the fast time scale is not uniquely
defined. This is to be expected because every mode should
have its own fast time scale determined by its corresponding
frequency ωm[ ˜̃q(εpertτ

′)]. Since the initial conditions in (B3)
indicate that only mode N is initially excited, from (B5) we
find that the appropriate choice for the fast time scale is

t1N = f (τ,εpert) =
∫ τ

0
dτ ′ωN [ ˜̃q(εpertτ

′)]. (B6)

There are certain quantities that appear quite frequently in
the calculations that follow. Therefore, it is convenient to define
them now and make reference to them as we proceed. We
benefit from this because the results will have more succinct
and transparent expressions. For each m = 1,2, . . . we define

Lm0 = ωN [ ˜̃q(t2)]2 ∂2

∂t2
1N

+ ωm[ ˜̃q(t2)]2,

ζm(t2) = �mm[ ˜̃q(t2)] + ω′
N [ ˜̃q(t2)]

2ωN [ ˜̃q(t2)]
,

Lm1 = 2ωN [ ˜̃q(t2)]

[
∂2

∂t2∂t1N

+ ˜̃q ′(t2)ζm(t2)
∂

∂t1N

]
,

Lm2 = ∂2

∂t2
2

+ 2 ˜̃q ′(t2)�mm[ ˜̃q(t2)]
∂

∂t2

+ ˜̃q ′′(t2)�mm[ ˜̃q(t2)],

Lmn1 = 2 ˜̃q ′(t2)ωN [ ˜̃q(t2)]�mn[ ˜̃q(t2)]
∂

∂t1N

,

Lmn2 = 2 ˜̃q ′(t2)�mn[ ˜̃q(t2)]
∂

∂t2
+ ˜̃q ′′(t2)�mn[ ˜̃q(t2)],

Wm(t2) = ωm[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
,

Tm(t2) = 2 ˜̃q ′(t2)
�mN [ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
,

αm[ ˜̃q(t2)] =
√

ωN [ ˜̃q(0)]

ωN [ ˜̃q(t2)]
exp

{
−

∫ ˜̃q(t2)

˜̃q(0)
dy�mm(y)

}
,

η(t2) = −i
d

dt2

{
˜̃q ′(t2)

ω′
N [ ˜̃q(t2)]

4ωN [ ˜̃q(t2)]2

}
− i ˜̃q ′(t2)2φ[ ˜̃q(t2)],

φ(y) = �′
NN (y)

2ωN (y)
+ �NN (y)2

2ωN (y)
+ ω′

N (y)2

8ωN (y)3

− 2ωN (y)
+∞∑
n=1
n �=N

�Nn(y)�nN (y)

ωn(y)2 − ωN (y)2
. (B7)

Substituting (B6) in (B3) and (B4), using the definitions in
(B7), and expressing all quantities in terms of t1N and t2, we
obtain a system of differential equations,(

Lm0 + εpertLm1 + ε2
pertLm2

)
dm(t1N,t2)

= −
+∞∑
n=1
n �=m

(
εpertLmn1 + ε2

pertLmn2
)
dn(t1N,t2), (B8)

with the initial conditions

g1NδmN = ωN [ ˜̃q(0)]
∂dm

∂t1N

(0,0) + εpert
∂dm

∂t2
(0,0),

g0NδmN = dm(0,0). (B9)

We now solve (B8) and (B9) to good approximation.
In the following we assume that each dm(t1N,t2) has the

asymptotic expansion:

dm ∼ Ym0 + εpertYm1 + ε2
pertYm2 + · · · . (B10)

If one takes dm � Ym0 for each m, then one has a first-term
approximation. Similarly, if one takes dm � Ym0 + εpertYm1 for
each m, then one has a two-term approximation. In general,
one has an n-term approximation if one takes dm � Ym0 +
εpertYm1 + ε2

pertYm2 + · · · + εn−1
pert Ym,(n−1) for each m. We are

now going to see how these are determined.
Substituting (B10) in (B8) and (B9) and equating equal

powers of εpert we arrive at the following first three initial
value problems for each m = 1,2, . . .:
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O(1),

Lm0Ym0(t1N,t2) = 0,

Ym0(0,0) = g0NδmN,

ωN [ ˜̃q(0)]
∂Ym0

∂t1N

(0,0) = g1NδmN ; (B11)

O(εpert),

Lm0Ym1(t1N,t2) = −Lm1Ym0(t1N,t2) −
+∞∑
n=1
n �=m

Lmn1Yn0(t1N,t2),

Ym1(0,0) = 0,

ωN [ ˜̃q(0)]
∂Ym1

∂t1N

(0,0) + ∂Ym0

∂t2
(0,0) = 0; (B12)

O(ε2
pert),

Lm0Ym2(t1N,t2)

= −Lm1Ym1(t1N,t2) − Lm2Ym0(t1N,t2)

−
+∞∑
n=1
n �=m

Lmn1Yn1(t1N,t2) −
+∞∑
n=1
n �=m

Lmn2Yn0(t1N,t2),

Ym2(0,0) = 0,

ωN [ ˜̃q(0)]
∂Ym2

∂t1N

(0,0) + ∂Ym1

∂t2
(0,0) = 0. (B13)

Notice that the O(1) problem corresponds to uncoupled
harmonic oscillator equations in the fast time scale t1N , a
result that was expected because the modes satisfy uncoupled
harmonic oscillator equations when the membrane is fixed.
Moreover, the O(εn

pert) (n � 1) problems correspond to un-
coupled, driven harmonic oscillator equations in the fast time
scale t1N . Observe that the coupling between the modes is
going to be introduced through the driving because it depends
on the previous values Ym0, Ym1, . . . ,Ym(n−1).

We first solve the O(1) problem. If m = N , one immedi-
ately finds that

YN0(t1N,t2) = aN0(t2)eit1N + bN0(t2)e−it1N , (B14)

where

bN0(0) = g0N

2
+ i

g1N

2ωN [ ˜̃q(0)]
,

aN0(0) = bN0(0)∗. (B15)

To obtain (B15), we used that g0N and g1N are real numbers;
see Sec III.

Notice that if m �= N , then

Ym0(t1N,t2) = 0, (B16)

is a solution of the O(1) problem. In fact, if one solves
the O(1) problem for m �= N and subsequently solves the
O(εpert) problem, then one finds that (B16) is indeed the unique
solution. In order to lighten the burden of the calculations,
we take (B16) from the outset. Moreover, this result can
also be motivated physically. One expects that the field will
approximately follow the instantaneous mode if the membrane
moves sufficiently slowly. This physical intuition is expressed
mathematically by requiring that the first term Ym0(t1N,t2) of

the asymptotic expansion of dm(t1N,t2) is zero except for the
mode N that was initially excited.

Notice that the coefficients aN0(t2) and bN0(t2) in (B14)
are not known for t2 �= 0. They are determined by solving the
O(εpert) problem. This is what we do now.

Substituting (B14) and (B16) in the O(εpert) differential
equation and solving the resulting driven harmonic oscillator
equations, one finds that

Ym1(t1N,t2) = am1(t2)eiWm(t2)t1N + bm1(t2)e−iWm(t2)t1N

+ iTm(t2)

Wm(t2)2 − 1
[bN0(t2)e−it1N − aN0(t2)eit1N ]

(m �= N ),

YN1(t1N,t2) = aN1(t2)eit1N + bN1(t2)e−it1N

+ (1 + 2it1N )BN0(t2)

4ωN [ ˜̃q(t2)]2
e−it1N

− (1 − 2it1N )AN0(t2)

4ωN [ ˜̃q(t2)]2
eit1N , (B17)

where

AN0(t2)

i2ωN [ ˜̃q(t2)]
= a′

N0(t2) + ˜̃q ′(t2)ζN (t2)aN0(t2),

BN0(t2)

i2ωN [ ˜̃q(t2)]
= b′

N0(t2) + ˜̃q ′(t2)ζN (t2)bN0(t2). (B18)

Notice that one obtains BN0(t2) from AN0(t2) by changing
aN0(t2) to bN0(t2). We remark that the initial conditions
for Ym1(t1N,t2) (m �= N ) and YN1(t1N,t2) have not yet been
imposed. The reason for this will become clear when we solve
the O(ε2

pert) problem further below.
Before proceeding, one must eliminate secular terms from

(B17); that is, one must eliminate terms that destroy the order
of the asymptotic expansion in (B10). In our case, these
correspond to terms in (B17) that become unbounded as t1N

increases while t2 is fixed. We observe that the secular terms
in (B17) are those that have t1N as a factor. Then, secular terms
disappear from YN1 if and only if

BN0(t2) = AN0(t2) = 0. (B19)

This condition is equivalent to the following differential
equation

z′(t2) + ˜̃q ′(t2)ζN (t2)z(t2) = 0,

with z(t2) = aN0(t2), bN0(t2). (B20)

The differential equations in (B20) are linear and of order 1.
Hence, they can be solved analytically [29] to give

z(t2) = z(0)αN [ ˜̃q(t2)],

with z(t2) = aN0(t2), bN0(t2). (B21)

Recall that the values of aN0(0) and bN0(0) had already been
obtained in (B15) and that αN [ ˜̃q(t2)] was defined in (B7).

