PHYSICAL REVIEW A 94, 033842 (2016)

Optical phase estimation via the coherent state and displaced-photon counting
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We consider the phase sensing via a weak optical coherent state at quantum limit precision. A detection
scheme for the phase estimation is proposed, which is inspired by the suboptimal quantum measurement in
coherent optical communication. We theoretically analyze a performance of our detection scheme, which we
call the displaced-photon counting, for phase sensing in terms of the Fisher information and show that the
displaced-photon counting outperforms the static homodyne and heterodyne detections in a wide range of the
target phase. The proof-of-principle experiment is performed with linear optics and a superconducting nanowire
single-photon detector. The result shows that our scheme overcomes the limit of the ideal homodyne measurement,

even under practical imperfections.
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I. INTRODUCTION

Quantum optical sensing has attracted both fundamental
and practical interest (see, for example, [1] and references
therein). In particular, sensing of the unknown phase ¢ of
the optical signal state is a simple but practically important
problem. A typical setup of the optical phase estimation
consists of a probe state, unitary (unknown) phase shifting,
and the detection (and estimation) step (Fig. 1). The precision
of estimation is usually evaluated by a mean-square error
Var[¢3] =F [(43 —E [¢3])2] of the estimator q3 For an unbiased
estimator, it is well known that its ultimate lower bound is
given by the quantum Cramer-Rao bound:

Var[¢] > )]

1
MH(¢)’
where M is the number of data and H (¢) is the quantum Fisher
information (QFI) [2] which is a function of state p(¢).

Two questions are particularly interesting and have attracted
attention so far: (1) what probe state maximizes H(¢) and (2)
how to saturate the bound in a realistic experimental setting.
For the first question, it has been shown that highly nonclassical
states, such as squeezed states [3—5] or NOON states [6-9],
could beat the QFI of the coherent state, which is often called
the “standard quantum limit” scaling as 1/N, where N is
the average photon number of the state. Moreover, ideally it
reaches the so-called Heisenberg limit scaling 1/N?. However,
it has been also revealed that these nonclassical states are very
fragile to losses (unless using extremely nontrivial states) [10],
which is an unavoidable imperfection in real experimentation.
In this sense, for some practical applications in which one
has to admit high losses, the coherent state is still a useful
option for phase sensing since the coherent state preserves
its coherence and purity even under high losses. In the fol-
lowing, we concentrate on phase estimation by coherent-state
probes.

The second question is related to the choice of the detection
strategy. For a given system (i.e., given probe state and
measurement), the lower bound of Var[¢] is determined by
the classical Fisher information (FI) F(¢) and the QFI for a
given probe state is defined as the maximum F(¢) over all
possible quantum measurement [2]. Thus, by definition, the
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following inequality holds for any given states:

H(p) = F(9). @)

The question is to find the optimal measurement that saturates
this inequality, preferably for any ¢. For a coherent state, it is
known that homodyne measurement can saturate (2) around a
certain ¢ [11]. This is a nice consequence but not always prac-
tical, since the FI decrease quickly if ¢ is far from the specific
point. Though globally optimal measurement is possible by
adaptive homodyne detection with a real-time feedback system
[12], it may not be implementable for some applications,
especially when the number of data is highly limited. In
addition, a finite bandwidth of the adaptive feedback operation
causes some restrictions on the system parameters, such as the
repetition rate of source and detector. Therefore it is still worth
investigating the static measurement which could surpass the
FI of the homodyne measurement in a wide range of ¢.

