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Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation:
Controllable Wigner-function multimodality and dissipative phase transitions
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We present exact results for the steady-state density matrix of a general class of driven-dissipative systems
consisting of a nonlinear Kerr resonator in the presence of both coherent (one-photon) and parametric (two-photon)
driving and dissipation. Thanks to the analytical solution, obtained via the complex P -representation formalism,
we are able to explore any regime, including photon blockade, multiphoton resonant effects, and a mesoscopic
regime with large photon density and quantum correlations. We show how the interplay between one- and
two-photon driving provides a way to control the multimodality of the Wigner function in regimes where the
semiclassical theory exhibits multistability. We also study the emergence of dissipative phase transitions in the
thermodynamic limit of large photon numbers.
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I. INTRODUCTION

Recently, the possibility of realizing strong photon-photon
interactions boosted the study of many-body physics with light
[1]. Indeed, new experimental platforms, such as semicon-
ductor microcavities [2,3] and superconducting circuits [4,5],
allow one to realize photonic resonators with relatively large
nonlinearities. This enables the achievement of new highly
interacting regimes which, for decades, were confined to the
textbook study of quantum optics [6]. In this framework, a new
flourishing field is that of reservoir engineering, whose goal is
the manipulation of photon exchanges between a nonlinear
resonator and the environment [7–14]. These techniques
permit the realization of new models with nontrivial drive
and dissipation. In this context, exactly solvable models are
of particular interest. The analytic solution allows one to
explore the full range of system parameters rather than the
limiting regimes of low or high photon densities. The latter
are respectively tackled through numerical techniques and
semiclassical approximations. An example of a solvable model
is the driven-dissipative Kerr model, for which Drummond
and Walls derived the steady-state solution via the complex P -
representation [15]. Beyond the single-resonator case, analytic
solutions proved to be very useful for an efficient implementa-
tion of Gutzwiller mean-field decoupling for arrays of coupled
cavities [16–22].

In the present work, we use the complex P -representation to
provide an exact solution for the steady state of a general class
of driven-dissipative nonlinear resonators. More precisely, we
consider a standard driven-dissipative Kerr model (subject to
the usual coherent pumping and one-photon dissipation) driven
by an additional parametric two-photon pump and subject
to two-photon losses. Recently, these processes have been
engineered for superconducting resonators [14]. The growing
interest in this kind of model is motivated by the emergence of
nonclassical metastable and steady states in its dynamics, such
as mixtures of quasicoherent states or photonic Schrödinger
cats, which lead to multimodal Wigner functions [23–25]. The
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possibility of controlling and protecting such states is promis-
ing for the implementation of quantum computation protocols
[26–30]. The exact solution derived in this work allows one
to explore the quantum properties of the steady state beyond
the semiclassical approximation, capturing the emergence of
dissipative phase transitions [31,32]. Furthermore, the exact
solution paves the way to a numerically efficient exploration
of resonator lattices through Gutzwiller decoupling.

The paper is organized as follows. We start in Sec. II
by introducing the model. Then, in Sec. III, we exploit the
formalism of the complex P -representation to derive the
exact solution for the steady state of the considered model.
Section IV is devoted to the study of the steady-state properties.
We compare semiclassical and quantum solutions in Sec. IV A.
In Sec. IV B, we show the emergence of dissipative phase
transitions in the thermodynamic limit of large excitation
numbers. Finally, we present conclusions and perspectives in
Sec. V.

II. NONLINEAR RESONATOR INCLUDING
TWO-PHOTON PROCESSES

Let us introduce the general model of a driven-dissipative
Kerr nonlinear resonator with two-photon drive and dissipa-
tion, which is sketched in Fig. 1. In the the Hamiltonian, ωc

is the cavity-mode frequency and U the strength of the Kerr
nonlinearity, quantifying the photon-photon interaction. In the
absence of pumping we get (� = 1)

Ĥ0 = ωc â†â + U

2
â†â†ââ, (1)

where â and â† are, respectively, the annihilation and creation
operator for photons inside the resonator. A coherent drive
with amplitude F and frequency ωp can be described by

Ĥ1ph = F e−iωpt â† + F ∗ eiωpt â. (2)

Henceforth we denote this mechanism one-photon pumping.
Similarly, a parametric process coherently adding photons
pairwise is described by

Ĥ2ph = G

2
e−iω2t â†â† + G∗

2
eiω2t ââ, (3)
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FIG. 1. Sketch of the considered class of systems. The picture
represents a photon resonator subject to one-photon losses at rate γ

and coherently driven by a one-photon pump of amplitude F . The
resonator is also subject to a coherent two-photon driving of amplitude
G and two-photon losses at rate η. The strength of the photon-photon
interaction is quantified by U . At the right, we sketch the effects of
these physical processes on the Fock (number) states |n〉.