Having eliminated the secular terms (B17) takes the form

YN1(t1N,t2) = aN1(t2)eit1N + bN1(t2)e−it1N ,
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and

Ym1(t1N,t2)

= am1(t2)eiWm(t2)t1N + bm1(t2)e−iWm(t2)t1N

+ iTm(t2)

Wm(t2)2 − 1
[bN0(t2)e−it1N − aN0(t2)eit1N ],

(m �= N ). (B22)

Notice that the coefficients am1(t2), bm1(t2), aN1(t2), and
bN1(t2) are not known. They are determined by solving the
O(ε2

pert) problem.
Also, from (B14)–(B16) and (B21) we find that the first-

term approximation to dm(t1N,t2) is now completely specified.

It is given by

YN0(t1N,t2) = αN [ ˜̃q(t2)][bN0(0)∗eit1N + bN0(0)e−it1N ],

Ym0(t1N,t2) = 0 (m �= N ), (B23)

where bN0(0) is given in (B15) and αN [ ˜̃q(t2)] is defined in
(B7).

We now solve the O(ε2
pert) problem. As mentioned before,

not only will this give us an expression for Ym2(t1N,t2), but
it will also allow us to fully specify Ym1(t1N,t2); that is, it
will allow us to determine the unknown coefficients am1(t2),
bm1(t2), aN1(t2), and bN1(t2) in (B22).

First assume that m �= N . Substituting (B22) and (B23) in
the differential equation of the O(ε2

pert) problem in (B13), one
again obtains a driven harmonic oscillator equation that can be
solved analytically [29]. One obtains

Ym2(t1N,t2) = am2(t2)eiWm(t2)t1N + bm2(t2)e−iWm(t2)t1N

+ eiWm(t2)t1N

{
− Am1(t2)

4Wm(t2)2
+ i

Am1(t2)t1N

2Wm(t2)
+ i

Dm1(t2)

8Wm(t2)3
+ Dm1(t2)t1N

4Wm(t2)2
− i

Dm1(t2)t2
1N

4Wm(t2)

}

+ e−iWm(t2)t1N

{
Bm1(t2)

4Wm(t2)2
+ i

Bm1(t2)t1N

2Wm(t2)
− i

Fm1(t2)

8Wm(t2)3
+ Fm1(t2)t1N

4Wm(t2)2
+ i

Fm1(t2)t2
1N

4Wm(t2)

}

+ eit1N
H

(3)
mN (t2) + R(1)

m (t2)

Wm(t2)2 − 1
+ e−it1N

H
(4)
mN (t2) + R(2)

m (t2)

Wm(t2)2 − 1

+
+∞∑
n=1

n �=m,N

[
eiWn(t2)t1N

H (1)
mn(t2)

Wm(t2)2 − Wn(t2)2
+ e−iWn(t2)t1N

H (2)
mn(t2)

Wm(t2)2 − Wn(t2)2

]
, (B24)

where we have introduced the quantities

Am1(t2) = 2i

ωN [ ˜̃q(t2)]

d

dt2
[Wm(t2)am1(t2)]

+ i2 ˜̃q ′(t2)

ωN [ ˜̃q(t2)]
Wm(t2)am1(t2)ζm(t2),

Bm1(t2) = 2i

ωN [ ˜̃q(t2)]

d

dt2
[Wm(t2)bm1(t2)]

+ i2 ˜̃q ′(t2)

ωN [ ˜̃q(t2)]
Wm(t2)bm1(t2)ζm(t2),

Dm1(t2) = 2
Wm(t2)W ′

m(t2)

ωN [ ˜̃q(t2)]
am1(t2),

Fm1(t2) = 2
Wm(t2)W ′

m(t2)

ωN [ ˜̃q(t2)]
bm1(t2),

H (1)
mn(t2) = −i2 ˜̃q ′(t2)Wn(t2)

�mn[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
an1(t2),

H (2)
mn(t2) = i2 ˜̃q ′(t2)Wn(t2)

�mn[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
bn1(t2),

H
(3)
mN (t2) = H

(1)
mN (t2) − �mN [ ˜̃q(t2)]

ωN [ ˜̃q(t2)]2

× [2 ˜̃q ′(t2)a′
N0(t2) + ˜̃q ′′(t2)aN0(t2)],

H
(4)
mN (t2) = H

(2)
mN (t2) − �mN [ ˜̃q(t2)]

ωN [ ˜̃q(t2)]2

× [2 ˜̃q ′(t2)b′
N0(t2) + ˜̃q ′′(t2)bN0(t2)],

αm0(t2) = iTm(t2)aN0(t2)

Wm(t2)2 − 1
,

βm0(t2) = iTm(t2)bN0(t2)

Wm(t2)2 − 1
,

R(1)
m (t2) = i

2α′
m0(t2)

ωN [ ˜̃q(t2)]
+ i

2 ˜̃q ′(t2)ζm(t2)

ωN [ ˜̃q(t2)]
αm0(t2)

+ i2 ˜̃q ′(t2)

ωN [ ˜̃q(t2)]

+∞∑
n=1

n �=m,N

�mn[ ˜̃q(t2)]αn0(t2),

R(2)
m (t2) = i

2β ′
m0(t2)

ωN [ ˜̃q(t2)]
+ i

2 ˜̃q ′(t2)ζm(t2)

ωN [ ˜̃q(t2)]
βm0(t2)

+ i2 ˜̃q ′(t2)

ωN [ ˜̃q(t2)]

+∞∑
n=1

n �=m,N

�mn[ ˜̃q(t2)]βn0(t2). (B25)

Observe that in each consecutive pair of quantities introduced
in (B25), one is obtained from the other by changing a by b,
D by F , α by β, and (1) by (2) and by adjusting some signs.

We now have to eliminate secular terms from Ym2(t1N,t2).
Notice from (B24) that, for fixed t2, the terms multiplied by
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t1N and t2
1N grow without bound and the terms multiplied by

t2
1N eventually dominate. Hence, secular terms disappear from
Ym2(t1N,t2) if and only if

Dm1(t2) = Am1(t2) = Fm1(t2) = Bm1(t2) = 0, (t2 � 0)

⇔

⎧⎪⎨
⎪⎩

am1(t2)W ′
m(t2) = 0, Am1(t2) = 0,

bm1(t2)W ′
m(t2) = 0, Bm1(t2) = 0,

for t2 � 0.

⇐ am1(t2) = bm1(t2) = 0, (t2 � 0). (B26)

In the second step in (B26) we used the definitions of Dm1(t2)
and Fm1(t2) in (B25) along with the fact that Wm(t2) �= 0
and ωN [ ˜̃q(t2)] �= 0 for all t2; see the definition of Wm(t2)
in (B7) and item (1) in Sec III. Also, in the last step in
(B26) we used that Am1(t2) = Bm1(t2) = 0 for all t2 � 0 if
am1(t2) = bm1(t2) = 0 for all t2 � 0; see the definitions of
Am1(t2) and Bm1(t2) in (B25). Moreover, we note that, except
for a discrete set of values of t2, one has W ′

m(t2) �= 0 because
Wm(t2) = ωm[ ˜̃q(t2)]/ωN [ ˜̃q(t2)] is, in general, not constant; see
Fig. 2 for an example of how the ωn[ ˜̃q(t2)] vary with respect
to ˜̃q(t2). Therefore, the last line in (B26) is, in general, also
a necessary condition for the disappearance of secular terms
from Ym2(t1N,t2).

Taking am1(t2) = bm1(t2) = 0 for all t2 � 0 and m �= N ,
it follows that from (B25) that H (1)

mn(t2) = H (2)
mn(t2) = 0 for all

t2 � 0 and n �= N , so that Ym1(t1N,t2) in (B17) and Ym2(t1N,t2)
in (B24) reduce to

Ym1(t1N,t2) = iTm(t2)

Wm(t2)2 − 1
[bN0(t2)e−it1N − aN0(t2)eit1N ],

(m �= N ), (B27)

and

Ym2(t1N,t2) = am2(t2)eiWm(t2)t1N + bm2(t2)e−iWm(t2)t1N

+ eit1N
H

(3)
mN (t2) + R(1)

m (t2)

Wm(t2)2 − 1
,

+ e−it1N
H

(4)
mN (t2) + R(2)

m (t2)

Wm(t2)2 − 1
, (m �= N ),

(B28)

with the quantities defined in (B25).
Notice that Ym1(t1N,t2) is completely specified in (B27).