In this paper, we propose and experimentally demonstrate a
simple detection strategy for the coherent-state phase estima-
tion. Our detection scheme is inspired by the recent progress
of “quantum receiver” technology developed in the field of
quantum optical communication. In optical communication
at the very low power regime, it is known that homodyne
or heterodyne measurements are not optimal to minimize the
error of discriminating modulated coherent-state signals [13].
In the last decade, a practical quantum receiver configuration
superior to homodyne and heterodyne receivers has been
proposed for various sets of signals [14-21] and is successfully
demonstrated with the current technology [22-29]. Our basic
idea is to apply these receivers—originally designed for
state discrimination—for a different purpose, i.e., the phase
estimation. Specifically, we employ the simplest static receiver
technique, which we call the displaced-photon counting
[14,18,25,30], consisting of displacement operation and a
photon detector (with no adaptive feedback). We show that
in a wide range of ¢, our scheme works better than homodyne
and heterodyne receivers in terms of FI. The concept is also
demonstrated experimentally.

The paper is organized as follows. In Sec. II, we propose a
detection scheme for the coherent-state phase estimation and
then analyze its performance in terms of the Fisher information
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FIG. 1. Schematic of general phase estimation.

formalism. Section III is devoted to the proof-of-principle
experiment of the proposed scheme. Section IV concludes
the paper.

II. DISPLACED-PHOTON COUNTING
FOR PHASE ESTIMATION

In this section, after a brief reminder of the Fisher infor-
mation formalism, we propose a simple detection scheme for
phase estimation which we call the displaced-photon counting.
We theoretically investigate its performance in terms of the FI
and then compare it with that for other existing technologies,
such as homodyne and heterodyne detections.

As mentioned in the Introduction, the QFI sets the minimum
bound of the variance for a given state. For pure states, the QFI
is simply given by [11]

H = 4AK?, 3)

where AK? = (K?) — (K)? is the fluctuation of the photon
number of the state and K =a'a is the photon number
operator. AK? is invariant with respect to the phase shift ¢,
and thus the QFI is simply determined by the initial state pg.
Equation (3) allows us to explicitly calculate the QFI for the
coherent state, which simply turns out to be H.o, = 4.

The performance of a given system, including both the state
and the measurement, can be theoretically analyzed by the FI
[31]. The FI is defined as

1 ap(xlp)\
Fo)= | — [ 22220, 4
@) /p(x|¢)< a9 ) @

where p(x|¢) is a conditional probability of obtaining an
outcome x for given phase shift ¢. This conditional probability
is a function of the statep, and the measurement, described by
a positive operator valued measure (POVM) {I1,} satisfying
[dxTl, =1 as

p(x|¢) = Tr[Il:pg]. &)

Note that for discrete measurement observables such as photon
numbers, the integration in (4) should be replaced with a sum
of all measurement outcomes.

Figure 2 shows a simple schematic of the phase estimation
of the coherent state with the displaced-photon counting. The
displacement operation D() is a linear operation shifting the
amplitude of the coherent state |y) as D(8)|y) = |8 + v). In

Displacement  Photon number
operation resolving detector

Phase shift

@) [2] lac®) Do) PN

FIG. 2. Schematic of the phase estimation for the coherent state
measured by the displaced-photon counting.
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experiment it is realized by combining the signal light with a
relatively strong local oscillator (LO) light on a beamsplitter
with high transmittance. In our scheme, we implement D(—«),
which converts the initial probe coherent state |«) to a vacuum.
This displacement is followed by a photon-number-resolving
detector (PNRD). The measurement operator of the PNRD for
n-photon outcome is given by [32]

n o) \)I
M= Y 3 2Ch = "Dk, ©

1=0 k=n—1 "~

where C*_, is the binomial coefficient, and v and 7 are dark
counts and detection efficiency, respectively. For the initial
state |o) and a given phase shift ¢, the conditional probability
of detecting n photons is

[2no*(1 — cos @) + v]" o200 (1—cos )
n!

p(nlp) =&

(na2 + )" e—r;az—v

21— 67—

(7
In the ideal case, where « = 8, v = 0, n = 1 and the perfect
interference visibility (¢ = 1) [33], an analytical form of the
FI is obtained as

Fyis(¢) = 2a*(1 + cos® §). (8)

This should be compared with the FIs of the conventional
homodyne and heterodyne detections [11,34]. The POVM of
the homodyne detection is given by a set of projectors onto
quadrature bases {IT, = |p){p|} and it implies

