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The frequency and transmission spectrum of a two-dimensional array of metallic rods is investigated
numerically. Based on the recent analysis of the band structure of two-dimensional photonic crystals with
dielectric rods [Phys. Rev. A 92, 043814 (2015)], we identify two types of bands in the frequency spectrum:
Bragg (P) bands resulting from a periodicity and Fano (F) bands which arise from Fano resonances associated
with each of the cylinders within the periodic structure. It is shown that the existence of the Fano band in a
certain frequency range is manifested by a Fano resonance in the transmittance. In particular, we reexamine the
symmetry properties of the H -polarized band structure in the frequency range where the spectrum consists of
the localized modes associated with the single-scatterer resonances and we explore the process of formation of
Fano bands by identifying individual terms in the expansion of the linear combination of atomic orbitals states.
We demonstrate how the interplay between the two scattering mechanisms affects the properties of the resulting
band structure when the radius of cylinders is increased. We show that a different character of both kinds of
bands is reflected in the spatial distribution of the magnetic field, which displays patterns corresponding to the
corresponding irreducible symmetry representations.
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I. INTRODUCTION

The properties of photons in photonic crystal can be
described efficiently in terms of band structure. When the
dielectric constants of materials which compose the photonic
crystals are sufficiently different and the absorption of light by
the materials is sufficiently low, the photonic band structure
might exhibit a photonic gap in which photons are forbidden
to propagate in certain directions with specified frequencies
[1–3]. The physical origin of separated frequency bands in
photonic crystals can be described in terms of two scattering
mechanisms. The first one, a Bragg-like scattering [2], may
lead to the existence of a gap in the total photon density of states
due to the destructive interference of the scattered electromag-
netic (EM) waves from a periodic array of resonators and can
give rise to large-scale or macroscopic resonance. The second
mechanism which strongly influences the frequency spectrum
of photonic crystals is based on microscopic resonances
associated with independent, uncorrelated scatterers. This
scattering plays a key role in the theory of disordered photonic
structures, where the interference of scattered waves may
cause the spatial localization [4] of the EM wave when the
density of resonant centers possesses the value for which
spheres of the influence of the scatterers become optically
connected [5]. The latter mechanism can be described in
terms of the free-photon Ioffe–Regel criterion of localization
[6,7] 2π�/λ � 1, where � is the mean-free path and λ is the
vacuum wavelength. According to this criterion a transition
from extended to localized modes takes place due to the
interference of multiple scattering paths [4,5,7]. When the
size of scatterers becomes comparable to the wavelength λ,
Mie resonances [8,9] are excited and consequently affect the
propagation of EM waves. For example, it was demonstrated
that that there is a direct correspondence between the gaps
calculated by the plane-wave expansion method [10,11] and
the Mie resonances. A large photonic band gap arises due to the

synergetic interplay between the microscopic and macroscopic
resonance mechanisms, i.e., when the density of dielectric
spheres is chosen such that the Mie resonances in the scattering
by individual scatterers occur at the same wavelength as
the macroscopic Bragg resonance of an array of the same
scatterers [4].

On the other hand, when the concentration of the scatterers
increases, the excitation of the resonances enables the prop-
agation of an EM wave across the sample. In this case, Mie
resonances excited at isolated scatterers play the role of the
electron eigenstates associated with isolated atoms in a crystal
or spatially localized states in disordered structures [12]. Note
that, in contrast to Bragg scattering, Mie scattering does not
require a perfect periodic arrangement of scatterers.

In dealing with this analogy, however, one has to take
into account the two following important differences: First, in
contrast to the case of electronic structure, the photons, unlike
electrons, are not bound to a single scatterer and transmission
is primarily achieved through the scattering resonances which
occur when the wavelength of light is comparable to the size
of the scatterer. Second, in the case of a classical wave, the
medium supports propagating solutions for every frequency
and thus for large wavelengths the transmission occurs due
to this propagation mode even when no localized resonances
are excited. These assumptions have been theoretically imple-
mented in the tight-binding formulation of light propagation
in two-dimensional photonic band-gap structures [13] and,
in particular, the role of single-scatterer resonances in the
formation of the higher-frequency bands was verified.

The recent interest in the investigation of the modes with a
complex wave vector [14–16] has led to significant advance-
ment in the understanding of both scattering mechanisms,
which manifests themselves in the resulting complex band
structures. In particular, both alternative (inverse dispersion
approach) [16] and revisited forms of the conventional
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computational techniques (FEM, finite-difference method)
[14,15] inherently yield bands of pure imaginary and complex-
wave vector Bloch modes. It has been suggested that the
modes with pure imaginary wave vector which exist within
the band gaps play an important role in representing the
evanescent field inside a finite or semi-infinite photonic-crystal
slab under external excitation [17]. The properties of the
modes with complex wave vector proved to be even more
intriguing because they can exist both within and outside
the band gaps. Specifically, they significantly affect the
transmittance and reflectance in the subwavelength plasmonic
crystals [14] and give rise to Fano-like resonances. On the
other hand, the complicated features originating from Bragg
or Mie evanescent modes that are found in the complex band
structures of an infinite two-dimensional photonic crystal
allow us to discern unambiguously between Bragg and Mie
gaps in the spectra [16].