where G is the pump amplitude and ω2 its frequency.
Such a two-photon pumping mechanism can be obtained by
engineering the exchange of photons between the cavity and
the environment. Recently, this has been realized by coupling
two superconducting resonators via a Josephson junction
[14]. In order to get a time-independent Hamiltonian, we
consider ω2 = 2ωp. Hence, we use the unitary transformation
Û = e−iωptâ†â , which removes the time dependence from the
Hamiltonian. This allows us to describe the system in the
reference frame rotating at the coherent pump frequency ωp.
The full Hamiltonian, hence, becomes

Ĥ = −�â†â + U

2
â†â†ââ + F â† + F ∗â + G

2
â†â† + G∗

2
ââ,

(4)

where � = ωp − ωc is the pump-cavity detuning. For the
considered system, photon losses are typically appreciable and
cannot be neglected [33]. The Markov-Born approximation
gives an excellent description of these losses in terms of a
Lindblad dissipation superoperator D(Ĉ) of the form [33,34]

D(Ĉ) ρ̂ = 2 Ĉ ρ̂ Ĉ† − Ĉ†Ĉ ρ̂ − ρ̂ Ĉ†Ĉ, (5)

where Ĉ is the quantum jump operator corresponding to
the specific dissipation process. Usually, photons are lost
individually to the environment and the jump operator is the
annihilation operator â [33]. In addition, we also consider
two-photon losses, which naturally emerge together with
the engineered two-photon pumping [14]. These losses are
included through the jump operator â2. The resulting Lindblad
master equation describing the evolution of the the system
density matrix ρ̂ is

i
∂ρ̂

∂t
= [Ĥ,ρ̂] + i

γ

2
D(â) ρ̂ + i

η

2
D(â2) ρ̂, (6)

where γ and η are, respectively, the one- and two-photon
dissipation rates and Ĥ is the one given in Eq. (4).

III. P-REPRESENTATION AND EXACT SOLUTION FOR
THE STEADY STATE

The steady-state properties are of central interest in the con-
text of out-of-equilibrium quantum systems. These properties
are encoded in the steady-state density matrix, which is the

solution of Eq. (6) for ∂t ρ̂ = 0. To this purpose, we consider
the P -representation of the density matrix, i.e., we decompose
ρ̂ using the overcomplete basis of coherent states |α〉, such that
â |α〉 = α |α〉. We use the complex P -representation P (α,β)
[35], which is defined by

ρ̂ =
∫
C
dα

∫
C′
dβ

|α〉 〈β∗|
〈β∗|α〉 P (α,β), (7)

where the closed integration contours C and C ′ must be
carefully chosen to encircle all the singularities of the function
P (α,β). Once definition (7) is inserted into Eq. (6), the action
of the annihilation and creation operators on the projector
|α〉〈β∗| allows one to map the master equation for ρ̂ into a
complex Fokker-Planck equation for P (α,β). Further details
on this procedure are presented in Appendix A. For the case
G = 0, the complex P -representation solution for the steady
state was derived by Drummond and Walls [15] and is given by

Pss(α,β) ∝ e2αβ e−2f/α

α2+2c

e−2f ∗/β

β2+2c∗ . (8)

In Eq. (8), the system parameters are resumed by the
dimensionless quantities c = (� + iγ /2)/(U − iη) and
f = F/(U − iη). For the general case corresponding to
master equation (6), we find

Pss(α,β) = e2αβ

N
1

(α2 + g)1+c
exp

[
− 2f√

g
arctan

(√
g

α

)]

× 1

(β2 + g∗)1+c∗ exp

[
− 2f ∗

√
g∗ arctan

(√
g∗

β

)]
.

(9)

All details on the derivation of Eq. (9) are given in Appendix A.
In Eq. (9) we have introduced the dimensionless parameter
g = G/(U − iη). We stress that in the limit g → 0 Eq. (9)
reduces to Eq. (8), as expected. We note that some particular
cases have been considered in [36–38].

The normalization factor N in Eq. (9) ensures that Tr[ρ̂] =
1. By imposing this condition we get

N =
∫
C
dα

∫
C′
dβ e2αβ 1

(α2 + g)1+c

1

(β2 + g∗)1+c∗

× exp

[
− 2f√

g
arctan

(√
g

α

)
− 2f ∗

√
g∗ arctan

(√
g∗

β

)]
.

(10)

One can Taylor-expand e2αβ and swap the resulting sum with
the integral. The two contour integrals over α and β thus
decouple, leading to

N =
∞∑

m=0

2m

m!
|Fm(f,g,c)|2, (11)

where we have introduced

Fm(f,g,c) =
∫
C

αm dα

(g + α2)1+c
exp

[
− 2f√

g
arctan

(√
g

α

)]
.

(12)

Note thatFm(f ∗,g∗,c∗) = F∗
m(f,g,c). Performing the integral

in Eq. (12) requires an appropriate choice of the contour C. In

033841-2



EXACT STEADY STATE OF A KERR RESONATOR WITH . . . PHYSICAL REVIEW A 94, 033841 (2016)

the present case, we used the Pochhammer path (more details
are given in Appendix A), which gives

Fm(f,g,c) = (i
√

g)m2F1(−m, − c − i f/
√

g; −2c; 2), (13)

where 2F1 is the Gauss hypergeometric function [39].

