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Nonlinear modification of the laser noise power spectrum induced
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In this article, we study the nonlinear coupling between the stationary (i.e., the beating modulation signal) and
transient (i.e., the laser quantum noise) dynamics of a laser subjected to frequency-shifted optical feedback. We
show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are
modified under different optical feedback conditions. Specifically we study the influence of (i) the amount of
light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation
frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal, and
the shape of the noise power spectrum gives an image of the transfer modulation function (i.e., of the amplification
gain) of the nonlinear-laser dynamics. The theoretical predictions, confirmed by numerical resolutions, are in
good agreement with the experimental data.
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I. INTRODUCTION

Laser properties (power, polarization, coherence, dynami-
cal behavior, etc.) can be significantly affected and modified
by optical feedback [1,2]. These properties have been widely
studied in the particular case of weak optical feedback. For
example, it has been shown that the steady state intensity
of a laser subjected to coherent optical feedback from the
reflection on an external surface depends on the reflectivity,
distance, and motion of the surface. This led to the laser
feedback interferometry technique [3]. It also has been
demonstrated that the dynamical behavior of a laser can be
several orders of magnitude more sensitive to optical feedback
than its steady state properties. Since the pioneering work of
Otsuka on self-mixing modulation effect in a class-B laser
[4], the high dynamical sensitivity of lasers to frequency-
shifted optical feedback has been used in metrology [5], for
example in self-mixing laser Doppler velocimetry [6–8] and
in laser optical feedback imaging (LOFI) [9–11]. Compared to
conventional optical heterodyne detection, frequency-shifted
optical feedback allows for several orders of magnitude higher
intensity modulation contrast [12–14]. In the case of weak
optical feedback, the laser dynamics is linear and the maximum
of the modulation is obtained when the frequency shift is
resonant with the laser relaxation oscillation frequency. In this
condition, an optical feedback level as low as −170 dB (i.e.,
1017 times weaker than the laser intracavity power) has been
detected [6]. When the optical feedback becomes stronger,
nonlinearities appear in the laser dynamics [15,16]. They
can cause the apparition of chaos, bistability, and hysteresis
phenomenon with the tuning (back and forth) of the frequency
shift of the optical feedback [17].

The main objective of the present work is to study the
modification of the noise power spectrum of the laser and more
specifically its resonance frequency (i.e., the laser relaxation
frequency) induced by the nonlinear-laser dynamics in the
strong feedback situation. A better understanding of the
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laser nonlinear behavior could lead to a new generation of
laser metrology techniques with improved performances. This
article is organized as follows. In Secs. II and III, we recall the
rate equations governing the dynamics of a laser submitted
to frequency-shifted optical feedback. These equations are
solved numerically to show characteristic examples of the
modification of the laser noise power spectrum under different
optical feedback conditions. In particular, the influence of (i)
the amount of light returning to the laser cavity and (ii) the
detuning between the frequency shift and intrinsic relaxation
frequency are studied. Section III is devoted to analytical
resolution of the rate equation: using a bifurcation analysis, we
determine the amplitude of the laser output power modulation
in the strong feedback situation. We show then how the
nonlinear dynamical coupling links the value of the relaxation
frequency to the strength of the output power modulation.
Section IV is devoted to experimental results where we show
their good agreement with the theoretical predictions of the
preceding sections. The final section is devoted to the general
discussion of these results and to their prospective applications.

II. LASER WITH FREQUENCY-SHIFTED
OPTICAL FEEDBACK

A. Basic equations

For weak optical feedback (Re � 1) and a short round-trip
time delay (τe � 1/Fe), the dynamical behavior of a laser with
frequency-shifted (Fe) optical feedback can be described by
the following set of differential equations [12]:

dI

dt
= BIN − γcI + γc2

√
ReI cos (�et + �e) + FI (t),

(1a)

dN

dt
= γ1[N0 − N ] − BNI, (1b)

〈FI (t)〉 = 0 and 〈FI (t)FI (t − τ )〉 = 2γc〈I 〉δ(τ ), (1c)

where I and N are, respectively, the laser intensity (photon
unit) and the population inversion (atom unit). γ1 is the decay
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rate of the population inversion, γc is the laser cavity decay
rate, γ1N0 is the pumping rate, and B is related to the Einstein
coefficient (i.e., the laser cross section).