Curiously enough, until recently [18–20], both
mechanisms—coherent Bragg scattering and transmission via
microscopic resonances on scatterers—were to our knowledge
considered to take part independently in the formation of the
lower- and higher-frequency bands, while their coupling has
not been systematically studied. The relation between these
two mechanisms, which unveils effects associated with their
synergetic interplay, has been investigated on the example of a
finite two-dimensional photonic crystal consisting of infinitely
long dielectric cylinders [21]. It was shown that the bands
which form the photonic band structure of two-dimensional
(2D) photonic crystals consists of two types of bands—P
and F bands—which arise either (a) due to the permittivity
contrast between the cylinders and a background which lead
to the formation of gaps at the edges of the first Brillouin
zone (P bands) [22] or (b) from Fano resonances associated
with each of the cylinder which form the bands when they
are brought together to form a 2D periodic array (F bands).
The different nature of both types of bands is reflected in
the spatial distribution of the electric field in the dielectric
cylinders. The bands are classified in terms of the irreducible
representations of the C4v symmetry group. Their properties
are determined by the symmetry of the terms in the expansions
of linear combination of atomic orbitals (LCAO) states and
by the order of excited Fano resonance [23,24]. The coupling
between the periodic P bands and Fano F bands give rise to
irregularities in the resulting spectrum, such as splitting of the
P band or overlapping between them.

The casting of the bands described above provides a conve-
nient approach that can be applied to describe the H -polarized
photonic band structure of 2D photonic crystals consisting of
metallic rods. The origin of nearly dispersionless flat bands in
the H -polarized spectrum of metallic rods has been identified
as the weak overlap of H -polarized excitations associated
with each metallic cylinder [25] that are characterized by
discrete frequencies [26]. When a sufficiently large or infinite
number of cylinders is brought together to form a periodic
structure, the overlap of these excitations broadens the discrete
frequencies into narrow bands. The physical origin of these
nearly dispersionless bands has been confirmed by subsequent
investigations employing the finite-difference time-domain
(FDTD) technique [27] and the multiple multipole method
(MMP) [28], which are able to deal with surface modes which

FIG. 1. Two-dimensional periodic array of metallic rods. The
structure is infinite in the x direction. The number N of cylinders
in the y direction varies from N = 1 (linear array of rods) to N = 24.

proved to be more appropriate to calculate band structures
with components characterized by a frequency-dependent
dielectric function than the plane-wave methods [26]. There
were identified two kinds of modes within the resulting
H -polarized spectrum: (a) modified plane waves which, like
E-polarized bands, have their replicas in free space and
(b) resonant states which can be regarded as analogous to
the linear combination of atomic orbitals in solid-state theory
and which are associated with localized plasmon resonances
localized close to the surface of cylinders and their symmetry
can be classified in terms of the resonant states corresponding
to the Mie resonances of an isolated cylinder [27–29].

In our paper we apply the scattering approach which is
based on the expansion of the electromagnetic field in a
series of the cylinder functions [30]. In contrast to results
reported previously [27,28] we calculate transmission of EM
wave of the 2D array of cylinders which is finite in the
direction of propagation. This technique allows us to study
spectral properties of structures starting from an infinite one-
dimensional array of cylinders which is consequently extended
to form the two-dimensional photonic crystal. This approach
proved to be feasible in the case of two-dimensional array
of dielectric rods and it allows us to investigate a coupling
between localized and extended bands and reveals features
associated with the finite size of the structure.

II. STRUCTURE AND NUMERICAL METHOD

The system we consider in this paper consists of a finite
number of linear arrays of metallic cylinders of radius R

and of infinite length along the z axis which form a finite
two-dimensional photonic slab constructed typically from
N rows of the same cylinders located in planes y = nya,
ny = 0,1, . . . ,N − 1 (Fig. 1). The dielectric function of metal
from which cylinders are formed is assumed to have the simple,
free-electron form

ε(ω) = 1 − ω2
p/ω2, (1)

where ωp is the plasma frequency of the conduction electrons.
The frequencies in the results for the band structures and the
transmittances are normalized to the plasma frequency ωp by
setting λp = a, where λp is the plasma wavelength.