Nevertheless, we still have to verify that it does indeed satisfy
the initial conditions of the O(εpert) problem in (B12). Recall
that we did not impose them when we solved the O(εpert)
problem in (B17). We postponed this in order to use the
simplified expression in (B27). Using the initial conditions in
(B12), the values of aN0(0) and bN0(0) in (B15), the definitions
of Tm(t2) and Wm(t2) in (B7), and the expression for Ym1(t1N,t2)
in (B27), it follows that

Ym1(0,0) = 0 ⇔ − g1NTm(0)

[Wm(0)2 − 1]ωN [ ˜̃q(0)]
= 0

⇔ g1N = 0 or �mN [ ˜̃q(0)] = 0 or ˜̃q ′(0) = 0, (B29)

and that

∂Ym1

∂t1N

(0,0) = 0 ⇔ g0NTm(0)

Wm(0)2 − 1
= 0

⇔ g0N = 0 or �mN [ ˜̃q(0)] = 0 or ˜̃q ′(0) = 0. (B30)

This is the first time we use the assumption q̃ ′(0) = εpert ˜̃q ′(0) =
0 given in item (3) of Sec IV. Using this assumption in (B29)
and (B30), we find that Ym1(t1N,t2) in (B27) does indeed satisfy
the initial conditions of the O(εpert) problem in (B12) for the
case m �= N .

We are now going to solve the O(ε2
pert) problem in (B13)

for the case m = N . Substituting the expressions for Yn1 and
Yn0 in (B22), (B23), and (B27) into the O(ε2

pert) differential
equation in (B13) with m = N , one obtains a driven harmonic
oscillator equation that can be solved analytically [29] to yield

YN2(t1N,t2) = aN2(t2)eit1N + bN2(t2)e−it1N

− eit1N

4
(1 − i2t1N )AN2(t2)

+ e−it1N

4
(1 + i2t1N )BN2(t2), (B31)

where we have introduced the quantities

AN2(t2) = 1

ωN [ ˜̃q(t2)]2
{a′′

N0(t2) + 2�NN [ ˜̃q(t2)] ˜̃q ′(t2)a′
N0(t2)

+�NN [ ˜̃q(t2)] ˜̃q ′′(t2)aN0(t2)}
+ 2i

ωN [ ˜̃q(t2)]
[a′

N1(t2) + ˜̃q ′(t2)ζN (t2)aN1(t2)]

− i2 ˜̃q ′(t2)
+∞∑
n=1
n �=N

�Nn[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
αn0(t2),

BN2(t2) = − 1

ωN [ ˜̃q(t2)]2
{b′′

N0(t2) + 2�NN [ ˜̃q(t2)] ˜̃q ′(t2)b′
N0(t2)

+�NN [ ˜̃q(t2)] ˜̃q ′′(t2)bN0(t2)}
+ 2i

ωN [ ˜̃q(t2)]
[b′

N1(t2) + ˜̃q ′(t2)ζN (t2)bN1(t2)]

+ i2 ˜̃q ′(t2)
+∞∑
n=1
n �=N

�Nn[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
βn0(t2). (B32)

From (B31) we observe that secular terms disappear from
YN2(t1N,t2) if and only if

AN2(t2) = 0, BN2(t2) = 0 (t2 � 0). (B33)

Using the definitions of AN2(t2) and BN2(t2) in (B32), this
condition is equivalent to the differential equation

z′(t2) + ˜̃q ′(t2)ζN (t2)z(t2) = η(t2)z0(t2), (B34)

with

z(t2) = aN1(t2), z0(t2) = aN0(t2),

or z(t2) = bN1(t2), z0(t2) = −bN0(t2). (B35)
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Solving this differential equation [29], one concludes that
secular terms disappear from YN2(t1N,t2) if and only if

z(t2) = αN [ ˜̃q(t2)]

[
z(0) + z0(0)

∫ t2

0
dt ′2 η(t ′2)

]
, (B36)

with

z(t2) = aN1(t2), z0(t2) = aN0(t2),

or z(t2) = bN1(t2), z0(t2) = −bN0(t2). (B37)

Notice that the values aN1(0) and bN1(0) remain to be found.
These are obtained by applying the O(εpert) initial conditions
in (B12) to YN1 in (B22). One finds that

YN1(0,0) = 0 ⇔ aN1(0) + bN1(0) = 0,

and

ωN [ ˜̃q(0)]
∂YN1

∂t1N

(0,0) + ∂YN0

∂t2
(0,0) = 0

⇔ aN1(0) − bN1(0) = 0.

From these two results it is straightforward to conclude that

aN1(0) = bN1(0) = 0. (B38)

Substituting the values of aN1(0) and bN1(0) given in (B38)
into the expressions for aN1(t2) and bN1(t2) established in
(B36), and then substituting the result in the expression for
YN1(t1N,t2) in (B22), one obtains that

YN1(t1N,t2) = αN [ ˜̃q(t2)]
∫ t2

0
dt ′2η(t ′2)

× [bN0(0)∗eit1N − bN0(0)e−it1N ]. (B39)

Recall that η(t2) is given in (B7), while bN0(0) was established
in (B15).

Moreover, without secular terms, YN2 in (B31) takes the
form

YN2(t1N,t2) = aN2(t2)eit1N + bN2(t2)e−it1N . (B40)

We are now in a position to write a two-term approximation
of dn(t1N,t2) using the definition of the time scales in (B1)
and (B6) and the asymptotic expansion in (B10). First, using
the expressions for YN0(t1N,t2) and YN1(t1N,t2) established in
(B23) and (B39) and the expressions for aN0(t2) and bN0(t2)
in (B21), we conclude that a two-term approximation is

dN (t1N,t2) � YN0(t1N,t2) + εpertYN1(t1N,t2),

= αN [ ˜̃q(t2)]

×
{
bN0(0)∗eit1N

[
1 + εpert

∫ t2

0
dt ′2 η(t ′2)

]

+ bN0(0)e−it1N

[
1 − εpert

∫ t2

0
dt ′2 η(t ′2)

]}
.

(B41)

Recall that η(t2) is given in (B7), while bN0(0) was established
in (B15).

Using the expressions for Ym0(t1N,t2) and Ym1(t1N,t2) in
(B23) and (B27) and the expressions for aN0(t2) and bN0(t2)
in (B21), we conclude that a two-term approximation of

dm(t1N,t2) with m �= N is given by

dm(t1N,t2) � Ym0(t1N,t2) + εpertYm1(t1N,t2),

= iεpertTm(t2)

Wm(t2)2 − 1
αN [ ˜̃q(t2)]

× [bN0(0)e−it1N − bN0(0)∗eit1N ], (B42)

where bN0(0) is given in (B15).
Finally, we comment on the accuracy of the two-time-scales

approximation [25]. The two-time-scales approximation is an
accurate approximation to cn(τ ) for all τ such that 0 � t2(τ ) =
εpertτ � O(1). Since εpertτ = νosct [see (4) and (5)], it follows
that the latter condition is equivalent to

0 � t � O
(
ν−1

osc

)
. (B43)

Therefore, the two-time-scale approximation will be accurate
up until t = Dν−1

osc for some D > 0. For example, if the
membrane is oscillating, then the two-time-scale approxi-
mation will be accurate during some oscillation periods of
the membrane. Moreover, during the time interval in (B43)
the two-term approximation will be more accurate than the
one-term approximation.

APPENDIX C: THREE TIME SCALES

In Appendix B we obtained an approximation for the
coefficients of the modes of the field that is accurate during
an interval of the form 0 � t � O(ν−1

osc), where ν−1
osc is the time

scale in which the membrane evolves appreciably; see (B43).
Hence, the approximation obtained might not be accurate for
very long times. The purpose of this appendix is to remedy this
by solving the equations for the coefficients using the method
of multiple scales with three time scales.

From what we learned in Appendix B, we know that the
fast time scale is given by

t1N =
∫ τ

0
dτ ′ωN [ ˜̃q(εpertτ

′)], (C1)

while a slow time scale is given by

t2 = εpertτ. (C2)

Now we introduce a slower time scale given by

t3 = ε2
pertτ. (C3)

These three time scales allow one to obtain an approximate
solution of the initial value problem in (28) and (29) that is
accurate for long times. In fact, the theory of multiple scales
[25] indicates that the approximate solution of (28) and (29)
is accurate for times τ = ν0t such that

0 � ε2
pertτ � O(1) ⇔ 0 � t � O

(
1

εpertνosc

)
. (C4)

In order to use the three time scales introduced above, define
for m = 1,2, . . .

dm[t1N (τ ),t2(τ ),t3(τ )] = cm(τ ). (C5)

Throughout the appendix we make use of the quantities
defined in (B7) in Appendix B. Now, we also introduce the
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following quantities for each m = 1, 2, . . .:

L′
m2 = Lm2 + 2ωN [ ˜̃q(t2)]

∂2

∂t3∂t1N

,

Lm3 = 2
∂2

∂t3∂t2
+ 2 ˜̃q ′(t2)�mm[ ˜̃q(t2)]

∂

∂t3
,

Lmn3 = 2 ˜̃q ′(t2)�mn[ ˜̃q(t2)]
∂

∂t3
. (C6)

Notice that Lm2 is defined in (B7).
Substituting dm[t1N (τ ),t2(τ ),t3(τ )] given in (C5) into the

equation for cm(τ ) in (28) and using the differential operators
defined in (B7) and (C6), one concludes that dm(t1N,t2,t3) must
satisfy the equations[

Lm0 + εpertLm1 + ε2
pertL′

m2 + ε3
pertLm3 + ε4

pert
∂2

∂t2
3

]
× dm(t1N,t2,t3)

= −
+∞∑
n=1
n �=m

[
εpertLmn1 + ε2

pertLmn2 + ε3
pertLmn3

]

× dn(t1N,t2,t3). (C7)

Moreover, the initial conditions for dm(t1N,t2,t3) are obtained
by substituting the definition of dm[t1N (τ ),t2(τ ),t3(τ )] in (C5)
into the initial conditions (29) for cm(τ ). One obtains

dm(0) = g0NδmN,

and

ωN [ ˜̃q(0)]
∂dm

∂t1N

(0) + εpert
∂dm

∂t2
(0) + ε2

pert
∂dm

∂t3
(0) = g1NδmN .