In Eq. (1a), the cosine function expresses the coherent
interaction (i.e., the beating at the angular frequency: �e =
2πFe) between the lasing and the feedback electric field.
The optical feedback is characterized by the effective power
reflectivity Re and the optical phase shift �e = ωcτe induced
by the round-trip time between the laser and the target (where
ωc is the optical pulsation). Regarding the noise, the laser
quantum fluctuations are described by the Langevin noise
function FI (t), with a zero mean value and a white noise type
correlation function [Eq. (1c)] [18,19].

In the absence of optical feedback (Re = 0) and noise
[FI (t) = 0], the steady state of Eqs. [1(a)–1(c)] is given by

NS = γc/B, (2a)

IS = Isat[η − 1], (2b)

where η = N0/NS is the normalized pumping parameter and
Isat = γ1/B is related to the saturation intensity of the laser
transition.

In this regime, the intrinsic dynamics of a class-B laser
(γc � γ1η) is characterized by damped relaxation oscillations
of the laser output power with a relaxation angular frequency
�R = √

γ1γc(η − 1) and a damping rate 
R = γ1η/2. Exper-
imentally, this transient dynamics is constantly excited by the
laser quantum noise described by the Langevin force FI (t).

In the presence of a strong optical feedback, the laser
intrinsic dynamics, and in particular the relaxation oscillation
frequency, is modified and will depend on the modulation
conditions (Re,�e). In this article, “strong feedback” cor-
responds to the regime where the modulation frequency is
nearly resonant (�e ≈ �R) and where the amount of optical
feedback (Re) is high enough to induce nonlinear dynamical
behaviors (which give rise to the generation of harmonic
and parametric dynamical frequencies) in the laser output
power modulation [13,15,16]. In contrast, the “weak feedback”
regime corresponds to the situation where the modulation
frequency is far away from the resonance (|�e − �R| � 0)
and where the amount of optical feedback (Re) is small enough
to induce only linear dynamical behaviors in the laser output
power modulation.

B. Numerical results

Using a standard Runge-Kutta method, we have solved a
normalized form of Eqs. (1a)–1(c), where the laser intensity is
divided by the saturation intensity (i = I/Isat), the population
inversion is divided by its stationary value (n = N/NS), and
the time is multiplied by the cavity damping rate (t ′ = γct).
The normalized Langevin force is a random variable with zero
mean value and a standard deviation equal to 1/

√
Isatdt ′ where

the integration step is dt ′ = 40. The number of integration
steps is equal to 16 384.

Figure 1 shows the rf power spectra of the laser output
power modulation for two different optical feedback condi-
tions (Re,�e). When the feedback is weak [Fig. 1(a)], one
can observe that the laser dynamics is principally composed
of the superposition of the laser output power modulation at

FIG. 1. Numerical simulation. Power spectra of the laser intensity
dynamics |F[I (t)/Isat]|2. (a) Weak feedback: Re = 10−11,Fe/FR =
1.3; peaks: (1) FR , (2) Fe. (b) Strong feedback: Re = 10−7,Fe/FR =
1.01; peaks: (1) Fe − F̃R , (2) F̃R , (3) Fe, (4) 2Fe − F̃R , (5) Fe + F̃R ,
(6) 2Fe, (7) 3Fe − F̃R . Laser parameters: Isat = 3 × 109 photons,η =
1.2,γc = 1 × 109 s−1,γ1/γc = 1 × 10−5,FR/γc = 2.251 × 10−4. The
dashed curve is a fit of the laser noise power spectrum without
feedback.

the modulation frequency Fe and of the noise power spectrum
related to the transient relaxation oscillations, with a resonant
frequency FR = �R/2π and a half width at half maximum

R/2π . In the strong feedback regime [Fig. 1(b)], the power
spectrum is composed of peaks at the modulation frequency
(Fe) and its harmonics (2Fe, . . . ), while the noise generates
two sidebands beside each peak, located at Fe ± �R,2Fe ±
�R, . . . . In this study, we define the new value of the relaxation
frequency F̃R as the position of the highest noise peak in the
vicinity of Fe. In Fig. 1(b), it corresponds to the left sideband:
F̃R = Fe − �R [(2) in Fig. 1(b)]. One can notice that all other
peaks can be obtained from a linear combination of Fe and
F̃R . For example, the right sideband of Fe corresponds to
Fe + �R = 2Fe − F̃R [(4) in Fig. 1(b)]. The comparison of
Figs. 1(a) and 1(b) shows how the noise power spectrum is
modified by the strong optical feedback at the modulation
frequency (Fe) and how the new relaxation frequency (F̃R) is
moved down from its intrinsic position (FR).