Fhom(¢) = 4o’ cos® ¢. ©)

The heterodyne detection is composed of a balanced beam-
splitter followed by two homodyne detectors for conjugate
quadrature components. Its POVM is given by a set of coherent
states %{H s = |B){Bl}. Though the heterodyne measurement
can measure two quadrature amplitudes simultaneously, its
performance is limited by the unwanted vacuum fluctuation
input from the unused port of the balanced beamsplitter. Thus
the QFI is limited to be

Fret(9) = 207 (10)

In Fig. 3 we plot the FIs for the three types of measurements,
the displaced-photon counting, the homodyne, and the het-
erodyne detection. The homodyne detection’s FI can reach
the QFI at a local point ¢ = 0, 7. However, it decreases
rapidly as the phase ¢ shifts from this local point, whereas
the heterodyne detection’s FI is constantly a half of the QFIL.
We observe that the displaced-photon counting also reaches
the QFI at a local phase point ¢ = 0 and filling the gap
between the homodyne and the heterodyne in the sense that it
is better than both in a wide region around ¢ = 0. This might
be useful in some applications where the sample’s phase is
known to be around ¢ = 0 but has relatively wide fluctuation
around there. The FIs of the displace-photon counting with
the imperfections are illustrated in Fig. 4. The performance
of the displaced-photon counting is degraded because of the
nonunit detection efficiency. Furthermore, in case of the small
mean photon number [Fig. 4(a)], the phase-insensitive noises,
such as the imperfect visibility and the dark counts, cause
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FIG. 3. Fisher information for the displaced-photon counting, the
homodyne detection, and the heterodyne detection. The vertical axis
is normalized by the quantum Fisher information of the coherent
state. Thus the maximum value is 1, where the FI corresponds to
the QFI.

high degradation of the FI around ¢ = 0. This is because
the phase-insensitive terms in Eq. (7) become dominant and
make the conditional probability less sensitive to the phase
shift. In Fig. 4(b), we show the FI of the displaced-photon
counting with large coherent amplitude |a|?> = 10. The dark
count noise and the imperfect visibility do not make a critical
contribution to the conditional probability for the large signal
amplitude conditions (see around ¢ = 0). Thus the scheme is
robust against the phase-insensitive noise for larger |«|* than
the weaker probe in Fig. 4(a).

In a real experiment, the measurement outcome from the
detector should be postprocessed to estimate the phase value.
As a postprocessing algorithm, we choose a standard Bayesian
strategy, which is known to saturate the (classical) Cramer-Rao
bound Var[qg] > 1/M F(¢) for large enough M [11].

Suppose {ny} = {n,n,, ...,n;} is a set of photon numbers
observed by the detector after k measurements. Then a
posteriori probability P(¢|{n;}) of ¢ given {n;} is obtained
from a relation

pUm) P(@l{ni}) = p(d) P({ni}|d). (1)

The prior probability distribution p(¢) is assumed to be
uniform distribution in our estimation and p({n;}) = foﬂ p(®)
P({ny}|¢)d¢ is the prior probability of observing {n;}. The
latter can be calculated from Eq. (7) and the relation

k
P({ni}lp) = [ ] p(nil). (12)
i=1

Combining Eqgs. (11) and (12) and the uniform p(¢), we can
explicitly derive the form of P(¢|{n;}). Then an expectation
value of the estimator and its variance for experimentally
measured {n;} are evaluated as

¢ = / P P(Plin)de, (13)

Var[¢] = f (@ — ¢)*P(gpl{ni))do. (14)
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FIG. 4. Normalized FI of the displaced-photon counting with the
various imperfect conditions and fixed dark count of 10~3 counts per
pulse. The mean photon number of the signal state is (a) |«|*> = 0.10
and (b) |a|* = 10.