A. Exact results for steady-state quantities

The steady-state quantities can be expressed in terms of the
Fm functions, (13). Let us consider the correlation functions

〈â† i âj 〉 = Tr[â† i âj ρ̂]

=
∫
C
dα

∫
C′

dβ
P (α,β)

〈β∗|α〉 Tr[â† i âj |α〉 〈β∗|]. (14)

Since Tr[â† i âj |α〉 〈β∗|] = αjβi 〈β∗|α〉, we have

〈â† i âj 〉 = 1

N

∞∑
m=0

2m

m!
Fm+j (f,g,c)F∗

m+i(f,g,c). (15)

Similarly, one can derive the matrix elements of the steady-
state density matrix ρ̂ss in the Fock basis:

〈p|ρ̂ss|q〉 =
∫
C
dα

∫
C′

dβ
P (α,β)

〈β∗|α〉
αpβq

√
p!q!

= 1

N
√

p!q!

∞∑
m=0

1

m!
Fm+p(f,g,c)F∗

m+q (f,g,c).

(16)

A useful tool to visualize the properties of the steady state
is the Wigner function [40]. Given a density matrix ρ̂, the
corresponding Wigner function W (z) is a real-valued function
of the complex variable z, defined as [41]

W (z) = 2

π
Tr[D̂z eiπâ†â D̂†

z ρ̂], (17)

with D̂z = ezâ†−z∗â the displacement operator. Substituting
ρ̂ with its P -representation, the crucial quantity to evalu-
ate is Tr[D̂z eiπâ†â D̂

†
z |α〉 〈β∗|]. Using the identity D̂

†
z D̂α =

e(αz∗−zα∗)/2D̂α−z, after lengthy but straightforward calcula-
tions, one gets

Tr[D̂z eiπâ†â D̂†
z |α〉 〈β∗|] = 〈β∗|α〉 e2αz∗

e2βz

e2αβe2|z|2 . (18)

The Wigner function can thus be written

W (z) = 2 e−2|z|2

π

∫
C
dα

∫
C′

dβ
P (α,β)

e2αβ
e2αz∗

e2βz. (19)

This time, the integrals over α and β are already independent.
By Taylor expanding the exponentials, we find that

W (z) = 2

π N

∣∣∣∣∣
∞∑

m=0

(2z∗)m

m!
Fm(f,g,c)

∣∣∣∣∣
2

e−2|z|2 . (20)

Therefore, the Wigner function given in Eq. (20) is real and
positive over the whole complex plane for any choice of the
system parameters.

We point out that Eqs. (11), (15), (16), and (20), together
with the definition ofFm given in Eq. (13), summarize the exact
analytic results of this work. For the sake of completeness, in

FIG. 2. Mean photon number 〈â† â〉 as a function of the pump-
cavity detuning � normalized by the photon-photon interaction
strength U . Different curves and data sets correspond to different
pump intensities (cf. the legend). Solid lines represent the analytic
solution, while markers indicate the numerical results obtained
by diagonalization of the Liouvillian superoperator of the master
equation on a truncated Fock basis. Top: results in the absence of
one-photon pumping, i.e. F = 0 [Eq. (C3) for i = j = 1]. Bottom:
Results in the presence of both one- and two-photon pumping with
F = G [Eq. (15)]. In both panels, vertical dot-dashed red (dashed
blue) lines mark the positions of odd (even) photonic resonances.
One- and two-photon dissipation rates were set to γ = η = 0.03U .

the case g = 0, definition (13) can be reduced to Fm(f,0,c) =
(−2f )m/�(m − 2c) [15]. Although the exact results presented
here apply for the general case of complex F and G, in what
follows, unless differently specified, we take them as real
parameters.

B. Benchmarking in the low-density regime

Before exploiting the analytic solution, note that the
results summarized in Eqs. (11), (15), (16), and (20) contain
infinite sums of Fm functions. In the special cases G = 0
(studied in [15]) and F = 0 (cf. Appendix C 2) such sums
can be analytically computed, resulting in combinations of
hypergeometric functions. For the general case of finite one-
and two-photon pumping (i.e., F,G 
= 0), the series can be
computed with arbitrary precision (see Appendix C, Sec. 1,
for further details).

In order to benchmark the analytic solution with nu-
merical approaches, we study it in the low-density regime.
Figure 2 shows the results obtained in the presence of only
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two-photon pumping (top) and for both one- and two-photon
driving (bottom). The agreement with numerics is excellent,
thus corroborating the validity of the analytic solution. The
parameters have been chosen to clearly show the photonic
resonances, which are expected when the energy of n pump
photons is equal to that of n photons inside the resonator.
Thus, besides the one-photon resonance occurring for � = 0,
multiphoton resonances arise when �/U = (n − 1)/2. For
F = 0, only resonances with an even number of photons
appear, while all of them are observed in the presence of
one-photon pumping. The resonances progressively merge
in a continuum with increasing pump intensities. In the
high-density regime this behavior triggers a dissipative phase
transition [31], discussed in Sec. IV B.