(C8)

Here and in the following 0 = (0,0,0). Also, recall that g0N

and g1N are real quantities; see Sec. III.
Now assume that each dm(t1N,t2,t3) has an asymptotic

expansion of the form

dm ∼ Ym0 + εpertYm1 + ε2
pertYm2 + · · · . (C9)

Substituting the asymptotic expansion given in (C9) into the
differential equation and initial conditions for dm(t1N,t2,t3) in
(C7) and (C8) and then equating equal powers of εpert, one
arrives at the following four problems for each m = 1,2, . . .:

O(1),

Lm0Ym0 = 0,

with

Ym0(0) = g0NδmN,

ωN [ ˜̃q(0)]
∂Ym0

∂t1N

(0) = g1NδmN ; (C10)

O(εpert),

Lm0Ym1 = −Lm1Ym0 −
+∞∑
n=1
n �=m

Lmn1Yn0,

with

Ym1(0) = 0,

ωN [ ˜̃q(0)]
∂Ym1

∂t1N

(0) + ∂Ym0

∂t2
(0) = 0; (C11)

O(ε2
pert),

Lm0Ym2 = −L′
m2Ym0 − Lm1Ym1 −

+∞∑
n=1
n �=m

(Lmn2Yn0 + Lmn1Yn1),

Ym2(0) = 0,

ωN [ ˜̃q(0)]
∂Ym2

∂t1N

(0) + ∂Ym1

∂t2
(0) + ∂Ym0

∂t3
(0) = 0;

(C12)

O(ε3
pert),

Lm0Ym3 = −Lm3Ym0 − L′
m2Ym1 − Lm1Ym2

−
+∞∑
n=1
n �=m

(Lmn3Yn0 + Lmn2Yn1 + Lmn1Yn2),

with

Ym3(0) = 0,

ωN [ ˜̃q(0)]
∂Ym3

∂t1N

(0) + ∂Ym2

∂t2
(0) + ∂Ym1

∂t3
(0) = 0. (C13)

In the initial value problems above, observe how the
subindexes add up to give a constant number in each of the
problems. Moreover, it is important to note that the O(1) and
O(εpert) problems above are exactly the same as the O(1) and
O(εpert) problems using two time scales; see (B11) and (B12) in
Appendix B. Also, notice that the differential equation for the
O(1) problem in (C10) corresponds to a harmonic oscillator in
the fast time scale t1N ; see the definition ofLm0 in (B7). Hence,
we obtain that all Ym0(t1N,t2,t3) satisfy uncoupled harmonic
oscillator equations in the fast time scale. This reflects the
fact that the coefficients of the modes satisfy uncoupled
harmonic oscillator equations when the membrane is fixed;
see Sec. III. Finally, observe that the differential equations
in the higher-order problems O(εn

pert) (n � 1) correspond to
driven harmonic oscillator equations.

First, we solve the O(1) problem. Since the differential
equation in (C10) corresponds to a harmonic oscillator in the
fast time scale t1N , one immediately finds that

YN0(t1N,t2,t3) = aN0(t2,t3)eit1N + bN0(t2,t3)e−it1N ,

Ym0(t1N,t2,t3) = 0 (m �= N ). (C14)

Notice that we took Ym0 equal to zero when m �= N because of
what we learned in Appendix B, namely that in the first-term
approximation only the coefficient of the mode that is initially
excited should be different from zero. Physically, this amounts
to demanding that (to lowest order) the field should follow
mode N as the membrane moves if only mode N is initially
excited. Also, observe that Ym0 = 0 with m �= N does indeed
satisfy both the differential equation and the initial conditions
of the O(1) problem.
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Applying the O(1) initial conditions in (C10) to YN0 in
(C14), one finds that

bN0(0,0) = g0N

2
+ ig1N

2ωN [ ˜̃q(0)]
,

aN0(0,0) = bN0(0,0)∗. (C15)

To obtain the second line of (C15), we used that both g0N and
g1N are real.

We now solve the O(εpert) problem. Substituting YN0 and
Ym0 given in (C14) into the right-hand side of the differential
equation of the O(εpert) problem in (C11) and solving the
resulting harmonic oscillator equations with driving, one
obtains

YN1(t1N,t2,t3) = aN1(t2,t3)eit1N + bN1(t2,t3)e−it1N

+ eit1N
A(t2,t3)

4
(1 − i2t1N )

+ e−it1N
B(t2,t3)

4
(1 + i2t1N ),

and

Ym1(t1N,t2,t3) = i2 ˜̃q ′(t2)�mN [ ˜̃q(t2)]

ωm[ ˜̃q(t2)]2 − ωN [ ˜̃q(t2)]2
ωN [ ˜̃q(t2)]

× [bN0(t2,t3)e−it1N − aN0(t2,t3)eit1N ],

(m �= N ), (C16)

where we have introduced the quantities A(t2,t3) and B(t2,t3).
The former is defined by

A(t2,t3) = −2i

ωN [ ˜̃q(t2)]

{
∂aN0

∂t2
(t2,t3) + aN0(t2,t3) ˜̃q ′(t2)ζN (t2)

}
,

(C17)

while B(t2,t3) is obtained from A(t2,t3) by changing i to −i

and aN0 to bN0. Also, ζN (t2) is defined in (B7).
It is important to note that we have taken the complementary

function associated with Ym1 (m �= N ) in (C16) equal to zero;
that is, we have taken the general solution of the homogeneous
differential equation associated to Ym1 (m �= N ) equal to zero.
The reason for this is that we obtained that it is equal to zero
in the two-time-scales approach in Appendix B. Moreover,
observe that Ym1 (m �= N ) in (C16) satisfies the O(εpert) initial
conditions in (C11) because ˜̃q ′(0) = 0. Recall that ˜̃q ′(0) = 0
means that the membrane starts to move from rest and that we
made this assumption in item (3) of Sec. IV.

Now we must eliminate secular terms from YN1; that is, we
must demand that terms that become unbounded in YN1 for t2
and t3 fixed become zero. From (C16) we observe that secular

terms in YN1 disappear if and only if

A(t2,t3) = B(t2,t3) = 0, t2,t3 � 0.

Using the definitions of A(t2,t3) and B(t2,t3) in (C17), it
follows that this condition is equivalent to the differential
equation

∂z

∂t2
(t2,t3) = − ˜̃q ′(t2)ζN (t2)z(t2,t3),

with z = aN0, bN0. (C18)

Recall that ζN (t2) is defined in (B7).
Solving this differential equation one concludes that secular

terms in YN1 disappear if and only if

z(t2,t3) = z(0,t3)αN [ ˜̃q(t2)],

with z = aN0, bN0. (C19)

Here αN [ ˜̃q(t2)] is defined in (B7). Notice that both aN0(t2,t3)
and bN0(t2,t3) are not completely determined yet, since
aN0(0,t3) and bN0(0,t3) have not been specified. One needs
to solve the O(ε2

pert) problem to do this.
Without secular terms, YN1 in (C16) takes the form

YN1(t1N,t2,t3) = aN1(t2,t3)eit1N + bN1(t2,t3)e−it1N . (C20)

We still have to impose the O(εpert) initial conditions on
YN1. Substituting into the aforementioned initial conditions
the values of YN0, YN1, aN0, and bN0 given in (C14), (C19),
and (C20), and using that ˜̃q ′(0) = 0, one finds that

aN1(0,0) = bN1(0,0) = 0. (C21)

Recall that the assumption ˜̃q ′(0) = 0 was made in item (3) of
Sec. IV.