The electromagnetic wave is assumed to propagate in the
xy plane, perpendicular to the rods. The incident EM wave

Hz(x,y|ω)inc = exp[i(kxx + kyy) − iωt] (2)
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is polarized parallel to the axes of the cylinders. To describe
the properties of EM waves in a two-dimensional photonic
crystal, we calculate the transmission coefficient as a function
of frequency and evaluate the spatial distribution of magnetic
field. The algorithm which we use is based on the expansion
of the electromagnetic field into cylinder functions [9,30–34].
Our approach is described in detail in Ref. [35]. The magnetic
field scattered at a cylinder centered at �r = (0,0) can be
expressed in cylindrical coordinates r and φ as

H in
z = α+

0 J̃0 + 2
∑
k>0

α+
k J̃k cos (kφ) + 2i

∑
k>0

α−
k J̃k sin (kφ),

(3)

and

H out
z = β+

0 H̃0 + 2
∑
k>0

β+
k H̃k cos (kφ)

+ 2i
∑
k>0

β−
k H̃k sin (kφ), (4)

for r < R and r > R, respectively. Here, J̃k(r) = Jk(2πrn/λ),
H̃k(r) = Hk(2πr/λ)/H ′

k(2πR/λ), Jk(r) are the Bessel func-
tions and Hk(r) and H ′

k(r) are the Hankel functions of the first
kind and their derivatives [36], respectively. λ = 2πc/ω is the
wavelength of the EM field in the vacuum and n = √

εμ is
the index of refraction. To evaluate the field Hz scattered by a
cylinder centered at �rnxny

= (nxa,nya) one can use Eqs. (3) and
(4) with a new set of coefficients αk(nx,ny) and βk(nx,ny) and
cylindrical coordinates r and φ corresponding to the position
of the cylinder.

The coefficients αk(nx,ny) and βk(nx,ny) can be calculated
from the continuity condition of the tangential components of
the electric and magnetic field at the boundary of cylinders.
Note that two components of the electric field Er and Eφ can
be expressed by using of the same set of coefficients α and β

by using the expressions

Er = i

ωεr

∂Hz

∂φ
, Eφ = − i

ωε

∂Hz

∂r
. (5)

The spatial periodicity of the structure along the x axis
allows us to reduce significantly the number of unknown
coefficients since the coefficients α(nx,ny) and β(nx,ny)
satisfy the Bloch theorem

αk(nx,ny) = αk(0,ny)eikxanx , (6)

βk(nx,ny) = βk(0,ny)eikxanx . (7)

By employing the relation given by Eq. (7), the number of
unknown coefficients β±

k (ny) is reduced to N (2NB + 1), where
NB is the highest order of the Bessel function. The transmission
coefficient

T = Sy(yp)

Si
y

=
∫ a/2
−a/2 dxex(x,yp)h∗

z (x,yp)∫ a/2
−a/2 dxei

x(x, − yp)
[
hi

z(x, − yp)
]∗ (8)

at the opposite side of the structure can be calculated as the
ratio of the y component of the Poynting vector Sy(yp), to the
incident Poynting vector Si

y for any yp > Na [35]. The band
spectrum can be calculated from the following y dependence
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FIG. 2. Mie resonances excited at metallic cylinders of various
radius. The order of resonances increases from left to right.

of coefficients β:

βk(0,ny) = βk(0,0)eiqany , (9)

which determines the wave vector q [37].
As we show in the next section, incident EM wave excites

in cylinders resonances which could be identified from the
resonant behavior of coefficients βk . The order of the resonance
is given by the index k. For an isolated cylinder, the resonances
are shown in Fig. 2. In a linear array of cylinders, each
resonance splits into two—even and odd with respect to the
symmetry of the EM field along the x direction (Fig. 8).
(Note that the frequency of even resonance lies below the odd
resonant frequency.) We argue that each observed resonance
gives rise to the Fano band in the 2D array of cylinders and
identify these bands by the number of Fano resonances and by
its symmetry: n±. In our notation, bands 1−, 2+, 3 − , . . . are
even while 1+, 2−, 3 + , . . . are odd bands.

We calculate numerically the coefficients α and β for
incident plane waves and various configurations of metallic
cylinders. For a 2D array of cylinders shown in Fig. 1 we
obtain the transmission coefficients [Eq. (8)] and identify
transmission bands shown in the left panels in Figs. 3–5.
Equation (9) enables us to identify the dispersion relation
ω = ω(q) and to construct the frequency band structure.

The symmetry of excited modes in the photonic structure is
even or odd with respect to the direction of propagation of the
incident wave at zero incident angle. Therefore, to see modes
with odd symmetry visible in the transmittance a nonzero
incident angle—typically θ = π/100—has to be applied to
achieve a sufficient coupling with the incident wave.
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FIG. 3. Transmission coefficient (left) and band structure calcu-
lated from transmission data for N = 24 rows of cylinders in the
frequency range 0 < f < 1.

III. RESULTS

A. An isolated cylinder

We first study the resonances associated with an isolated
cylinder which are excited by an incident plane wave [25].
We list the resonant frequencies of a single metallic cylinder
of radius R = 0.3a in the first column of Table I. The
higher-order resonances are associated with excitation of the
surface plasmon. Indeed, as the wavelength of the surface
plasmon decreases when ω → ωs = ωp/

√
2 and becomes

much smaller than the radius R, λ � R, then the surface of
the cylinders acts nearly as a planar interface. By assuming
the oscillation along the circumference of the cylinder, one
obtains from the cyclical boundary condition for the resonant
wavelength λn the condition

2πR = nλn. (10)

By substituting λn into the expression for the wavelength of
the surface plasmon one obtains

λn = λp

√
2ω2

n − 1

ω2
n − 1

, (11)

which yields the resonant frequencies ωn which agree very
well with numerical results.