By comparison with the work made in [15,16], which is
focused on the study of the signal power spectrum, the present
work analyzes how the noise power spectrum of the laser
is modified and how the relaxation frequency of the laser
is shifted, when the laser is submitted to a strong optical
feedback.
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FIG. 2. Numerical simulation. Power spectra of the laser intensity dynamics. Left column: fixed modulation frequency (Fe/FR = 1.01)
and an increasing amount of optical feedback (Re); (a) Re = 10−9; (b) Re = 10−8, (c) Re = 10−7. Right column: fixed amount of optical
feedback (Re = 10−7) and a modulation frequency going closer to the intrinsic relaxation frequency; (d) Fe/FR = 1.3; (e) Fe/FR = 1.1;
(f) Fe/FR = 1.01. Laser parameters are identical to Fig. 1. The dashed curve is a fit of the laser noise power spectrum without
feedback.

Figure 2 captures the general feature of laser noise power
spectrum modification when the amount of optical feedback
(Re) increases and/or when the modulation frequency ap-
proaches the intrinsic laser relaxation frequency (Fe → FR).

For a given modulation frequency, the left column of Fig. 2
shows how F̃R (i.e., the noise left sideband) is shifted to lower
frequencies when the amount of optical feedback increases.
For a given amount of optical feedback, the right column of
Fig. 2 shows how F̃R is pushed down to a lower frequency
when the modulation frequency approaches the intrinsic laser
relaxation frequency.

Also, one can observe that in the low feedback condition the
noise power spectrum exhibits a single resonance [Figs. 1(a)
and 2(d)], while in the in strong feedback condition it exhibits
a double resonance [see Figs. 2(a)–2(c) and 2(e)–2(f)] due to

a nonlinear dynamical coupling effect. Here, let us mention
that the shape of the noise power spectrum is an image of the
modulation transfer function (i.e., of the amplification gain) of
the laser dynamics.

C. Bifurcation analysis

To study the dynamical response of a laser subject to
frequency-shifted optical feedback (Re 
= 0), we have made
a bifurcation analysis using an asymptotic approximation
similar to [17,20,21]. As already mentioned, we focus our
analysis on the case �e ≈ �R , where �R is the intrinsic
relaxation oscillation frequency of the laser. For a more
convenient theoretical analysis, we have reformulated the set
of Eqs. (1a)–(1c) by using the new variables (x and y), the new
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time (s), and the new modulation parameters (δe,σe) defined
by [17,21]

I = IS(1 + y), N = NS

(
1 + �R

γc

x

)
, s = �Rt, (3a)

σe = �e

�R

, δe = 2
√

Re

γc

�R

. (3b)

The new variables x and y are, respectively, the deviation
from the nonzero intensity laser steady state and the population
inversion steady state. In the absence of noise, the set of
Eqs. (1a) and (1b) can then be rewritten as

dx

ds
= −y − εx[1 + (η − 1)(1 + y)], (4a)

dy

ds
= (1 + y)[x + δe cos (σes + �e)]. (4b)

For our microchip laser, ε = γ1/�R ≈ 10−3 is a small
quantity which motivates an asymptotic analysis of Eqs. (4a)
and (4b). For σe ≈ 1, the leading approximation of the
solutions for the deviations x and y from the nonzero intensity
state can be written as

x = A exp (iS) − i
A2

3
exp (i2S) + c.c., (5a)

y = −iA exp (iS) − 2

3
A2 exp (i2S) + c.c., (5b)

where S = σes = �et . The complex amplitude A = 0(ε1/2) of
the small periodic oscillation is a function of the slow time εs

and satisfies the following equations [17,21]:

dA

ds
= −i[σe − 1]A − i

A2A∗

6
− ηε

2
A + i

δe

4
exp (i�e). (6)

Note that our asymptotic approximation is valid in the limit
ε → 0 assuming that

√
Re and |σe − 1| are at maximum 0(ε)

quantities.
In the right-hand side of Eqs. (5a) and (5b), the first

term corresponds to the laser output power modulation at
the modulation frequency (i.e., at the cavity loss modulation
frequency). The second term corresponds to the first harmonic
modulation (i.e., nonlinear-laser dynamics) induced by the
nonlinear coupling between the laser intensity and the laser
population inversion through the stimulated emission.

III. ASYMPTOTIC SOLUTIONS

We now investigate the solutions of Eq. (6), and show
how the intrinsic laser dynamics (and in particular the laser
relaxation frequency) can be influenced by the optical feedback
through the modulation conditions (δe,σe). In this study, the
key is the third-order term (−iA2A∗/6).