IV. PROPERTIES OF THE STEADY STATE

The exact analytic solution of the Lindblad equation, (6),
derived and benchmarked in Sec. III, allows us to compute the
average steady-state quantities of the considered system in any
physical regime, from low- to high-density phases, passing
through the nontrivial mesoscopic regime. In this section,
we investigate how the properties of the steady state evolve
through these different regimes.

A. Quantum vs semiclassical behavior

When the resonator has a small population, the solution
of the master equation, (6), can be obtained numerically, for
instance, by integrating the master equation on a truncated
Fock basis or by diagonalizing the Liouvillian superoperator
[42]. On the other hand, for a high photon number the cavity
field can be typically approximated by a coherent state |α〉.
Thus, the master equation reduces to a differential equation for
the complex amplitude α. This corresponds to the so-called
semiclassical approximation [1]. In this case, however, all
quantum correlations are neglected, which makes our exact
analytic solution a precious tool. The differential equation
for the complex amplitude α can be easily derived from
∂t 〈â〉 = Tr[â ∂t ρ̂] by assuming ρ̂ = |α〉 〈α|, namely,

∂tα = (i� − γ /2)α − iF − iGα∗ − (iU + η)α∗α2. (21)

Note that the latter equation is coupled to the one for the
conjugate variable α∗. Solving for the steady state ∂tα,∂tα

∗ =
0 one can get, depending on the system parameters, up to
five solutions, of which at most three are dynamically stable
[37,38].

In Fig. 3 we show the semiclassical prediction for the mean
photon number according to the semiclassical analysis. For
large and negative detuning, Eq. (21) predicts a single low-
density steady-state solution. By increasing �, the low-density
solution becomes unstable and two high-density ones emerge.
The corresponding values of 〈â† â〉 are almost equal, but the
phases of their complex amplitudes differ approximately by π .
Eventually, a third low-density stable solution appears, coexist-
ing with the two high-density ones until a parameter-dependent
threshold is reached (see right panel in Fig. 3). Then, only the
low-density stable state is present. Comparing these results
with the exact one given by Eq. (15) (also plotted in Fig. 3), we
note that the multistable behavior does not appear in the ana-
lytic solution. We point out that the quantum solution is unique,

FIG. 3. Left: Mean steady-state photon number 〈â† â〉 as a
function of the dimensionless detuning parameter �/U . Green
circles (red crosses) mark stable (unstable) semiclassical steady-state
solutions. The black line is the analytic solution given by Eq. (15)
(i = j = 1). One- and two-photon dissipation rates were set to
γ = η = 0.1U . Right: Zoom-in on the region in which the almost-
degenerate high-density semiclassical solutions become unstable.

while the semiclassical approach gives multiple dynamically
stable solutions. However, the exact and unique quantum
solution can display multimodal mixed-state behavior.

The presence of one (or more) semiclassical solution(s)
in the steady state can be visualized by the Wigner function
W (z), whose analytic expression is in Eq. (20). The case F = 0
has been discussed in [37], in particular, the evolution of W (z)
across the density drop. We present, in Fig. 4, the results for the
general case F,G 
= 0. In the multiple-solution regime, even
for F/G � 1, the one-photon driving prevents the system
from being in a balanced mixture of coherent states, which is
the case for F = 0 [14,25,28,37,38]. Looking at the bottom
panel in Fig. 4, one notes that a bimodal Wigner function only
exists nearby the transitions from low- to high-density regimes.
Elsewhere, W (z) always exhibits a single peak. In the low-
density regimes, we recover a squeezed-vacuum steady state as
the one observed for F = 0 [37,38]. This squeezing of the state
can be seen by looking at the elongated elliptic shape of the
corresponding Wigner function in the bottom plots in Fig. 4.

Remarkably, as shown in Fig. 5, the dominant peak in the
multimodal Wigner function is selected by the relative phase
of F and G. For this analysis, we took the same parameters as
in Fig. 4, setting the detuning around the threshold value. In the
outer panels we have varied the relative phase φ = arg(F/G),
changing the relative weight of the Wigner-function peaks.
The central panel [Fig. 5(e)] shows the case F = 0, for
which the three peaks have comparable heights. This property
can be a valuable tool for the control of two-photon driven
resonators for quantum computation based on quasiorthogonal
coherent states [29,30]. Indeed the relative phase φ could
be experimentally controlled and adjusted at will. In this
direction, it is worth stressing that expression (20) allows us to
predict precisely the shape of the multimodal Wigner function
even in highly populated regimes, where a numerical approach
would be extremely demanding.