TABLE I. Resonant frequencies of an isolated metallic cylinder
of radius R = 0.3a (Fig. 2) and for linear chain of cylinders (Fig. 8).
Even resonances correspond to coefficients α+

2k and α−
2k−1, according

to the notation used in Eqs. (3) and (4).

n Cylinder Chain: even Chain: odd

2 0.61512 0.579 0.65136
3 0.66287 0.6568 0.6592
4 0.68470 0.6892 0.6826
5 0.69365 0.69296 0.69398
6 0.69799 0.69831 0.69778
7 0.7005 0.70043 0.70056
8 0.70209 0.70211 0.70207
9 0.70316 0.70315 0.70317
10 0.70392 0.70392 0.70392
11 0.70448 0.70448 0.70448
12 0.7049 0.7049 0.7049
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FIG. 4. Detail of Fig. 3: The transmission coefficient (left) and
band structure for N = 24 rows of cylinders in the frequency range
0.60 < f < 0.71. The group of modes observed for R = 0.3a at the
frequency interval a/λ ≈ 0.65 exhibits an incomplete band which
corresponds to surface waves will be explained in Sec. III E.

Two other columns of Table I present resonant frequencies
found in a one-dimensional (1D) lattice of metallic cylinders.
Due to its symmetry, each resonance associated with 1D array
splits into two separate resonances—even and odd. It is shown
below that this splitting is responsible for the appearance of
doublet frequency bands in the spectrum of the 2D photonic
crystal.

B. Band structure

The results depicted in Fig. 2 demonstrate that, by in-
creasing the radius of cylinders, the frequencies of the lowest
Mie resonance decrease and thus provide a wider frequency
range where plane-wave-like bands interact with Fano bands.
This trend can be also tracked down in the behavior of the
band structures and transmittances for all three values of the
radius shown in Fig. 3 within the frequency range 0 < f < ωp

and in Figs. 4 and 5 which zoom-in at the frequency range
0.68 < f < 0.71, where the coupling between Bragg and Fano
bands takes place.

When R = 0.2a, the band structure mostly consists of four
broad frequency bands. The lowest one, which appears in the
frequency range 0 < f < 0.37, is undoubtedly the first Bragg
band [22]. The spectrum in the frequency range above the first
band gap contains the Bragg band which starts from the X

point in the first Brillouin zone at the frequency f = 0.49.
In fact, this band is split into two parts: the lower one within
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FIG. 5. Detail of Fig. 4: The transmission coefficient (left) and
band structure for N = 24 rows of cylinders in the frequency range
0.68 < f < 0.71.
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FIG. 6. Field distribution in the second band of R = 0.3a

photonic slab for frequencies f = 0.520, 0.563, 0.566, and 0.575.
The symmetry of the field changes when frequency increases from
the lower band edge f = 0.47 to the upper one f � 0.578. Here and
in all subsequent figures blue (dark gray) and red (gray) corresponds
to positive and negative values of Hz, respectively and the EM wave
propagates from left to right.

the frequency range 0.49 < f < 0.64 and the upper one for
the frequencies f > 0.81—see Fig. 3. Above the former
band we observe a broad Fano band in the frequency range
0.64 < f < 0.68 which corresponds to the second resonance
associated with a cylinder—see Fig. 2 and a series of narrow
higher-order Fano bands. Due their narrowness, only a few
of them have been identified numerically. Some of them are
shown in Figs. 4 and 5, which show details of the band
structure. The presence of the broad Fano band is resembled in
the transmittances which display a strong interference pattern
in the corresponding frequency range shown in left panels in
Figs. 3 and 4. The conjecture based on the splitting of the
Bragg band described above is supported by the calculation
of the band structure of periodic array of dielectric rods
with frequency-dependent permittivity ε = a2/λ2 − 1, which
equals exactly the opposite value of the metallic permittivity
given by Eq. (1). Indeed, the spectrum consists of two Bragg
bands separated by gap at the frequency f ∼ 0.47 [38]. In
the frequency region 0.68 < f < 0.707 we expect a series of
localized flat bands. Since the bands are very narrow, only
a few of them are visible in Figs. 3–5. (Note that the width
of bands decreases when cylinder radius decreases.) We have
not studied them in detail; instead we focused on the band
structure corresponding to the photonic crystal consisting of
the cylinders with radius R = 0.3a.