A. Linear case (A2 A∗ ≈ 0)

When the product A2A∗ can be neglected in Eq. (6), the
solution of the amplitude equation can be written as small
transient (with subscript T) relaxations of random excitations
(due to quantum noise) around the stationary solution (with

subscript S):

A(s) = AS,L + BT,L exp (−βs), (7a)

where

AS,L = iδe exp (i�e)

4i(σe − 1) + 2ηε
, (7b)

β = i(σe − 1) + ηε/2, (7c)

and the BT,L factor is given by the amplitude of the quantum
noise.

By combining these results with Eqs. (3a) and (3b) and
(5a) and (5b), we find that the stationary laser output power
modulation is then given by

ISyS,L = 2
√

ReIS |GL(�e)| sin[�et + arg(AS,L)], (8a)

|GL(�e)| =
∣∣∣∣ γc(�e + η γ1)

�2
R − �2

e + i�eη γ1

∣∣∣∣
≈ γc√

4(�e − �R)2 + (η γ1)2
, (8b)

where GL(�e) is the amplification gain of the linear laser
dynamics [13,14].

The above equation shows that the laser output power
modulation exhibits a strong resonance (and therefore a high
sensitivity to optical feedback) when �e = �R . The linear
regime is valid when |AS,L| � 1, which implies Re � Re, lim

where Re, lim = (γ1η/2γc)2.
The transient laser output power modulation can be ob-

tained from the relaxing part of Eq. (7):

ISyT,L = 2IS |BT,L| exp
(
−γ1η

2
t
)

sin[�Rt + arg(BT,L)]. (9)

Experimentally, this transient dynamic is constantly excited
by the laser quantum noise described by the Langevin forces
[FI (t) in Eqs. (1a)–(1c)]. The rf power spectrum of the laser
noise is obtained from the Fourier transform (F) of Eq. (9):

PSL(�) ∝ |F [ISyT,L(t)]|2
≈ [IS2|BT,L|/γc]2|GL(�)|2. (10)

In previous studies [12–14], we had already demonstrated
that the detection of frequency-shifted optical feedback is shot
noise limited and that the rf power spectrum is given by

PSL(�) ≈ 2Iout|GL(�)|22�F, (11)

where Iout = γcIS is the laser output power and �F is the
detection bandwidth which is supposed to be smaller than the
resonance width (�F � 
R/2π ).

Equations (10) and (11) show that shape of the noise
power spectrum is linked to the amplification gain of the
laser dynamics [GL(�)] and that the amplitude of the intensity
relaxation oscillations induced by the laser quantum noise is
proportional to the square root of the laser output power:

IS |BT,L| ∝
√

2Iout2�F. (12)

B. Nonlinear case (A2 A∗ �= 0)

In this section, we study the coupling of the stationary
modulation of the laser output power with the laser transient
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dynamics (i.e., the laser quantum noise) through the nonlinear
cubic term (−A2A∗/6) of Eq. (6). More precisely, the aim of
this study is to determine how the intrinsic laser dynamics (and
in particular the laser relaxation frequency) is modified by the
optical modulation conditions induced by the optical feedback.
When the product A2A∗ cannot be neglected in Eq. (6), the
solution of the amplitude equation can be written as

A(s) = AS,NL + BT,NL(s), (13)

where AS,NL is the stationary solution and BT,NL(s) the
transient dynamics of random excitations (due to quantum
noise) around the stationary solution in the nonlinear regime
(subscript NL).

In agreement with our numerical simulations [Figs. 1(b)
and 2], we assume that the laser output power modulation is
stronger than the laser quantum noise [|AS,NL| � |BT,NL(s)|].
Keeping only the first-order nonlinear terms in Eq. (13) gives

A2A∗ ≈ AS,NLAS,NLA∗
S,NL + 2AS,NLA∗

S,NLBT,NL

+AS,NLAS,NLB∗
T ,NL. (14)

The insertion of Eqs. (13) and (14) into Eq. (6) gives the
following equalities:

i
δe

4
exp (i�e) = i

[
ηε

2
+ σe − 1

]
AS,NL + i

A2
S,NLA∗

S,NL

6
,

(15a)

dBT,NL

ds
= −

[
ηε

2
+ i(σe − 1)

]
BT,NL

+ i
AS,NLA∗

S,NL

3
BT,NL − i

A2
S,NL

6
B∗

T ,NL.

(15b)

Equations (15a) and (15b) clearly show that the stationary
and the transient dynamics (and therefore the laser noise) are
coupled through the nonlinear-laser dynamics.