We now solve the O(ε2
pert) problem in (C12). In the

following assume that m �= N . Substituting into the right-hand
side of the differential equation of the O(ε2

pert) problem in
(C12) the values of YN0 and Ym0 given in (C14), Ym1 given in
(C16), aN0 and bN0 given in (C19), and YN1 given in (C20),
one obtains a driven harmonic oscillator equation for YN2 in
the fast time scale t1N . The general solution of this equation is

YN2(t1N,t2,t3) = aN2(t2,t3)eit1N + bN2(t2,t3)e−it1N

+ eit1N
A1(t2,t3)

4
(1 − i2t1N )

+ e−it1N
B1(t2,t3)

4
(1 + i2t1N ), (C22)

where we have introduced the quantities A1(t2,t3) and
B1(t2,t3). The former is defined by

A1(t2,t3) = −2i

ωN [ ˜̃q(t2)]

{
∂aN1

∂t2
(t2,t3) + ∂aN0

∂t3
(t2,t3) + ˜̃q ′(t2)�NN [ ˜̃q(t2)]aN1(t2,t3)

}

− �NN [ ˜̃q(t2)]

ωN [ ˜̃q(t2)]2

[
2 ˜̃q ′(t2)

∂aN0

∂t2
(t2,t3) + ˜̃q ′′(t2)aN0(t2,t3)

]
− 1

ωN [ ˜̃q(t2)]2

{
∂2aN0

∂t2
2

(t2,t3) + i ˜̃q ′(t2)ω′
N [ ˜̃q(t2)]aN1(t2,t3)

}

− 4 ˜̃q ′(t2)2aN0(t2,t3)
+∞∑
n=1
n �=N

�Nn[ ˜̃q(t2)]�nN [ ˜̃q(t2)]

ωn[ ˜̃q(t2)]2 − ωN [ ˜̃q(t2)]2
, (C23)

and B1(t2,t3) is obtained from A1(t2,t3) by changing i to −i, aN1 to bN1, and aN0 to bN0.
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We now eliminate secular terms from YN2 given in (C22). Using the expressions of aN0(t2,t3) and bN0(t2,t3) in (C19), it
follows that secular terms in YN2 disappear if and only if

A1(t2,t3) = B1(t2,t3) = 0, ⇔ z(t2,t3) = αN [ ˜̃q(t2)]

[
z(0,t3) − t2

∂z1

∂t3
(0,t3) − z2(0,t3)

∫ t2

0
dt ′2η(t ′2)

]
,

with

⎧⎨
⎩

z = bN1, z1 = bN0, z2 = bN0,

or
z = aN1, z1 = aN0, z2 = −aN0.

(C24)

Now one must also eliminate secular terms from aN1(t2,t3) and bN1(t2,t3); that is, one must eliminate terms that become unbounded
as t2 grows with t3 fixed. From (C24) one finds that secular terms disappear from aN1(t2,t3) and bN1(t2,t3) if and only if

∂aN0

∂t3
(0,t3) = ∂bN0

∂t3
(0,t3) = 0, (t3 � 0),

⇔ bN0(0,t3) = bN0(0,0) = g0N

2
+ ig1N

2ωN [ ˜̃q(0)]
, aN0(0,t3) = aN0(0,0) = bN0(0,0)∗. (C25)

In deducing (C25) we used the fact that the factor of z2 in (C24) is not a multiple of t2. This is seen explicitly further below in
(C63). Also, notice that we used the initial conditions in (C15) in the last line of (C25).

Substituting the values of aN0(0,t3) and bN0(0,t3) given in (C25) into the expressions for aN0(t2,t3) and bN0(t2,t3) in (C19),
one concludes that

z(t2,t3) = z(0,0)αN [ ˜̃q(t2)], with z = aN0, bN0. (C26)

Therefore, aN0(t2,t3) and bN0(t2,t3) are now completely specified and it turns out that they do not depend on t3. Also, notice from
(C15) and (C26) that

aN0(t2,t3) = bN0(t2,t3)∗. (C27)

Eliminating secular terms from YN2, aN1, and bN1 according to (C24) and (C25), one obtains that

YN2(t1N,t2,t3) = aN2(t2,t3)eit1N + bN2(t2,t3)e−it1N , aN1(t2,t3) = αN [ ˜̃q(t2)]

{
aN1(0,t3) + bN0(0,0)∗

∫ t2

0
dt ′2η(t ′2)

}
,

bN1(t2,t3) = αN [ ˜̃q(t2)]

{
bN1(0,t3) − bN0(0,0)

∫ t2

0
dt ′2η(t ′2)

}
. (C28)

Notice that aN1(t2,t3) and bN1(t2,t3) are not yet completely specified because aN1(0,t3) and bN1(0,t3) remain to be determined.
This is done by solving the O(ε3

pert) problem. Also, the initial conditions for aN2(t2,t3) and bN2(t2,t3) are obtained from the
O(ε2

pert) initial conditions in (C12) by substituting the expressions for YN0, aN0(0,0), bN0(0,0), YN1, aN1(0,0), bN1(0,0), and YN2

given in (C14), (C15), (C20), (C21), and (C28). One obtains

bN2(0,0) = i ˜̃q ′′(0)
g1Nω′

N [ ˜̃q(0)]

8ωN [ ˜̃q(0)]4
, aN2(0,0) = bN2(0,0)∗. (C29)

We now solve the O(ε2
pert) problem for Ym2 with m �= N . Substituting in the O(ε2

pert) differential equation given in (C12) the
expressions for YN0 and Ym0 in (C14), Ym1 in (C16), YN1 in (C20), aN0 and bN0 in (C26), and aN1 and bN1 in (C28) and solving
the resulting harmonic oscillator equations with driving, one obtains that

Ym2(t1N,t2,t3) = am2(t2,t3)eiWm(t2)t1N + bm2(t2,t3)e−iWm(t2)t1N + eit1N D(t2,t3) + e−it1N F (t2,t3)

Wm(t2)2 − 1
, (m �= N ), (C30)

where we have introduced the quantities

h9(t2) = −i ˜̃q ′(t2)
2�mN [ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
αN [ ˜̃q(t2)]aN0(0,0)

∫ t2

0
dt ′2η(t ′2) − 2aN0(t2,t3)

ωN [ ˜̃q(t2)]

{
˜̃q ′′(t2)

�mN [ ˜̃q(t2)]

2ωN [ ˜̃q(t2)]
+ ∂

∂t2

[
Tm(t2)

Wm(t2)2 − 1

]

− ˜̃q ′(t2)
Tm(t2)�NN [ ˜̃q(t2)]

Wm(t2)2 − 1
+ ˜̃q ′(t2)

+∞∑
n=1
n �=N

Tn(t2)�mn[ ˜̃q(t2)]

Wn(t2)2 − 1
− ˜̃q ′(t2)2 �mN [ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
ζN (t2)

}
,

h10(t2) = −i ˜̃q ′(t2)
2�mN [ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
αN [ ˜̃q(t2)], D(t2,t3) = h9(t2) + h10(t2)aN1(0,t3), F (t2,t3) = h9(t2)∗ + h10(t2)∗bN1(0,t3).

(C31)

Notice that we used that aN0(t2,t3) and bN0(t2,t3) do not depend on t3; see (C26).
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Applying the O(ε2
pert) initial conditions given in (C12) to Ym2 given in (C30) and using that ˜̃q ′(0) = 0 [see item (3) in Sec. IV],

it is straightforward to show that

am2(0,0) + bm2(0,0) = g0N
˜̃q ′′(0)�mN [ ˜̃q(0)]

ωm[ ˜̃q(0)]2 + 3ωN [ ˜̃q(0)]2

{ωm[ ˜̃q(0)]2 − ωN [ ˜̃q(0)]2}2
,

am2(0,0) − bm2(0,0) = −ig1N
˜̃q ′′(0)

�mN [ ˜̃q(0)]

ωm[ ˜̃q(0)]

3ωm[ ˜̃q(0)]2 + ωN [ ˜̃q(0)]2

{ωm[ ˜̃q(0)]2 − ωN [ ˜̃q(0)]2}2
. (C32)

Observe that both am2(0,0) and bm2(0,0) are, in general, different from zero because g0N and g1N cannot both be zero (there
would be no field in that case) and the rest of the quantities involved in the right-hand sides of (C32) are, in general, different
from zero. As a consequence, the terms that vary as e±iWm(t2)t1N in (C30) will not disappear, in general, from Ym2.

We now solve the O(ε3
pert) problem for YN3. This will allow us to completely specify aN1(t2,t3) and bN1(t2,t3).