The results shown in the right panel Fig. 3 show that the
band structure is significantly modified when the radius of
the cylinder is increased: the two lower bands occur in the
domain where Bragg-like scattering constitutes a dominant
scattering mechanism and a structural gap between the two
lowest bands becomes wider due to the larger value of the
filling fraction. Likewise, in the previous case for R = 0.2a,
we observe two separated parts of the second-lowest Bragg
band arising from splitting: the lower one within the frequency
range 0.5 < f < 0.59 and the upper one for frequencies f >

0.93—see Fig. 3. We note that the field distribution associated
with the band within the frequency range 0.47 < f < 0.578
at the X point mostly reflects behavior of the A1 extended
mode—see Fig. 6. When the frequency is increased, the
field distribution gradually transforms into the pattern with
a stronger angular dependence and can be identified as a
modified plasmon resonance with the angular dependence
cos 2θ—see the magnetic fields shown in Fig. 6. The scale
used in the field-distribution plots in Fig. 6 as well as in all
other field-distribution snapshots hereafter in the paper is not
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FIG. 7. The transmission of a plane EM wave through a linear
chain of metallic cylinders with radius R = 0.3a.

uniform and is given in arbitrary units. For instance, the field
in the left panel in Fig. 6 varies between −1 and +1, while the
maximal amplitude of the field in the right panel is only 0.1.
We note that the difference in the amplitude of the fields shown
in Fig. 6 resembles the varying character of the mode, while
the different scales in all other figures reflect the symmetry of
the bands and their coupling to an incident plane wave.

The enhanced interaction in the frequency range 0.6 < f <

0.707 leads to a strong fragmentation band structure in this
frequency range. Specifically, when R = 0.3a we observe a
number of very narrow localized modes which belong to both
symmetric and antisymmetric modes listed in Table I which
can be assigned to the irreducible representations of the C4v

symmetry group. The transmittances shown in the left panels
in Figs. 4 and 5 reflect the existence of these localized bands.
In the case of the largest radius considered, R = 0.4a, the
localized states occur in a wider frequency range starting from
f = 0.5 and the spectrum consists of the increasing number
of localized modes converging to surface-plasmon frequency
f = 0.707—see the right panel in Fig. 3.

C. Symmetry and formation of Fano bands

To explore mechanisms underlying the formation of Fano
bands we first examine the correspondence between Fano
resonances in the transmittance for a linear array of metallic
cylinders and β± coefficients in the expansion of the scattered
field given by Eq. (4). The transmittance for a linear chain
of metallic cylinders with radius R = 0.3a shown in Fig. 7
reveals several Fano resonances that can be assigned to sharp
peaks of the coefficients β± that are shown in Fig. 8 and
listed in Table I. The resonances in the transmittance arise
from the interference of the incident EM plane wave and
the LCAO states consisting of the localized surface-plasmon
modes associated with an isolated cylinders [39]. At the same
time, each of the Mie resonances shown for the case R = 0.3a

in Fig. 2 can be assigned to a symmetric or asymmetric
LCAO state, as summarized in Table I. One can expect
that the frequencies of a symmetric and asymmetric LCAO
states associated with a linear chain are smaller and larger
than the frequency of the corresponding Mie resonance of
an isolated cylinder, respectively. This applies to all orders n

listed in Table I except that for n = 3, which corresponds to a
non-LCAO state confined at the opposite sides of the photonic
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FIG. 8. Resonances excited at the linear chain of cylinders of
radius R = 0.3a. Shown are coefficients β+ (solid lines) and β−

(dashed lines) calculated from the simulation of the propagation of the
plane wave. Note that some lower resonances overlap. For instance,
lower resonance 4- [panel (c)] overlaps with the resonance 2- shown
in panel (a). The splitting of resonances to even and odd is clearly
visible for n = 5, 6, and 7. For higher resonances, the splitting is
very narrow and two resonant peaks are nearly identical. Some odd
resonances possess small magnitude due to a small incident angle
θ = π/100.

structure, as we demonstrate below. To this end we also note
that each state is assigned either to even or odd resonance
depending on its order n, as we discuss below.

For example, one can assign the Mie resonance n = 2 at
f = 0.61512 to the symmetric state identified by resonance of
β+

2 at f = 0.579 and to the antisymmetric state identified
by resonance of β−

2 at f = 0.65136. The results for β±
resonances associated with a linear chain of cylinders shown in
Fig. 8(a) reveal that, for lower frequencies in the range 0.63 <

f < 0.69, the coefficients display a significant overlapping. In
addition, the maxima corresponding to the coefficients β± of
different orders may occur at the same frequency. Therefore,
the Mie resonances listed in Table I are assigned to the
resonance of the β± coefficient corresponding to a leading
term at a given frequency. It is important to keep in mind
that, although the field pattern of the modes typically reflect
a symmetry of the leading terms in the LCAO expansion,
generally in the interpretation of resulting Fano bands one has
to take into account all terms, in particular in the frequency
range where overlapping of the β± resonances occurs.