1. Nonlinear stationary solutions

Taking the complex conjugate of Eq. (15a) and multi-
plying them together, we find the square modulus R2

S,NL =
AS,NLA∗

S,NL of the modulation amplitude:

R6
S,NL

36
+ 2(σe − 1)

6
R4

S,NL +
[

(σe − 1)2 +
(ηε

2

)2
]
R2

S,NL

−
(

δe

4

)2

= 0, (16)

which is a third-order equation in R2
S,NL. For a given amount of

optical feedback δe, the above equation has three real positive
roots when the frequency shift is in a range defined by (see
[17] or the Appendix for details)

−
(

δe/(4
√

6)

ηε/2

)2

< (σe − 1) < − 3

22/3

(
δe

4
√

6

)2/3

. (17)

The jump between the two stable solutions allows one
to observe a hysteresis phenomenon which has already been
studied in [17].

This kind of hysteresis has also been observed in the
dynamics of a laser submitted to an optical injection [22] or
a modulation of the pumping power [23]. More specifically,
the effect of noise on the size of the hysteresis zone has been
studied in [24].

Let us recall that the goal of the present article is not to
study the hysteresis phenomenon, but to determine how the
noise power spectrum of the laser and more specifically the
laser relaxation frequency are related to the strength of R2

S,NL.

2. Nonlinear relaxation oscillations

To determine the noise power spectrum we have studied the
transient dynamics of random excitations (BT,NL).

Writing BT,NL(s)= exp[−(ηε/2)s][X(s)+iY (s)], Eq. (15b)
gives

d

ds

(
X

Y

)
=

(
βY (
 − βX)

−(
 + βX) −βY

)(
X

Y

)
, (18)

where βX + iβY = A2
S,NL/6,
 = (σe − 1) + R2

S,NL/3 and
R2

S,NL is the square modulus of the nonlinear-laser output
power modulation given by Eq. (16).

The two eigenvalues (λ) of the above matrix obey the
equation

λ2 =
(

R2
S,NL

6

)2

−
[

(σe − 1) + R2
S,NL

3

]2

. (19)

For the two stable solutions, one has λ2 < 0, then λ ∈
C and λ = ±iδR,NL, where δR,NL allows one to measure
the detuning of the transient frequency compared to the
modulation frequency:

δR,NL = σe − σ̃R = �e

�R

− �̃R

�R

, (20)

where �̃R is the new value of the laser relaxation frequency
modified by the nonlinear coupling between the transient
and the permanent dynamics. Note that knowing σe (which
is experimentally controlled) and measuring the shift of the
lateral sidebands ±δR,NL = ±�R/FR [see Fig. 1(b)], one
could determine the relative variation of the laser relaxation
oscillation frequency:

�̃R − �R

�R

= σe − 1 − δR,NL. (21)

To make a simple physical analysis of this result, let us look
at a particular situation where the optical feedback is not too
strong [R2

S,NL � (σe − 1)]. In this condition, Eq. (19) simply
gives

δR,NL ≈ (σe − 1) + R2
S,NL

3
, (22)

and using Eq. (19), one obtains the relative variation of the
laser relaxation frequency:

�̃R − �R

�R

≈ −R2
S,NL

3
. (23)

Equation (23) clearly shows that the frequency shift of
the laser relaxation frequency is always negative and is
proportional to the square of the amplitude of the laser output
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FIG. 3. (a) Relative variation of the relaxation frequency and
(b) square of the amplitude of the laser output power modulation.
The lines correspond to results obtained from analytical equations
[Eq. (16)], while the dots correspond to results obtained from
numerical simulations. Solid lines and square dots (Re = 1 × 10−7);
dotted lines and circular dots (Re = 1 × 10−8). Laser parameters are
identical to Fig. 1.

power modulation. Therefore the frequency shift is important
for a strong optical feedback (R2

S,NL ≈ 1), while it is roughly
equal to zero for a weak optical feedback (R2

S,NL � 1). One can
notice that due to the fact that R2

S,NL(σe) can exhibit hysteresis
[17], �̃R(σe) can also exhibit hysteresis.

Figure 3 shows (i) the relative variation of the relaxation
frequency [Fig. 3(a)] and (ii) the variation of the amplitude
of the laser output power modulation [Fig. 3(b)] versus the
detuning of the modulation frequency, for two different values
of the optical feedback (Re = 1 × 10−7,Re = 1 × 10−8).

Figure 3 shows relatively good agreement between the
analytical and the numerical results for both the amplitude
of the laser output power modulation and the resonance
frequency of the noise power spectrum (i.e., the laser relaxation
frequency). In agreement with Eq. (23), one can observe that
the decrease of the relaxation frequency is proportional to the
increase of the laser amplitude modulation.