Substituting into the O(ε3
pert) equation in (C13) the expressions for YN0 and Ym0 in (C14), Ym1 in (C16), YN1 in (C20), aN0 and

bN0 in (C26), YN2, aN1, and bN1 in (C28), and Ym2 in (C30) and solving the resulting harmonic oscillator equations with driving,
one obtains that

YN3(t1N,t2,t3) = aN3(t2,t3)eit1N + bN3(t2,t3)e−it1N + eit1N
(1 − i2t1N )

4ωN [ ˜̃q(t2)]2
R(t2,t3) + e−it1N

(1 + i2t1N )

4ωN [ ˜̃q(t2)]2
S(t2,t3)

+
+∞∑
n=1
n �=N

Rn(t2,t3)eiWn(t2)t1N

ωN [ ˜̃q(t2)]2 − ωn[ ˜̃q(t2)]2
+

+∞∑
n=1
n �=N

Sn(t2,t3)e−iWn(t2)t1N

ωN [ ˜̃q(t2)]2 − ωn[ ˜̃q(t2)]2
, (C33)

where

iR(t2,t3)

2ωN [ ˜̃q(t2)]
= ∂aN2

∂t2
(t2,t3) + ˜̃q ′(t2)ζN (t2)aN2(t2,t3) + aN0(t2,t3)

×
{
i
f9(t2) − f11(t2)

2ωN [ ˜̃q(t2)]
+ i

f10(t2) − f12(t2)

2ωN [ ˜̃q(t2)]
aN1(0,t3) + 1

aN0(0,0)

∂aN1

∂t3
(0,t3)

}
,

S(t2,t3)

i2ωN [ ˜̃q(t2)]
= ∂bN2

∂t2
(t2,t3) + ˜̃q ′(t2)ζN (t2)bN2(t2,t3) − bN0(t2,t3)

×
{
i
f16(t2) − f14(t2)

2ωN [ ˜̃q(t2)]
+ i

f17(t2) − f15(t2)

2ωN [ ˜̃q(t2)]
bN1(0,t3) − 1

bN0(0,0)

∂bN1

∂t3
(0,t3)

}
,

iRn(t2,t3)

2ωN [ ˜̃q(t2)]
= ˜̃q ′(t2)�Nn[ ˜̃q(t2)]Wn(t2)an2(t2,t3),

Sn(t2,t3)

i2ωN [ ˜̃q(t2)]
= ˜̃q ′(t2)�Nn[ ˜̃q(t2)]Wn(t2)bn2(t2,t3). (C34)

Here we had to introduce quantities which also make use of D(t2,t3) and F (t2,t3) in (C31), the quantities defined in (B7), and
the result that aN0(t2,t3) and bN0(t2,t3) do not depend on t3 [see (C26)],

h5(t2)

aN0(t2,t3)
= − h7(t2)

bN0(t2,t3)
=

∫ t2

0
dt ′2η(t ′2), h6(t2) = aN0(t2,t3)

aN0(0,0)
, h8(t2) = bN0(t2,t3)

bN0(0,0)
,

f1(t2) = η′(t2)−2 ˜̃q ′(t2)η(t2)ζN (t2)− ˜̃q ′′(t2)ζN (t2)
∫ t2

0
dt ′2η(t ′2)− ˜̃q ′(t2)

[∫ t2

0
dt ′2η(t ′2)

]
d

dt2
ζN (t2)+ ˜̃q ′(t2)2ζN (t2)2

∫ t2

0
dt ′2 η(t ′2),

f2(t2) = −
˜̃q ′′(t2)

aN0(0,0)
ζN (t2) −

˜̃q ′(t2)

aN0(0,0)

d

dt2
ζN (t2) +

˜̃q ′(t2)2

aN0(0,0)
ζN (t2)2, f4(t2) = −aN0(0,0)

bN0(0,0)
f2(t2),

f5(t2) = η(t2) − ˜̃q ′(t2)ζN (t2)
∫ t2

0
dt ′2 η(t ′2), f6(t2) = −

˜̃q ′(t2)ζN (t2)

aN0(0,0)
, f8(t2) =

˜̃q ′(t2)ζN (t2)

bN0(0,0)
,

f9(t2) = i2 ˜̃q ′(t2)
+∞∑
n=1
n �=N

�Nn[ ˜̃q(t2)]

{
∂

∂t2

[
Tn(t2)

Wn(t2)2 − 1

]
− ωN [ ˜̃q(t2)]h9(t2)

aN0(t2,t3)[Wn(t2)2 − 1]

}

+ i[ ˜̃q ′′(t2) − 2 ˜̃q ′(t2)2ζN (t2)]
+∞∑
n=1
n �=N

Tn(t2)�Nn[ ˜̃q(t2)]

Wn(t2)2 − 1
,

033846-22



EVOLUTION OF AN ELECTROMAGNETIC FIELD IN THE . . . PHYSICAL REVIEW A 94, 033846 (2016)

f10(t2) = −i2 ˜̃q ′(t2)ωN [ ˜̃q(t2)]
h10(t2)

aN0(t2,t3)

+∞∑
n=1
n �=N

�Nn[ ˜̃q(t2)]

Wn(t2)2 − 1
,

f11(t2) = f1(t2) + 2 ˜̃q ′(t2)�NN [ ˜̃q(t2)]f5(t2) + ˜̃q ′′(t2)�NN [ ˜̃q(t2)]
h5(t2)

aN0(t2,t3)
, (C35)

and
(i) f12(t2) is obtained from f11(t2) by changing f1(t2) to f2(t2), f5(t2) to f6(t2), and h5(t2) to h6(t2);
(ii) f16(t2) is obtained from f11(t2) by changing h5(t2) to h7(t2) and aN0(t2,t3) to −bN0(t2,t3);
(iii) f17(t2) is obtained from f11(t2) by changing f1(t2) to f4(t2), f5(t2) to f8(t2), h5(t2) to h8(t2), and aN0(t2,t3) to −bN0(t2,t3);
(iv) f15(t2) is obtained from f10(t2) by changing h10(t2)/aN0(t2,t3) to h10(t2)∗/bN0(t2,t3);
(v) f14(t2) is obtained from f9(t2) by changing h9(t2)/aN0(t2,t3) to h9(t2)∗/bN0(t2,t3).
From (C33) it follows that secular terms disappear from YN3 if and only if

R(t2,t3) = 0, S(t2,t3) = 0. (C36)

Using the definitions of S(t2,t3) and R(t2,t3) in (C34), one finds that this is equivalent to

aN2(t2,t3) = αN [ ˜̃q(t2)]

{
aN2(0,t3) − t2

∂aN1

∂t3
(0,t3) + aN0(0,0)[ψ1(t2) + ψ2(t2)aN1(0,t3)]

}
,

bN2(t2,t3) = αN [ ˜̃q(t2)]

{
bN2(0,t3) − t2

∂bN1

∂t3
(0,t3) + bN0(0,0)[ψ3(t2) + ψ4(t2)bN1(0,t3)]

}
, (C37)

where we have introduced the quantities

ψ1(t2) =
∫ t2

0
dt ′2i

f11(t ′2) − f9(t ′2)

2ωN [ ˜̃q(t ′2)]
, ψ2(t2) =

∫ t2

0
dt ′2i

f12(t ′2) − f10(t ′2)

2ωN [ ˜̃q(t ′2)]
,

ψ3(t2) =
∫ t2

0
dt ′2i

f16(t ′2) − f14(t ′2)

2ωN [ ˜̃q(t ′2)]
, ψ4(t2) =

∫ t2

0
dt ′2i

f17(t ′2) − f15(t ′2)

2ωN [ ˜̃q(t ′2)]
. (C38)

We now use the expressions for aN2(t2,t3) and bN2(t2,t3) given in (C37) to completely specify aN1(t2,t3) and bN1(t2,t3) [recall
that aN1(0,t3) and bN1(0,t3) remain to be determined]. This is done by eliminating secular terms from aN2(t2,t3) and bN2(t2,t3).
From (C37) we find that secular terms disappear from aN2(t2,t3) and bN2(t2,t3) if and only if

∂aN1

∂t3
(0,t3) = ∂bN1

∂t3
(0,t3) = 0, (t3 � 0). (C39)

We note that in deducing (C39) one uses that ψj (t2) (j = 1, 2, 3, 4) does not give rise to terms proportional to t2. This is seen
explicitly further below in (C62).

Integrating (C39) and using the initial conditions in (C21) one finds that this is equivalent to

aN1(0,t3) = bN1(0,t3) = 0 (t3 � 0). (C40)

Substituting the values of aN1(0,t3) and bN1(0,t3) given in (C40) into the expressions for aN1(t2,t3) and bN1(t2,t3) given in
(C28), one concludes that

aN1(t2,t3) = αN [ ˜̃q(t2)]bN0(0,0)∗
∫ t2

0
dt ′2η(t ′2), bN1(t2,t3) = −αN

[
˜̃q(t2)

]
bN0(0,0)

∫ t2

0
dt ′2η(t ′2). (C41)

Also, substituting (C40) into aN2(t2,t3) and bN2(t2,t3) given in (C37) and using aN0(0,0) = bN0(0,0)∗ given in (C27), one obtains
that

aN2(t2,t3) = αN [ ˜̃q(t2)][aN2(0,t3) + bN0(0,0)∗ψ1(t2)], bN2(t2,t3) = αN [ ˜̃q(t2)][bN2(0,t3) + bN0(0,0)ψ3(t2)]. (C42)

If one only requires a one- or two-term approximation for dn, then one could stop here because all the necessary quantities
have already been determined. Nevertheless, we are now going to solve the O(ε3

pert) problem in (C13) for Ym3, with m �= N . This
will serve to point out the difficulties one encounters when one requires an n-term approximation for dn with n � 3.
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First substitute into the O(ε3
pert) differential equation the expressions for Ym0 and YN0 in (C14), Ym1 and YN1 in (C16) and