The symmetry of the eigenmodes of 2D band structure
can be classified in terms of the resonant states associated
with an isolated cylinder. Likewise, the eigenmodes associated
with linear chain the eigenfunctions belonging to 2D band
structure along the 
-X direction in the first Brillouin zone are
symmetric or asymmetric along the x axis. Simultaneously, the
angular dependence of the resonant states, which correspond to
the surface-plasmon modes which carry no momentum in the
lengthwise direction of the cylinder [25], is described by e±inθ

for each n � 1 form symmetric and asymmetric combinations
corresponding to the functions sin nθ and cos nθ , respectively.
We note that n defines symmetric functions sin nθ and cos nθ ,
when n is odd and even, respectively, while sin nθ and cos nθ
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FIG. 9. (a) The transmission coefficient and the two corre-
sponding frequency bands of symmetry n = 2 and R = 0.3a. The
transmission in the lower band is small due to its odd symmetry.
(b) Two frequency bands recovered from transmission data. The lower
panel shows the field distribution at some frequencies inside the lower
and upper band. The meaning of the colors is given in the caption
of Fig. 6.

are asymmetric when n is even and odd, respectively. The
different localized resonant modes labeled with the same
irreducible representation can be distinguished in terms of
the number of lobes nL which define couples given by the
functions sin nL

2 θ and cos nL

2 θ , where nL = 2n; n ∈ N [28].
The degeneracy of the eigenvalues corresponding to modes
with nL = 4k of the isolated cylinder is lifted when they
are arranged in the square lattice, while those corresponding
to nL �= 4n will have a twofold degeneracy. For example,
LCAO combinations of Mie resonant states with n = 6 form
symmetric and asymmetric singlets B1(12) and B2(12) [28]
in the square lattice as the number of lobes nL = 4n—see
Fig. 14—while LCAO combinations of Mie resonant states
with n = 5 form the two-fold degenerate state E(10) since
the number of lobes nL �= 4n. The degeneracy of the E(10)
state is lifted along the � direction and the E(10) state splits
into symmetric and an asymmetric A1(10) and B2(10) modes
[28]—see Fig. 13.

D. Second Fano bands

Now we focus on the frequency range 0.63 < f < 0.645 in
which a doubly degenerate E(6) state at the 
 point splits into
an asymmetric A2(6) and a symmetric B1(6) state along the

-X direction in the first Brillouin zone. A small amplitude of
the transmittance of the 2D structure in the frequency range
0.63 < f < 0.6375 shown in Fig. 9 confirms an antisymmetric
character of the lower band with A2(6) symmetry while
the large oscillations in the transmittance in the frequency
range corresponding to symmetric band with B1(6) symmetry
demonstrates its coupling with an incident plane wave. The
field distribution associated with the A2(6) band along the 
-X
direction in the frequency range 0.63 < f < 0.645 indicates
symmetry corresponding to sin 2θ and sin θ—which resembles
the asymmetric 2− and 1+ states, respectively, while the
higher band B1(6) in the frequency range 0.638 < f < 0.645
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FIG. 10. (a) The transmission coefficient and coefficient β+
3 in the

region of the third resonance. N = 24. (b) The spatial distribution of
coefficient β+

3 across the sample confirms that the transmission in the
left transmission band is due to the excitation of surface waves at the
boundary of the entire photonic structure. Therefore, the band around
the frequency f = 0.65 cannot be found by using an eigenfrequency
solver. (c) Frequency band around the frequency f = 0.676.

reveals the symmetry cos θ and cos 3θ that resemble the
symmetric 1− and 3− states, respectively.

E. Surface waves and transmission

Of particular interest is the transmittance for R = 0.3a in
the frequency range 0.65 < f < 0.66 which reveals somewhat
irregular behavior shown in the left panel of Fig. 4 and in
Fig. 10(a). It resembles neither a typical Bragg nor Fano
band and shows an incomplete band. A detailed analysis
of the transmission coefficient is presented in Fig. 10(b).
The field distribution of the mode with frequency f = 0.651
shown in the left panel of Fig. 11 displays the symmetry
which corresponds to the asymmetric 3+ state; however, the
amplitude of the field is very small.

To unveil the origin of such peculiar behavior, we exploited
the spatial distribution of the β+

3 resonance [Fig. 10(b)] which
displays enhancement of the amplitude at the boundaries of the
structure while the amplitude inside the structure is vanishing.
This suggests that the eigenvalues in this frequency range
correspond to the surface modes propagating along the op-
posite interfaces of the photonic structure. In addition, one can
observe the two characteristic features: (1) the surface modes
are coupled through the tunneling which occurs inside the
structure and (2) the field does not reveal oscillations due to an
exponential decay of the field with increasing distance from

FIG. 11. The distribution of the magnetic field H at the frequency
f = 0.651 and f = 0.67346. The meaning of the colors is given in
the caption of Fig. 6. Owing to odd symmetry of the field and small
incident angle, θ = π/100, the absolute value of the magnetic field
is small, |Hz| � 0.02.
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FIG. 12. Left panel shows for the even band 4+ (a) the trans-
mittance through linear array of rods, (b) the transmittance through
24 rows, (c) the frequency band, and (d) the magnetic field at the
frequency f = 0.6825. (The meaning of the colors is given in the
caption of Fig. 6.) The right panel shows the same results in panels
(e)–(g), except that for the odd band 4− and (h) magnetic field at the
frequency f = 0.6892.

the surface into the structure. As a result, these modes cannot
be obtained from Eq. (9) and consequently do not span over the
entire first Brillouin zone as is shown in Fig. 3. It is interesting
to note that these surface modes exist due to the finite size of
our structure and our approach proved to be capable to deal
with these modes, which were been reported in Refs. [27,28].