In Fig. 3, to avoid confusion, the hysteresis phenomenon is
not shown (the frequency shift is not swept back and forth).
The square and the circle correspond simply to two different
values of the optical feedback. Note also that the results shown

FIG. 4. Schematic diagram of the LOFI setup. L1, L2, and L3:
lenses; BS: beam splitter; GS: galvanometric scanner; FS: frequency
shifter with a round-trip frequency shift Fe; PD: photodiode.

in this figure have been obtained without any approximation
or adjustment.

Finally, the rf power spectrum of the laser noise is obtained
from the Fourier Transform (F) of BT,NL:

PSNL(�) ∝ |F[ISyT,NL(t)]|2
≈ [IS2|BT,NL(0)|/γc]2〈|GNL(�)|〉2, (24a)

〈|GNL(�)|〉 ≈
∣∣∣∣ γc(i� + γ1η)

(�e − 2π�R)2 − �2 + i�γ1η

∣∣∣∣
+ gNL

∣∣∣∣ γc(i� + γ1η)

(�e + 2π�R)2 − �2 + i�γ1η

∣∣∣∣, (24b)

gNL ≈
⎛
⎝ 2

R2
S,NL

6

4
[
σe − 1 + 2

R2
S,NL

6

]
⎞
⎠

1/2

, (24c)

where GNL(�) is the amplification gain (i.e., the modulation
transfer function) of the nonlinear-laser dynamics. This gain
is composed of two resonance frequencies symmetrically
located on both sides of the frequency shift: (Fe ± �R),
where gNL ≈ 〈|GNL(�e − 2π�R)|〉/〈|GNL(�e + 2π�R)|〉 is
the ratio between the two maxima which depends on the
feedback conditions.

In agreement with the numerical results shown in Fig. 2,
Eqs. (24a)–(24c) show that the amplitude of the two maxima of
the noise power spectrum are of the same order of magnitude
for strong optical feedback (i.e., when R2

S,NL ≈ 1). Inversely,
the right maximum disappears for weak optical feedback (i.e.,
when R2

S,NL � 1) leading to the conventional linear gain with

only one resonance frequency (�R): GNL(�) ≈
R2

S,NL→0GL(�).
One can notice an average 〈·〉 in Eq. (24a). This average

is due to the fact that BT,NL(s) is the transient dynamics of
random excitations (due to quantum noise). With a uniform
distribution of initial phase condition, this average leads to an
incoherent interaction [modulus sum in Eq. (24b)] between the
two resonance curves.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

To study the nonlinear dynamics of a laser submitted to
frequency-shifted optical feedback, we have used a LOFI
setup [9]. A schematic diagram of this setup is shown in
Fig. 4. The laser is a diode pumped Nd:YAG microchip
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laser. The maximum available pump power is 400 mW at
810 nm and the total output power of the microchip laser
is 80 mW with a central wavelength of λ = 1064 nm. This
laser has a plane-parallel cavity which is stabilized by the
thermal lens induced by the Gaussian pump beam. The two
dielectric mirrors are directly coated on the laser material (full
cavity). The input dichroic mirror transmits the pump power
and totally reflects the infrared laser wavelength. On the other
side, the dichroic output mirror allows one to totally reflect
the pump power (to increase the pump power absorption and
therefore the laser efficiency) and only partially reflects (95%)
the laser wavelength. The microchip cavity is relatively short,
Lc ≈ 1 mm, which ensures a high damping rate of the cavity
and therefore a good sensitivity to optical feedback. Part of the
light diffracted and/or scattered by the target returns inside the
laser cavity after a second pass through the frequency shifter.
Therefore, the optical frequencies of the reinjected light are
shifted by Fe. This frequency can be adjusted and is typically

of the order of the laser relaxation frequency FR , which is in
the megahertz range for the microchip laser used in this study.

The optical feedback is characterized by the complex
target reflectivity (re = √

Re exp(j�e), where the phase �e =
(2π/λ)de describes the optical phase shift induced by the
round-trip time delay τe (i.e., the distance de = c τe, where
c is the velocity of light) between the laser and the target.
The effective power reflectivity (Re = |re|2) takes into account
the target albedo, the numerical aperture of the collection
optics, the frequency shifters efficiencies, the transmission of
all optical components, and the overlap of the retrodiffused
field with the Gaussian cavity beam (confocal feature).