B. Emergence of dissipative phase transitions

In this section, we show how our analytic solution allows
us to capture the steady-state properties of dissipative phase
transitions in the thermodynamic limit. The latter, in the
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FIG. 4. Top: Steady-state photon number 〈â† â〉 as a function of the dimensionless detuning parameter �/U for F = U , G = 10U ,
γ = η = 0.1U . Results were obtained through the exact solution, (15), for i = j = 1. Vertical grid lines mark the values of �/U for which we
evaluated the steady-state Wigner function (cf. bottom plots). Bottom: Steady-state Wigner functions W (z) calculated according to Eq. (20) for
the same parameters as in the top panel and for different values of �/U (see frame labels). Black dots mark the position of the corresponding
stable semiclassical solutions.

present context, is defined as the regime in which 〈â† â〉 →
+∞ [31,32]. Let us start by considering the case in which the
resonator is subject only to a coherent drive (i.e., G = 0). In the
top panel in Fig. 6 we show the evolution of the mean photon
density 〈â† â〉 as a function of the detuning for different driving
amplitudes F . For a low drive amplitude F � U , the photon
number shows well-resolved multiphoton resonances. In the
intense-pumping regime F � U , instead, these resonances
are replaced by a continuous and monotonous increase in the
photon density, up to a sharp transition from a high- to a
low-density phase. Corresponding to the drop in 〈â† â〉, the
normalized second-order correlation function g(2) exhibits a
sharp peak, shown in the bottom panel in Fig. 6. This quantity

6
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Re(F)

FIG. 5. Steady-state Wigner functions W (z) calculated according
to Eq. (20) for � = 28U , G = 10U , γ = η = 0.1U and for different
complex values of F . In (e) we took F = 0. In the others, F/U = eiφ

and the phase φ changes as sketched in the bottom-right plot.

is defined as g(2) = 〈â† 2â2〉 / 〈â† â〉2
. At the transition, photons

have a highly super-Poissonian distribution (g(2) � 1).

G = 0

F/U = 0.1 0.3 1 3 10 30

100

300

FIG. 6. Mean photon number 〈â† â〉 (top) and normalized second-
order correlation function g(2) (bottom) as a function of the pump-
cavity detuning � normalized by the photon-photon interaction
strength U for a resonator subject only to one-photon coherent driving
(G = 0, F 
= 0). Different curves (and colors) correspond to different
pumping intensities F/U , varied between 0.1 and 300, as indicated
beside each curve in the top panel. One- and two-photon dissipation
rates were set to γ = η = 0.03U .
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F = 0

G/U = 0.1 0.3 1 3 10
30

100

300

FIG. 7. Same as Fig. 6, but in the presence of two-photon driving
only, i.e., F = 0 and G 
= 0. Different curves (and colors) correspond
to different pumping strengths G/U , spanning from 0.1 to 300 as
labeled beside each curve in the top panel. One- and two-photon
dissipation rates were set to γ = η = 0.03U .

A similar analysis can be performed in the presence of two-
photon pumping. The results obtained for F = 0 and different
values of G/U are presented in Fig. 7. In the top panel, we
observe a behavior of the photon density similar to that in
Fig. 6. Note that the analytic solution allows us to reach very
high values of 〈â† â〉 (up to ∼1300 photons for G = 300U ).
The behavior of the second-order correlation function g(2)

dramatically differs from the case G = 0 considered in Fig. 6.
For G � 10U , we find sub-Poissonian statistics (g(2) < 1)
for small � and a strong peak corresponding to the drop
in density. After the peak, in the low-density phase, g(2)

drops but stays considerably larger than 1, and furthermore,
it keeps growing roughly quadratically. This high probability
of observing photons pairwise is a clear consequence of the
two-photon pumping mechanism.

The abrupt change in the density observed above for both
G = 0 and F = 0 is the result of a dissipative phase transition.
This kind of phenomenon arises in the nonequilibrium context
due to the interplay of nonlinearity, drive, and dissipation
[31,43,44]. Hence, a dissipative phase transition similar to
the one studied numerically by Carmichael for the Jaynes-
Cummings model [31] is also present in our Kerr system.
Our exact solution proves it unambiguously and allows us
to capture also the critical exponents. In order to further
characterize the transition, we consider a scaling which leads to
universal behavior in the thermodynamic limit. In the coherent-
pumping case G = 0, starting from the semiclassical equation,
(21), one finds that for a large photon number 〈â† â〉 ∝ |f |2/3

[as a reminder, f = F/(U − iη)]. Hence, we expect universal
behavior of the quantity χ = 〈â† â〉 |f |−2/3. In Fig. 6, we saw