The higher band indicated in the transmittance in the
frequency range 0.673 < f < 0.679 shown in Fig. 10(c)
supports, in contrast to the lower one, a localized mode. The
field distribution shown in the right panel of Fig. 11 confirms
that it can be also assigned to the asymmetric 3+ state and
corresponds to the B2(4) reported in Refs. [27,28].

F. The fourth bands

In Fig. 12 we present the results which describe the
band structure and transmittance in the frequency range
0.678 < f < 0.684. The lower band (fourth band) in this
frequency range can be assigned to the symmetric 4+ state
belonging to the resonance of the β4+ coefficient shown in
Fig. 8(a), which is associated with the Fano resonance in
the transmittance of the linear chain shown in Fig. 12(a).
The transmittance of the 2D structure shown in Fig. 12(b)
is significantly reduced in the upper part of the band within
the frequency range 0.682 < f < 0.684 and reveals a subgap
which is correlated with an irregularity in the dispersion curve
in the same frequency region shown in Fig. 12(c). The field
distribution displays a cos 4θ pattern—see Fig. 12(d)—which
can be identified as a symmetric A1(8) state at the 
 point
reported in Ref. [28].

The upper fourth band which we found in the frequency
range 0.889 < f < 0.691 is shown in Fig. 12(g). It can be
assigned to the asymmetric 4− state belonging to the resonance
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FIG. 13. The fifth bands. The left panel shows (a) the transmission
of EM wave through linear array of metallic rods (note a tiny
resonance at f = 0.694), (b) the transmittance through 24 rows of
rods, and (c) the symmetric and asymmetric frequency bands. The
magnetic field at frequency f = 0.693 (lower symmetric band 5−)
and at the frequency f = 0.694 (upper asymmetric band 5+) is shown
in the right panels (d) and (e). (The meaning of the colors is given in
the caption of Fig. 6.)

of the β4− coefficient shown in Fig. 8(a) which is associated
with the Fano resonance in the transmittance of the linear
chain shown in Fig. 12(e) The vanishing transmittance of the
2D structure shown in Fig. 12(f) confirms the symmetry of
the odd band 4−. The field distribution shown in Fig. 12(h)
displays the sin 4θ pattern and which can be identified as the
asymmetric A2(8) state at the 
 point reported in Ref. [28]. We
note that there is a large gap between these two bands which
reflects a distance between the 4+ and 4− resonances—see
Fig. 8(a).

G. Higher-order resonances

To demonstrate the behavior of the higher-order resonances,
we show in Figs. 13 and 14 the numerical results for the
fifth and sixth bands. We observed in the frequency range
0.692 < f < 0.6945 a doubly degenerate E(10) state at the

 point which splits into a symmetric A1(10) state and an
asymmetric B2(10) state along the 
-X direction in the first
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FIG. 14. The sixth bands. The left panel shows (a) the trans-
mission of the EM wave through a linear array of metallic rods,
(b) the transmittance through 24 rows of rods, and (c) the symmetric
and asymmetric frequency bands. The magnetic field at frequency
f = 0.6978 (lower symmetric band) and at the frequency f = 0.6982
(upper asymmetric band) is shown in the right panels (d) and (e). (The
meaning of the colors is given in the caption of Fig. 6.) The lower
(even) band 6+ is well pronounced. The higher (odd) band is less
visible because the incident angle was very small (θ = π/100).

Brillouin zone—see Fig. 13(c). The lower band can be assigned
to a symmetric 5− state belonging to the resonance of the
β5− coefficient shown in Fig. 8(b) which is associated with
the Fano resonance in the transmittance of the linear chain
shown in Fig. 13(a). The upper band can be assigned to an
asymmetric 5+ state belonging to the resonance of the β5+
coefficient shown in Fig. 8(b). The field distribution associated
with the A1(10) band along the 
-X direction in the frequency
range 0.692 < f < 0.6935 indicates symmetry corresponding
to sin 5θ that resembles a symmetric 5− state—see Fig. 13(d),
while the field distribution associated with the higher band
B2(10) in the frequency range 0.6935 < f < 0.6945 reveals
the symmetry cos 5θ that resembles an asymmetric 5+ state—
see Fig. 13(e). We note that, due to the strongly localized
distribution which is confined in the vicinity of the cylinder
surface, the frequency bands are very narrow. Therefore, the
effective refractive index of the structure [2] is very small.
Consequently, the transmission coefficient exhibits profound
Fabry–Perot oscillations and typically possesses rather small
values even for symmetric bands—see Fig. 13(b).