The coherent interaction (beating) between the lasing
electric fields and the frequency-shifted reinjected fields leads
to a modulation of the laser output power at the frequency Fe.
For detection purposes, a small part of the laser output beam
is sent to a photodiode. The delivered voltage is analyzed by
a numerical oscilloscope which allows fast Fourier transform

FIG. 5. Experimental power spectra of the laser intensity dynamics. Left column: fixed modulation frequency (Fe/FR = 1.075) and
an increasing amount of optical feedback Re characterized by an increase of the laser output power modulation; (a) R2

S,NL = −23.1 dB;
(b) R2

S,NL = −14.3 dB; (c) R2
S,NL = −9.27 dB. Right column: fixed amount of optical feedback and a decreasing modulation frequency around

the intrinsic relaxation frequency; (d) Fe/FR = 1.075,R2
S,NL = −24.72 dB; (e) Fe/FR ≈ 1.0,R2

S,NL = −19.18 dB; (f) Fe/FR = 0.925,R2
S,NL =

−12.15 dB.
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calculations, and processed by a lock-in amplifier which gives
the LOFI signal (i.e., the amplitude and the phase of the laser
output power modulation) at the demodulation frequency Fe.
Experimentally, LOFI images can be obtained pixel by pixel by
a full two-dimensional galvanometric scanning. In this study,
the scanning device is not used because all the measures are
realized on a single target point. One can notice that in contrast
to a conventional heterodyne interferometer, the LOFI setup
shown here does not require complex alignment. Indeed, the
LOFI interferometer is always self-aligned because the laser
simultaneously fulfills the functions of the source (i.e., photon
emitter) and of the photodetector (i.e., photon receptor).

B. Experimental observations of the relaxation frequency shift

Figure 5 shows how the experimental noise power spectrum
of the laser is modified when the amount of optical feed-
back (Re) increases and/or when the modulation frequency
approaches the intrinsic laser relaxation frequency (Fe ≈ FR).

In agreement with Eqs. (24a)–(24c), Fig. 5 shows that the
noise power spectrum gain is composed of two resonance fre-
quencies symmetrically located on both sides of the frequency
shift: (Fe ± �R), and that the amplitude of the two maxima are
of the same order of magnitude for strong optical feedback (i.e.,
when R2

S,NL � −20 dB in arbitrary units). Inversely, the right
maximum disappears for weak optical feedback (i.e., when
R2

S,NL � −20 dB) leading to the conventional linear gain with
only one resonance frequency (FR).

For a given modulation frequency, the left column of Fig. 5
shows how F̃R (i.e., here the left sideband) is shifted down
to lower frequencies when the amount of optical feedback
increases.

For a given amount of optical feedback, the right column
of Fig. 5 shows how F̃R is shifted to a lower frequency when
the modulation frequency decreases. Note that the numerical
results of Fig. 2 and the experimental results of Fig. 5 are
qualitatively similar.

More quantitatively, Fig. 6 shows the relative variation
of the relaxation frequency [Fig. 6(a)], and the variation of
the amplitude of laser output power modulation [Fig. 6(b)]
as a function of the modulation frequency. Good agreement
between the analytical and the experimental results can be
observed.

First, one can observe in Figs. 6(a) and 6(b) that the
amplitude of the modulation (R2

S,NL) at the frequency shift
(Fe) and the relaxation frequency shift F̃R as a function of
the detuning vary in opposite direction. Indeed, in agreement
with Eq. (23), the decrease of the relaxation frequency is
proportional to the increase of the square of the laser amplitude
modulation. Secondly, one can observe a small hysteresis
induced by the direction (up or down) of the modulation
frequency variation.

In agreement with Eq. (23), one can understand that the hys-
teresis observed in the relaxation frequency shift is induced by
the hysteresis of the modulation amplitude previously studied
in [17]. The experimental results shown in Fig. 6 have been
analytically adjusted by using a feedback reflectivity of Re ≈
1 × 10−8 and the following values of the laser parameters:
η = 1.2,γ1 = 1 × 105 s−1,γc = 1 × 109 s−1, corresponding to
an intrinsic laser relaxation frequency of FR ≈ 700 kHz.

FIG. 6. (a) Relative variation of the relaxation frequency and
(b) square of the amplitude of the laser output power modulation
versus the normalized scanning of the modulation frequency. The
lines correspond to results obtained from analytical equations,
while the dots correspond to results obtained from experimental
measurement. Dashed lines and circular dots: the scanning of
the modulation frequency increases. Solid lines and square dots:
the scanning of the modulation frequency decreases. Estimated
laser parameters: η = 1.2,γ1 = 1 × 105 s−1,γc = 1 × 109 s−1,FR ≈
700 kHz. Estimated feedback parameter: Re = 1 × 10−8.