(C20), and YN2 and Ym2 in (C28) and (C30). Solving the resulting harmonic oscillator equations with driving, we obtain

Ym3(t1N,t2,t3) = eit1N J (t2,t3)

ωm[ ˜̃q(t2)]2−ωN [ ˜̃q(t2)]2
+ ieiWm(t2)t1N

4Wm(t2)

{[
H10(t2,t3)

2Wm(t2)2
− i

L0(t2,t3)

Wm(t2)

]
[1 − 2it1NWm(t2)] − H10(t2,t3)t2

1N

}

+ e−it1N K(t2,t3)

ωm[ ˜̃q(t2)]2 − ωN [ ˜̃q(t2)]2
− ie−iWm(t2)t1N

4Wm(t2)

{[
H20(t2,t3)

2Wm(t2)2
+ i

P0(t2,t3)

Wm(t2)

]
[1 + 2it1NWm(t2)] − H20(t2,t3)t2

1N

}

+ am3(t2,t3)eiWm(t2)t1N + bm3(t2,t3)e−iWm(t2)t1N +
+∞∑
n=1

n �=m,N

eiWn(t2)t1N Rmn0(t2,t3) + e−iWn(t2)t1N Smn0(t2,t3)

Wm(t2)2 − Wn(t2)2
, (C43)

with

J (t2,t3) = ˜̃q ′′(t2)�mm[ ˜̃q(t2)]
iTm(t2)

Wm(t2)2 − 1
aN0(t2,t3) + 2 ˜̃q ′(t2)�mm[ ˜̃q(t2)]aN0(t2,t3)

∂

∂t2

[
iTm(t2)

Wm(t2)2 − 1

]

+ 2 ˜̃q ′(t2)�mm[ ˜̃q(t2)]
iTm(t2)

Wm(t2)2 − 1

∂aN0

∂t2
(t2,t3) + aN0(t2,t3)

∂2

∂t2
2

[
iTm(t2)

Wm(t2)2 − 1

]

+ 2
∂aN0

∂t2
(t2,t3)

∂

∂t2

[
iTm(t2)

Wm(t2)2 − 1

]
+ iTm(t2)

Wm(t2)2 − 1

∂2aN0

∂t2
2

(t2,t3) − ˜̃q ′′(t2)�mN [ ˜̃q(t2)]aN1(t2,t3)

− 2ωN [ ˜̃q(t2)]
∂

∂t2

[
iD(t2,t3)

Wm(t2)2 − 1

]
− ˜̃q ′(t2){ω′

N [ ˜̃q(t2)] + 2�mm[ ˜̃q(t2)]ωN [ ˜̃q(t2)]} iD(t2,t3)

Wm(t2)2 − 1

− 2 ˜̃q ′(t2)�mN [ ˜̃q(t2)]
∂aN1

∂t2
(t2,t3) − i2 ˜̃q ′(t2)ωN [ ˜̃q(t2)]�mN [ ˜̃q(t2)]aN2(t2,t3)

+ ˜̃q ′′(t2)aN0(t2,t3)
+∞∑
n=1

n �=m,N

iTn(t2)
�mn[ ˜̃q(t2)]

Wn(t2)2 − 1
− 2i ˜̃q ′(t2)ωN [ ˜̃q(t2)]D(t2,t3)

+∞∑
n=1

n �=m,N

�mn[ ˜̃q(t2)]

Wn(t2)2 − 1

+ 2 ˜̃q ′(t2)
+∞∑
n=1

n �=m,N

�mn[ ˜̃q(t2)]
∂

∂t2

{
aN0(t2,t3)

iTn(t2)

Wn(t2)2 − 1

}
,

−Rmn0(t2,t3)

ian2(t2,t3)
= Smn0(t2,t3)

ibn2(t2,t3)
= 2 ˜̃q ′(t2)

�mn[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
Wn(t2),

H10(t2,t3)

am2(t2,t3)
= H20(t2,t3)

bm2(t2,t3)
= 2Wm(t2)

ωN [ ˜̃q(t2)]
W ′

m(t2),

L0(t2,t3) = − ˜̃q ′(t2)
2iζm(t2)Wm(t2)

ωN [ ˜̃q(t2)]
am2(t2,t3) − 2iW ′

m(t2)

ωN [ ˜̃q(t2)]
am2(t2,t3) − 2iWm(t2)

ωN [ ˜̃q(t2)]

∂am2

∂t2
(t2,t3),

P0(t2,t3) = ˜̃q ′(t2)
2iζm(t2)Wm(t2)

ωN [ ˜̃q(t2)]
bm2(t2,t3) + 2iW ′

m(t2)

ωN [ ˜̃q(t2)]
bm2(t2,t3) + 2iWm(t2)

ωN [ ˜̃q(t2)]

∂bm2

∂t2
(t2,t3), (C44)

and K(t2,t3) is obtained from J (t2,t3) by changing i to −i, aN0

to bN0, D to F , aN1 to bN1, aN2 to bN2. Notice that we made
use of some quantities defined in (B7) and (C31).

From (C43) it follows that secular terms disappear from
Ym3(t1N,t2,t3) for all t1N,t2,t3 � 0 if and only if

H10(t2,t3) = H20(t2,t3) = L0(t2,t3) = P0(t2,t3) = 0,

(t2,t3 � 0). (C45)

Using the definitions of H10, H20, L0, and P0 in (C44) and the
fact that ωN [ ˜̃q(t2)] and Wm(t2) are positive [see (B7) and item
(1) of Sec. III], one finds that (C45) is equivalent to

am2(t2,t3)W ′
m(t2) = bm2(t2,t3)W ′

m(t2) = 0,

L0(t2,t3) = P0(t2,t3) = 0, (t2,t3 � 0). (C46)

From (C32) and (B7) one has, in general,

am2(t2,t3) �= 0, bm2(t2,t3) �= 0, W ′
m(t2) �= 0. (C47)

From (C47) one observes that the first two equalities in (C46)
involving am2(t2,t3)W ′

m(t2) and bm2(t2,t3)W ′
m(t2) cannot be

satisfied. The origin of this difficulty is that there are actually
many fast time scales involved in the problem, one associated
with each (instantaneous) mode. In fact, in Appendix B it was
shown that the fast time scale t1N (τ ) should be chosen to be∫ τ

0
dτ ′ωm[ ˜̃q(εpertτ

′)]. (C48)

In other words, each (instantaneous) mode has its own fast time
scale given by (C48). This is physically reasonable because
each mode has its own angular frequency ωm[ ˜̃q(εpertτ

′)].
We chose the fast time scale in both Appendix B and this
appendix to be (C1) because we considered initial conditions
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such that only (instantaneous) mode N is initially excited.
This choice allowed us to obtain a two-term approximation
in Appendix B and in this appendix. If one wants a three-term
or higher approximation in Appendix B or in this appendix,
then one encounters the problem stated in (C46) and (C47).
Now one encounters this problem only for (instantaneous)
modes m �= N and for the aforementioned higher-order
approximations because these other modes are not initially
excited and in these higher-order approximations these other
modes begin to oscillate at their respective frequencies.

One can remedy this difficulty in three ways.
(i) q̃ ′′(0) = 0 or, equivalently ˜̃q ′′(0) = 0 [see (27)].
One can consider the case where the membrane is moved by

an external agent in such a way that ˜̃q ′′(0) = 0. For example,
see (53) for possible trajectories of the membrane that satisfy
this condition. Substituting ˜̃q ′′(0) = 0 in (C32), one concludes
that

am2(0,0) = bm2(0,0) = 0 (m �= N ). (C49)

Hence, one can take

am2(t2,t3) = bm2(t2,t3) = 0 (m �= N ). (C50)

From (C50) and the definitions of L0 and P0 in (C44) one
concludes that (C46) is satisfied and, consequently, secular
terms are eliminated from Ym3 (m �= N ).

(ii) �mN [q̃(0)] = 0 for all m �= N or, equivalently,
�mN [ ˜̃q(0)] = 0 for all m �= N [see (27)].
One could consider special electric susceptibilities χ̃[ξ −
q̃(τ )] such that �mN [ ˜̃q(0)] = 0 for all m �= N . Substituting
this into (C32) leads to (C49) and, consequently, one can take
(C50). Using the same argument as in item (i) above, it follows
that secular terms are eliminated from Ym3 (m �= N ).

(iii) W ′
m(t2) � 0.