− −

= [ ] | | − /

=
−

/

=

−

−

| [ / ]|

| − |

− −

= [ ] | |/

=
/

=

− − −

FIG. 8. Top: For the case G = 0 (coherent driving only), the
rescaled mean photon density χ = 〈â† â〉 /|f |2/3 as a function of the
dimensionless parameter τ = sgn[�]|c|/|f |2/3 for different values
of the dimensionless coherent drive intensity |f | (see the legend).
The smoothest curve corresponds to |f | = 1, while for increasing
values of |f | the curve gets steeper, acquiring a triangular shape.
Inset: Points mark the height and position of the peak in ∂χ/∂τ

as a function of |f |. Solid lines are power-law fits with exponents
±2/3, performed on the last four points. Bottom: For the case
F = 0 (two-photon driving only), the rescaled mean photon density
χ = 〈â† â〉 /|g| as a function of τ = sgn[�]|c|/|g| for different
values of |g| (see the legend). The smoothest curve corresponds to
|g| = 1, while χ progressively tends to a triangular-shaped curve for
increasing |g|. Inset: The rapid growth in the derivative ∂χ/∂τ around
τ = −1. The smoothest behavior corresponds to |g| = 100 and the
curve progressively acquires a discontinuity with increasing |g| (cf.
inset legend). Overall, dissipations have been set to η = 0.1U and
γ = 0.1|�|.

that the transition from high to low density is triggered by
the detuning �. In a more general description, we expect
the phase transition to be controlled by the dimensionless
complex detuning c = (� + iγ /2)/(U − iη). Hence, in the
top panel in Fig. 8 we show the behavior of χ (τ ) for
τ = sgn[�]|c||f |−2/3. In the thermodynamic limit |f | → ∞,
χ (τ ) shows a discontinuous first-order phase transition. For
finite values of |f |, the derivative ∂χ/∂τ is peaked at the
transition point. We find that the height and position of this
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peak follow the power-law behaviors max[∂χ/∂τ ] ∝ |f |2/3

and |τmax − τc| ∝ |f |−2/3 [cf. inset in Fig. 8 (top)]. For the
selected parameters, we find τc ∼ 2.41.

We now perform the same analysis for the two-photon
driven case F = 0, for which, in the thermodynamic limit,
one expects 〈â† â〉 ∝ |g| [with g = G/(u − iη)]. In the bottom
panel in Fig. 8 we plot, for different values of |g|, the
function χ (τ ), where we have defined χ = 〈â† â〉 /|g| and τ =
sgn[�]|c|/|g|. Once again, the behavior becomes universal
for |g| ≫ 1, with a sharp transition at positive detuning. The
critical-exponent analysis of the derivative is compatible with
max[∂χ/∂τ ] ∝ |g| and |τmax − τc| ∝ 1/|g| for τc ∼ 2.62. The
divergent behavior of the derivative in the thermodynamic
limit signals the first-order nature of this phase transition. The
latter has the same character as the one observed for G = 0
and both occur in the regime for which the semiclassical
solution predicts optical multistability. Remarkably, in the
case F = 0 we can identify another phase transition, taking
place for τ � −1. Although χ remains continuous in the
thermodynamic limit, its derivative, shown in the inset in Fig. 8
(bottom), acquires a discontinuity. This second-order phase
transition has no counterpart in the driven-dissipative Kerr
model without the two-photon processes. It takes place around
the semiclassical bifurcation point, i.e., when the Wigner
function acquires a bimodal character.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have investigated the paradigmatic
model of a driven-dissipative nonlinear resonator subject to
both one- and two-photon processes. We have shown that,
remarkably, the steady state of such system can be analytically
obtained through the complex P -representation of its density
matrix. The exact solution, benchmarked against numerical
techniques, stands as a powerful tool to investigate the physics
of this general model.

We have discussed the limitations of the semiclassical
approach in the high-density regime by comparing its pre-
diction to the analytic results. In this context, we pointed
out the emergence of multimodal Wigner functions, whose
structure cannot be fully determined semiclassically. We have
also shown that the multimodal character of W (z) can be
controlled by external parameters, such as the relative phase
of the one- and two-photon pumps. Furthermore, the exact
solution allowed us to explore the physics of a first-order
dissipative phase transition in the regime where the semi-
classical approach predicts optical multistability. Moreover,
in the two-photon driven Kerr model (i.e., for F = 0) we also
revealed a second-order phase transition. The latter has no
counterpart in the driven-dissipative Kerr model with G = 0.

Both theoretical and experimental perspectives of the
present work are numerous. The one- and two-photon
driven-dissipative resonator is already realizable with present
techniques [14]. The exact solution allows us to predict
how the external experimental parameters affect the steady
state. Hence, one can generate and manipulate precisely
coherent-like states or superpositions of them, which is of
great interest towards quantum computation [26–30]. The
exact results of this work, combined with mean-field [18,19]
and renormalization techniques [45,46], pave the way to the

study of exotic many-body phases of light in networks of
nonlinear resonators. Indeed, the flourishing field of reservoir
and coupling engineering in circuit QED makes it possible to
envision a plethora of combinations between one- and two-
photon driving, dissipation, and hopping mechanisms [20,21].
Moreover, effective two-photon processes can arise in the
momentum-space Hamiltonian of systems that do not include
two-photon mechanisms in real space. For example, this is
the case for a single-cavity polarization-dependent cross-Kerr
model [47,48] and for the driven-dissipative Bose-Hubbard
model [1,22,49,50].
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APPENDIX A: DETAILED DERIVATION OF THE
STEADY-STATE SOLUTION

In this appendix we provide details about the analytic solu-
tion for the one- and two-photon driven-dissipative resonator,
whose master equation for the density matrix ρ̂ is (6).