III. EXPERIMENT

Figure 5 shows our experimental setup. The continuous-
wave laser at 1549 nm is modulated to a sequence of
optical pulses with repetition rate of 900 kHz and a pulse
width of 100 nm by an acousto-optic modulator (AOM).
The optical pulse is sent into a Mach-Zehnder interferometer
in which amplitudes of the optical lights are independently
controlled by a set including an electro-optic modulator
(EOM) and a polarizer. In an optical path for the signal
coherent state, a piezotransducer produces the optical phase
shift ¢ to be estimated. The signal state with the coherent
amplitude « is defined after a fiber coupling and displaced by
combining the LO light on an asymmetric fiber coupler with
transmittance 7 = 0.99. We achieve the visibility & = 0.993
for the displacement operation. In the experiment, instead of
a PNRD, we use a superconducting nanowire single-photon
detector (SNSPD), which only discriminate if the photons exist
or not [35,36]. The performance gap between the SNSPD and
the ideal PNRD are huge when « is large. However, in this
proof-of-principle experiment, we choose o < 1 such that
the performance gap between them is in principle negligible
because of the extremely small probability of having more
than one photon per pulse. We calibrate the optical power of
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FIG. 5. Experimental setup. AOM: acousto-optic modulator, BS: beamsplitter, EOM: electro-optic modulator, PZT: piezotransducer.

the laser light by using a well-calibrated power meter and then
insert a well-calibrated attenuator which reduces the power of
the optical light up to single-photon level. The power meter
is replaced with the SSPD and, by comparing the expected
mean photon number after the attenuation and the detected
mean photon number, we obtain the total detection efficiency
of our system n = 60.2 & 0.4% [37]. Electrical signals from
the SNSPD are first transmitted to an SR400 gated photon
counter (Stanford Research Systems) which enables us to
reduce the dark count to v = 1.13 x 10™* counts/pulse by
gating the detection window synchronized with the AOM. The
actual phase shift is inferred from 900 x 10* points counted by
the SR400 without time information and we simultaneously
monitor the electrical signals using an oscilloscope up to
1 x 10* points with time information, which is shown as the
experimental results in this paper.

We fix the intensities of the signal state |a|?> = 0.100
and the displacement operation |8|> = 0.101 with the un-
certainty 1%. Figure 6 depicts the experimental results for
(a) the variance of the estimator and (b) the expectation
value when the optical phase shift is set to ¢ ~ 1.00. In
Fig. 6(a), we compare the experimentally evaluated vari-
ance of the estimator (gray) with the homodyne detection
(blue dashed), the heterodyne detection (green dashed), the
displaced-photon counting with (red dashed) and without
(red solid) experimental imperfections, and quantum bound
derived from the QFI (black dashed). We observe a good
agreement between the experimental results and the theo-
retical predictions. The expectation value estimated from M
measurement outcomes is shown by red dots in Fig. 6(b) as
a function of the number of measurements M. The black
dots in Fig. 6(b) are independently generated by numerical
simulation and therefore reflect statistical fluctuation. The
expectation value well locates at the actual value of the
phase shift (black dashed line) except for the small M.
Even though our photon counter and nonunit visibility de-
grade the performance of the displaced-photon counting, our
detection strategy still shows the performance overcoming
the homo- and heterodyne detections for the specific phase
conditions.

The Bayes theorem guarantees the saturation of the Cramer-
Rao inequality for the unbiased estimator if the sample size
is infinity. To verify the convergence property for the finite

Var [(Z)]
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FIG. 6. Experimental results for (a) the variance of the estimator
and (b) the expectation value of the estimator (red dot) with
the data points generated from numerical simulation (black dot).
The phase shift value is fixed to ¢ ~ 1.00, and the parameters
for the experiment are |a|> =0.100, |B8|> =0.101, & =0.993,
7 =60.2%, and v = 1.13 x 10~*.
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FIG. 7. Inverse of the experimentally obtained variance of the
estimator multiplied the number of measurements M. M is set to
1.0 x 10% (red circle), 1.0 x 10* (blue square), and 9.0 x 10° (green
triangle). Black solid and dashed lines represent the theoretical FI of
the displaced-photon counting and the homodyne detection for the
experimental condition n = 0.602, v = 1.13 x 107*, and £ = 0.993.
Red and black solid lines are the theoretical FI of the displaced-photon
counting and the homodyne detection in the ideal case.