From (C14) and (C16) one can observe that Ym0(t1N,t2,t3) =
0 and that Ym1(t1N,t2,t3) is proportional to {ωm[ ˜̃q(t2)]2 −
ωN [ ˜̃q(t2)]2}−1 (m �= N ). In item (1) in Sec. III it is stated
that ωm[ ˜̃q(t2)] → +∞ if m → +∞. Hence, Ym1(t1N,t2,t3)
will be negligible except for m �= N such that ωm[ ˜̃q(t2)] is
in a small band around ωN [ ˜̃q(t2)]. Given this observation, we
can assume that the membrane interacts only with a narrow
range of frequencies around ωN [ ˜̃q(t2)]. It then follows that

Wm(t2) = ωm[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
� 1 (t2 � 0), (C51)

so that

W ′
m(t2) � 0 (t2 � 0). (C52)

We mention that we prefer not to make the approximation
that all frequencies in the narrow band are equal, that is, the
approximation that

Wm(t2) = ωm[ ˜̃q(t2)]

ωN [ ˜̃q(t2)]
= 1 (t2 � 0), (C53)

for all frequencies in the narrow band. The reason for this is
that we actually do know that the frequencies are different
[see Sec. III and item (e) in Sec. V B] and we consider
that assuming that they are equal would alter the system in
a fundamental way. For example, the quasiresonance factor
{ωm[ ˜̃q(t2)]2 − ωN [ ˜̃q(t2)]2}−1 included in Ym1 (m �= N ) in
(C16) would not appear if ωm[ ˜̃q(t2)] = ωN [ ˜̃q(t2)] and it would
be replaced by another term that is defined for ωm[ ˜̃q(t2)] =
ωN [ ˜̃q(t2)] in a similar way to a harmonic oscillator with
resonant driving [29].
With the approximation in (C52) it follows from (C46) that
secular terms disappear from Ym3(t1N,t2,t3) (m �= N ) for all
t1N,t2,t3 � 0 if and only if

L0(t2,t3) = P0(t2,t3) = 0, (t2,t3 � 0). (C54)

Solving the resulting equations for am2 and bm2, one concludes
that

z(t2,t3) = z(0,t3)αm[ ˜̃q(t2)], (t2,t3 � 0),

with z = am2,bm2. (C55)

Notice that αm[ ˜̃q(t2)] is defined in (B7).
Before proceeding, we emphasize that choosing t1N (τ )

given in (C1) at least allows one to obtain a one- and two-term
approximation using three time scales without making any
further assumptions or approximations. The problem appears
when one requires an n-term approximation with n � 3.

We are now going to give a summary of the results obtained
above. We use quantities defined in (B7).

(a) A first-term approximation to dn(t1N,t2,t3) is given by

dN (t1N,t2,t3) � YN0(t1N,t2,t3),

= αN [ ˜̃q(t2)][bN0(0,0)∗eit1N + bN0(0,0)e−it1N ],

dm(t1N,t2,t3) � Ym0(t1N,t2,t3) = 0, (m �= N ), (C56)

with

bN0(0,0) = g0N

2
+ ig1N

2ωN [ ˜̃q(0)]
. (C57)

This follows from (C9) and the results in (C14), (C15), and
(C26).

(b) A two-term approximation to dn(t1N,t2,t3) is given by

dN (t1N,t2,t3) � YN0 + εpertYN1 = αN [ ˜̃q(t2)]

{
bN0(0,0)∗eit1N

[
1 + εpert

∫ t2

0
dt ′2 η(t ′2)

]

+ bN0(0,0)e−it1N

[
1 − εpert

∫ t2

0
dt ′2 η(t ′2)

]}
,

dm(t1N,t2,t3) � Ym0 + εpertYm1 = εpertYm1(t1N,t2,t3) = −iεpert ˜̃q ′(t2)
2�mN [ ˜̃q(t2)]ωN [ ˜̃q(t2)]

ωm[ ˜̃q(t2)]2 − ωN [ ˜̃q(t2)]2
αN [ ˜̃q(t2)]

× [bN0(0,0)∗eit1N − bN0(0,0)e−it1N ] (m �= N ). (C58)

This follows from (C9), item (a) above, and the results in (C16), (C20), and (C41).
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(c) A three-term approximation to dn(t1N,t2,t3) is given by

dn(t1N,t2,t3) � Yn0(t1N,t2,t3) + εpertYn1(t1N,t2,t3) + ε2
pertYn2(t1N,t2,t3), (C59)

where the following terms must be added to the right-hand sides in (C58):

ε2
pertYN2(t1N,t2,t3) = ε2

pertαN [ ˜̃q(t2)]{eit1N [bN2(0,t3)∗ + bN0(0,0)∗ψ1(t2)] + e−it1N [bN2(0,t3) + bN0(0,0)ψ3(t2)]},
and for m �= N

ε2
pertYm2(t1N,t2,t3) = ε2

pertαm[ ˜̃q(t2)][am2(0,t3)eiWm(t2)t1N + bm2(0,t3)e−iWm(t2)t1N ]

+ ε2
pert

{
eit1N

ωN [ ˜̃q(t2)]2D(t2,t3)

ωm[ ˜̃q(t2)]2 − ωN [ ˜̃q(t2)]2
+ e−it1N

ωN [ ˜̃q(t2)]2F (t2,t3)

ωm[ ˜̃q(t2)]2 − ωN [ ˜̃q(t2)]2

}
. (C60)

Here D(t2,t3) and F (t2,t3) are defined in (C31) and aN2(0,t3) = bN2(0,t3)∗ and bN2(0,t3) are obtained by solving the O(ε4
pert)

problem, eliminating secular terms, and applying the initial conditions in (C29). Moreover, (C60) follows from (C9), item (b)
above, and the results in (C28), (C30), (C42), and (C55). We emphasize that three- and higher-term approximations are deduced
with either one of the following two conditions [see the discussion following (C47)].

(c.1) ˜̃q ′′(0) = 0 or �mN [ ˜̃q(0)] = 0 for all m �= N .
In this case one has from (C50)

am2(0,t3) = bm2(0,t3) = 0, (t3 � 0). (C61)

(c.2) W ′
m(t2) � 0 for t2 � 0.

In this case am2(0,t3) = bm2(0,t3)∗ and bm2(0,t3) are obtained by solving the O(ε4
pert) problem, eliminating secular terms,

and applying the initial conditions in (C32).
The final step is to return to the original variable τ and obtain an approximation for cn(τ ). In order to do this, one has to take

the following sequence of steps: (i) use the definition of the time scales and the relationship between cn and dn in (C1)–(C5);
(ii) use the approximations for dn in items (a)–(c) above; (iii) use the relationship between q̃(τ ) and ˜̃q[t2(τ )] given in (27); and
(iv) neglect terms of order � 2 in q̃ ′(τ ) and q̃ ′′(τ ). The last step has to be taken because the equation governing the evolution of
cn(τ ) is correct to first order in q̃ ′(τ ) and q̃ ′′(τ ). This is how the results of Sec. V are obtained. In particular, to first order in q̃ ′(τ )
and q̃ ′′(τ ) one has the following results:

ε2
pertψ1[t2(τ )] = ε2

pertψ3[t2(τ )] = q̃ ′′(τ )
ω′

N [q̃(τ )]

8ωN [q̃(τ )]3
− q̃ ′′(0)

ω′
N [q̃(0)]

8ωN [q̃(0)]3
,

ε2
pertψ2[t2(τ )] = −iεpert

q̃ ′(τ )

bN0(0,0)∗
ω′

N [q̃(τ )]

4ωN [q̃(τ )]2
, ε2

pertψ4[t2(τ )] = iεpert
q̃ ′(τ )

bN0(0,0)

ω′
N [q̃(τ )]

4ωN [q̃(τ )]2
, (C62)

εpert

∫ t2(τ )

0
dt ′2η(t ′2) = −iq̃ ′(τ )

ω′
N [q̃(τ )]

4ωN [q̃(τ )]2
,

ε2
pert

{
D[t2(τ ),t3(τ )]
F [t2(τ ),t3(τ )]

}
= −q̃ ′′(τ )

�mN [q̃(τ )]

ωN [q̃(τ )]2

{
bN0[t2(τ ),t3(τ )]∗
bN0[t2(τ ),t3(τ )]

}
ωm[q̃(τ )]2 + 3ωN [q̃(τ )]2

ωm[q̃(τ )]2 − ωN [q̃(τ )]2
. (C63)

To end this appendix, we establish one final approximation. From item (c) above and (C61) note that the terms e±iWm(t2)t1N in
ε2

pertYm2 do not appear if q̃ ′′(0) = 0 or �mN [q̃(0)] = 0 for all m �= N . Then, one can use W ′
m(t2) � 0 for both cases in items (c.1)

and (c.2) to obtain the following approximation:

e±iWm[t2(τ )]t1N (τ ) � exp

{
±i

∫ τ

0
dτ ′ωm[q̃(τ ′)]

}
. (C64)

This result is obtained by using the expressions for t1N (τ ) and Wm(t2) in (C1) and (B7) and the relation between q̃(τ ) and ˜̃q[t2(τ )]
in (27) as follows:

W ′
m(t2) � 0, (t2 � 0) ⇒ Wm(t2) � constant

⇒ Wm[t2(τ )]t1N (τ ) �
∫ τ

0
dτ ′Wm[t2(τ ′)]ωN { ˜̃q[t2(τ ′)]} =

∫ τ

0
dτ ′ωm{ ˜̃q[t2(τ ′)]} =

∫ τ

0
dτ ′ωm[q̃(τ ′)]. (C65)
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