V. CONCLUSION AND PERSPECTIVES

In this article we have demonstrated (analytically, nu-
merically, and experimentally) how the stationary dynamics
(i.e., the output power modulation) and the transient dy-
namics (i.e., the laser quantum noise) of a laser subjected
to frequency-shifted optical feedback are coupled through
the nonlinear-laser dynamics. Both the numerical results and
the experimental ones show very good agreement with the
analytical predictions. More precisely, this study shows how
the noise power spectrum is related to the strength of the
beating between the intracavity laser electric field and the
frequency-shifted optical electric field (i.e., the amplitude of
the laser output power modulation). The shape of the noise
power spectrum gives an image of the transfer modulation
function (i.e., of the amplification gain) of the nonlinear-laser
dynamics. A better understanding of the laser nonlinear
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behavior could lead to a new generation of laser metrology
techniques with improved performances.

More specifically, this study shows how the relaxation
frequency is shifted and how this shift becomes significant in
the strong feedback situation where the modulation frequency
is nearly resonant (�e ≈ �R) and where the amount of optical
feedback is high enough [Re > Re, lim = (γ1η/2γc)2] to induce
nonlinear dynamical behaviors in the laser output power
modulation. Under these conditions, we have also observed
that the relaxation frequency shift exhibits a small hysteresis,
induced by the direction (up or down) of the variation of the
modulation frequency. This hysteresis phenomenon appears
simultaneously in the amplitude of the laser power modulation
and in the shift of the relaxation oscillations frequency (i.e.,
resonant peak of the noise). This correlation demonstrates
again the nonlinear dynamical coupling between these two
physical quantities.

From the applied optics point of view, since the relaxation
frequency, and consequently the noise power spectrum of
the laser, can be controlled by the strength of the optical
feedback, it opens interesting new perspectives in the field
of interferometric phase measurement (and more particularly
vibrometry) using a LOFI setup. For example, when the
amount of optical feedback increases, the noise in the vicinity
of the modulation frequency seems to be pushed far away,
allowing lower phase noise and consequently the possibility to
detect lower amplitudes of vibration [25,26]. Also, the shape
of the noise power spectrum gives an image of the transfer
modulation function (i.e., of the amplification gain) of the
nonlinear-laser dynamics. The knowledge of this gain seems to
be of importance to allow measurement of transient vibrations
with subnanometric amplitude and a broad vibration spectrum
of several megahertz (around the carrier frequency Fe). This
work is in progress.

APPENDIX: EXISTENCE OF THREE REAL ROOTS
FOR THE AMPLITUDE OF THE LASER

OUTPUT POWER MODULATION

The square modulus of the stationary modulation amplitude
in the nonlinear case [Eq. (16)] obeys the equation

R2
S,NL

[(
σe − 1 + R2

S,NL

6

)2

+
(

ηε

2

)2
]

=
(

δe

4

)2

. (A1)

Setting R2
S,NL/6 = αx, where α = (δe/4

√
6)2/3 the above

equation transforms into

[(a + x)2 + b2] = 1

x
, (A2)

FIG. 7. Log-log plot of the hyperbola g(x) = 1/x (solid line)
and three parabola f (x) = (x + a)2 + b2 (dashed, dotted, and dash-
dotted lines) for a fixed value of b = 0.23 and three values of a:
(a1 = −3/22/3 ≈ −1.89, a = −5, a2 ≈ −1/b2 = −18.85).

where a = (σe − 1)/α and b = (ηε/2)/α. This equation is
geometrically understood as the crossing of a parabola and
a hyperbola (Fig. 7).

For a given value of b, there exists a range a ∈ [a1,a2]
where the equation has three real roots. To find the boundary
of this range, we have to solve simultaneously Eq. (A2) and

2(x + a) = − 1

x2
, (A3)

where b is given and a and x are to be determined. The exact
solution is obtained by solving first for x:

1

4x4
− 1

x
+ b2 = 0, (A4)

and then use Eq. (A3) to get the value of ai .
For b � 1, the computation is simplified and the boundaries

are approximately given by (Fig. 7)

a1 = −3/22/3, a2 = −1/b2. (A5)

In terms of real parameters, the above condition is written

−
(

δe/(4
√

6)

ηε/2

)2

< (σe − 1) < − 3

22/3

(
δe

4
√

6

)2/3

. (A6)

Equation (A6) is identical to Eq. (17).
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