number of samples, we plot the inverse of the variance
multiplied by the number of measurements M in Fig. 7 as
a function of the optical phase shift ¢. The circle (red), square
(blue), and triangle (green) plots correspond to the number
of measurements M = 1.0 x 10?,1.0 x 10*, and 9.0 x 10°,
respectively. The ideal FIs without any imperfections for the
displaced-photon counting and the homodyne detection are
shown by red and blue solid lines, respectively. The experi-
mental data well coincide with the FI of the displaced-photon
counting for the experimental condition (solid black line).
This coincidence indicates that the Cramer-Rao inequality is
saturated with the given number of measurements. However,
the discrepancy between the FI and the experimental results
becomes apparent when ¢ is extremely small or close to
. The performance overcoming the theoretical FI could
occur in the finite samples case because of the statistical
randomness of the data acquisition. Note that the variance
evaluated from a sufficiently large number of samples or the
mean of the variance obtained from independent trials in the
same condition satisfies the Cramer-Rao inequality.

IV. CONCLUSION

We proposed and experimentally demonstrated a simple
optical phase estimation detector which we call the displaced-
photon counting. The detector configuration was inspired by
a suboptimal receiver for signal discrimination in quantum
optical communication and its application to phase estimation
has been examined in both theory and experiment. The
theoretical results showed that the displaced-photon counting
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exhibits near optimal performance in a wider range of the
phase value ¢ than the conventional homodyne detection.
The features of the displaced-photon counting offer advan-
tages, especially when the optical phase shift is unknown
but supposed to be located around ¢ = 0. The proof-of-
principle of our detection scheme is demonstrated by using
the SNSPD as a photon counting device. Though our SNSPD
is not ideal (nonunit detection efficiency (60.2%), finite dark
counts (1.13 x 10™* per pulse), and indistinguishability of
photon numbers), our results still overcome the ideal limit
of homodyne and heterodyne detections around ¢ = 0. Also,
the results well agree with our theoretical predictions, that is,
we experimentally observed the saturation of the Cramer-Rao
bound via the estimation based on the Bayesian strategy.

There are several interesting future directions. The first
possible direction is installation of the PNRD as the photon
counter. Though our proof-of-principle experiment with the
on/off detector overcomes the homo- and heterodyne limits
with a small mean photon number, it does not work for
stronger probes, e.g., a few photons per pulse. Moreover,
as theoretically show in Sec. II, the PNRD is robust against
the phase-insensitive noise by dark counts and the imperfect
visibility. The efficiency of the detector is also a critical issue
that degrades the performance of our scheme and is required
to be almost unity to observe the expected performance.
One of the candidates of the desired PNRD satisfying the
above conditions is transition edge sensors [37,38]. Another
direction is its applications. Our phase estimation strategy
using a coherent state provides benefit for an optical metrology,
especially because when the signal light is weak, losses are
not negligible and sample size is not enough large to utilize an
adaptive measurement.

Finally, an interesting future problem is the application
of the phase estimation strategy using the displaced-photon
counting in optical communication scenarios, such as co-
herent communication and quantum key distribution (QKD).
Although the task in communication is to discriminate the
discretely encoded signals with minimum error, the phase
estimation is also very important since in practice the receiver
has to track the sender’s reference frame. In particular, precise
monitoring and/or calibrating state preparation is indispens-
able to ensure the practical implementation security of a QKD
system. The phase estimation of the binary encoded coherent
states in the binary optical communication is discussed in [39].
Our detailed analysis could be useful for designing a future
optical communication system with an extremely weak signal
and practical phase tracking.
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