In the frequency range 0.6976 < f < 0.6982 we observed
along the 
-X direction in the first Brillouin zone a asymmetric
B1(12) state and an asymmetric B2(12) state [28]—see
Fig. 14(c)—which become degenerate at the X point to
form the E(12) state. The lower band can be assigned to
a symmetric 6+ state belonging to the resonance of β6+
coefficient shown in Fig. 8(b) which is associated with the
Fano resonance in the transmittance of the linear chain shown
in Fig. 14(a). The upper band can be assigned to an asymmetric
6− state belonging to the resonance of the β6− coefficient
shown in Fig. 8(b). The field distribution associated with the
B1(12) band along the 
-X direction in the frequency range
0.6976 < f < 0.698 indicates symmetry corresponding to
cos 6θ that resembles a symmetric 6+ state—see Fig. 14(d)—
while the field distribution associated with the upper band
B2(12) in the frequency range 0.698 < f < 0.6982 reveals the
symmetry sin 6θ that resembles an asymmetric 6− state—see
Fig. 14(e). The transmittance of the 2D structure shown in
Fig. 14(a) displays strong oscillations in the frequency range
corresponding to the symmetric band and are nearly invisible
due to odd symmetry of the B2(12) band.

FIG. 15. Field distribution for even resonance 8+ (left, |Hz| �
10) and odd resonance 8− (right, |Hz| � 0.2). The scale of the field
reflects the symmetry of bands and their coupling to the incident plane
wave. (The meaning of the colors is given in the caption of Fig. 6.)
Note the change of the symmetry of the field (the incident plane wave
propagates from left to right).
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For the higher-order resonances, the transmission bands
are very narrow, as can be inferred from the shape of the
resonances shown in Figs. 8(b) and 8(c). Therefore, we
do not display their transmission bands. Instead, we show
in Fig. 15 the field distribution associated for the eighth
resonance. The change of the symmetry of the field with a very
small variation of the frequency �f = 0.000 070 within the
range 0.702 050 < f < 0.702 120 demonstrates the extremely
narrow bandwidth of the higher-order bands.

IV. CONCLUSIONS

We numerically studied the effects associated with a
synergetic interplay between the microscopic and macroscopic
resonance mechanisms in the frequency and transmission
spectrum of a two-dimensional array of metallic rods em-
bedded in a vacuum. We have shown that the photonic band
structure consists of Bragg bands resulting from periodicity
of the structure and Fano bands arising from single-scatterer
Mie resonances. To explore the formation of Fano bands, we

studied a correspondence between a series of flat bands and
Fano resonances excited in a linear array of metallic rods by
an incident H -polarized EM plane wave. We demonstrated
that coupling between two underlying mechanisms affects the
character of the band structure and depends strongly on the
radius of the rod. The symmetry of the modes obtained from
numerical simulation has been determined by inspection of the
distribution of the EM field associated with a selected cylinder
in the 2D periodic structure considered. We have shown that
the spatial distribution of the EM field displays characteristic
patterns corresponding to the irreducible symmetry represen-
tations and reflects the different nature of both kinds of bands.
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[21] P. Markoš, Phys. Rev. A 92, 043814 (2015).
[22] Our terminology does not hold for the lower part of the first

frequency band, where the wavelength λ 
 a and the wave
propagation can be described within the effective permittivity
model rather than in terms of the theory of periodic media.
Since the first band is never influenced by Fano resonances in
our models, we do not discuss this frequency region in this paper.

[23] U. Fano, Phys. Rev. 124, 1866 (1961).
[24] S. Fan, W. Suh, and J. D. Joannopoulos, J. Opt. Soc. Am. A 20,

569 (2003).
[25] C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B

10, 3038 (1974).
[26] V. Kuzmiak, A. A. Maradudin, and F. Pincemin, Phys. Rev. B

50, 16835 (1994).
[27] K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu,

and K. Hirao, Phys. Rev. B 64, 045116 (2001).
[28] E. Moreno, D. Erni, and C. Hafner, Phys. Rev. B 65, 155120

(2002).
[29] A. S. Vala, A. Sedghi, N. Hosseini, and M. Kalafi, Phys. Status

Solidi C 8, 2965 (2011).
[30] J. A. Stratton, Electromagnetic Theory (McGraw-Hill,

New York, 1941).
[31] K. Ohtaka and H. Numata, Phys. Lett. A 73, 411 (1979).
[32] K. Ohtaka, T. Ueta, and K. Amemiya, Phys. Rev. B 57, 2550

(1998).
[33] A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C.

Martijn de Sterke, and N. A. Nicorovici, Phys. Rev. E 63, 046612
(2001).

[34] D. N. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich,
Plasmonics 9, 389 (2014).
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