1. From the master to the Fokker-Planck equation

As stated in the text, the problem is tackled by writing
ρ̂ in terms of the complex P -representation, (7). Although
different choices for the P -representation are possible [35],
the complex one is the best candidate to find an exact solution
for the considered class of driven-dissipative problems [15].
The advantage of this approach is that the master equation
for ρ̂ can be translated into a partial differential equation
for the function P (α,β) [6,35]. Indeed, the action of the
annihilation and creation operators on the projector |α〉 〈β∗|
establishes a term-by-term conversion between elements of
the master equation and differential operators. As an example,
consider âρ̂: from Eq. (7) one sees that the action of â gives a
multiplication of the integrand by α. Similarly, we can get all
the following translation rules:

âρ̂ ↔ α P (α,β), (A1a)

â†ρ̂ ↔ (β − ∂α)P (α,β), (A1b)

ρ̂â ↔ (α − ∂β)P (α,β), (A1c)

ρ̂â† ↔ β P (α,β). (A1d)

Exploiting (7) and (A1), matching the terms inside the
integrals, one gets that the function P (α,β) must satisfy the
Fokker-Planck-like equation

i ∂tP =
∑
i=α,β

∂i

⎡
⎣−AiP + 1

2

∑
j=α,β

∂j (DijP )

⎤
⎦, (A2)

where Ai indicates the components of the drift vector

�A =
(−�̃α + Ũ ∗α2β + F + Gβ

�̃∗β − Ũαβ2 − F ∗ − G∗α

)
, (A3)

and Dij is a matrix element of the diffusion tensor

D =
(

Ũ ∗α2 + G 0
0 −Ũβ2 − G∗

)
. (A4)
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In Eqs. (A3) and (A4), we have introduced the complex
detuning �̃ = � + iγ /2 and the complex interaction energy
Ũ = U + iη.

Being interested in the steady-state density matrix, we seek
the steady-state solution of the Fokker-Planck equation, (A2),
i.e., we look for the function P satisfying ∂tP = 0. Solving
the resulting differential equation is generally a hard task. One
can simplify the problem by requiring that every term of the
sum vanishes:

AiP − 1

2

∑
j=α,β

∂j (DijP ) = 0, i = α,β. (A5)

After some straightforward algebraic manipulation, Eq. (A5)
can be cast as

2Ai −
∑

j=α,β

(∂j Dij ) =
∑

j=α,β

Dij ∂j ln(P ), i = α,β, (A6)

which, if the matrix D is invertible, is solved by

∂j ln(P ) =
∑
i=α,β

(D−1)ji

⎡
⎣2Ai −

∑
k=α,β

(∂k Dik)

⎤
⎦ (A7)

for j = α,β. Hence, we can write P = exp(−φ) and treat φ

as a scalar potential in the complex variables α and β. Such a
potential defines a generalized force �� = −�∇φ of components

�j = −∂j φ =
∑
i=α,β

(D−1)ji

⎡
⎣2Ai −

∑
k=α,β

(∂k Dik)

⎤
⎦. (A8)

For the function φ to be a well-behaved potential, one must
require that the crossed derivatives of the force components
(A8) are the same, that is,

∂i�j = ∂j�i. (A9)

The latter are known as the potential conditions. They also
ensure that the integral of the coupled differential equations
∂j φ = −�j (j = α,β) is independent of the integration path.
Hence, it is possible to obtain φ as

φ(α,β) = φ(α0,β0) −
∫

�

��(α′,β ′) · d�s(α′,β ′), (A10)

where d�s(α′,β ′) is an infinitesimal displacement element along
the path � going from the arbitrary reference point {α0,β0} to
{α,β}.

Let us now consider our specific case. Starting from the
definitions of �A and D given in Eqs. (A3) and (A4), we find
the force

�� = 2

⎛
⎝ F+Gβ−(�̃+Ũ∗)α+Ũ∗α2β

G+Ũ∗α2

F ∗+G∗α−(�̃∗+Ũ )β+Ũβ2α

G∗+Ũβ2

⎞
⎠, (A11)

which fulfills the potential conditions, (A9).
To get the corresponding potential, we use Eq. (A10) for

the path � := {0,0} → {α,0} → {α,β}, which formally gives

φ(α,β) = φ(0,0) −
∫ {α,0}

{0,0}
�α(α′,0) dα′

−
∫ {α,β}

{α,0}
�β(α,β ′) dβ ′. (A12)

Performing the integration and discarding irrelevant constant
terms, we get

φ(α,β) = ln[(α2 + g)1+c(β2 + g∗)1+c∗
] − 2αβ

+ 2f√
g

arctan

(√
g

α

)
+ 2f ∗

√
g∗ arctan

(√
g∗

β

)
,

(A13)

where we have introduced the dimensionless quantities c =
�̃/Ũ ∗, f = F/Ũ ∗, and g = G/Ũ ∗. It follows immediately
that the P -representation of the density matrix for the one-
and two-photon driven-dissipative resonator is the one given in
Eq. (9). As a final check, one can easily verify that the P (α,β)
given in Eq. (9) solves the Fokker-Planck-like equation, (A2),
for the steady-state regime.

APPENDIX B: ANALYTIC INTEGRATION OF THE F
FUNCTIONS

In this appendix we detail the analytic integration of the Fm

functions defined in Eq. (12) and in terms of which we express
the analytic steady-state solutions presented in Sec. III. Let us
start by using the identity 2 i arctan(z) = ln(1 + iz) − ln(1 −
iz) in Eq. (12) to write

Fm(f,g,c) =
∫
C
dα αm

(α + i
√

g)ϕ−(1+c)

(α − i
√

g)ϕ+(1+c)
, (B1)

where we have also introduced ϕ = if/
√

g. One can now
perform a change of variable, keeping in mind that C must be
a closed path encircling all the singularities of the integrand.
Hence, we chose α = i

√
g(1 − 2ξ ), which gives

Fm(f,g,c) = (i
√

g)m

(−1)ϕ+c (2i
√

g)1+2c

×
∫
C
dξ ξ−ϕ−c−1 (1 − ξ )ϕ−c−1 (1 − 2ξ )m. (B2)

We are left with a complex-plane integral of the form

I(η; c1,c2) =
∫
C
dξ ξc1−1(1 − ξ )c2−1(1 − η ξ )m

=
m∑

k=0

(−η)k
(

m

k

) ∫
C
dξ ξc1+k+1(1 − ξ )c2−1. (B3)

The path C must encircle both the poles at ξ = 0 and ξ = 1.
Furthermore, for C to be properly closed one must take into
account the presence of two branch cuts going from each pole
to |ξ | → ∞. A convenient choice is the Pochhammer contour
[51], which is sketched in Fig. 9. This path correctly encircles
the poles and crosses the branch cuts an equal number of times
in one sense and in the opposite one (a property which does
not depend on the cuts’ orientation). Hence, the path is closed
since it begins and ends on the same Riemann sheet. After
integration along the Pochhammer path, one gets

I(η; α,β) = (1 − e2πic1 )(1 − e2πic2 )

× �(c1) �(c2)

�(c1 + c2)
2F1(−m,c1; c1 + c2; η), (B4)
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C
Re(ξ)

Im(ξ)

FIG. 9. Representation of the Pochhammer path on the complex
plane {Re(ξ ),Im(ξ )}. The blue and red circles represent the poles
of the integrand in Eq. (B3), located at ξ = 0,1, together with the
corresponding branch cuts (from each pole towards +∞ on the real
axis). The Pochhammer contour C crosses each of the cuts an equal
number of times in one direction and in the opposite, hence, for
any starting point, it begins and ends on the same Riemann sheet.
The change in the path color emphasizes the passage to a different
Riemann surface.

2F1 being the Gauss hypergeometric function

2F1(−m,c1; c1 + c2; η)

=
m∑

k=0

(−η)k
(

m

k

)
�(k + c1) �(c1 + c2)

�(k + c1 + c2) �(c1)
. (B5)

Finally, we obtain Eq. (13), where all the m-independent
prefactors have been dropped. Indeed, in the calculation of
all physical quantities (cf. Sec. III A) those terms depending
only on the parameters f , g, and c, are canceled by the
normalization coefficient N .

APPENDIX C: SERIES CONVERGENCE AND CLOSED
FORMS

The analytic results for the one- and two-photon driven-
dissipative nonlinear resonator given in Eqs. (11), (15), (16),
and (20) contain infinite summations which, in the general case
F,G 
= 0, must be estimated numerically. In this appendix we
take as an example the photon number 〈â† â〉 to show that
such series converge rapidly over a wide range of parameters.
Moreover, we give the exact closed forms of 〈â† i âj 〉, ρpq , and
W (z) for the case F = 0.

1. Convergence of the series in the general case

To investigate the convergence of the series defined by
Eq. (15), let us consider the mean photon number 〈â†â〉.
In this expression there are two sums to evaluate: the one
explicitly expressed in Eq. (15) and a second one appearing in
the normalization N [Eq. (11)]. The convergence of 〈â†â〉 can
be examined in terms of a single parameter, M, the cutoff of
both sums. Hence, we introduce

〈â†â〉M =
∑M

m=0
2m

m! |Fm+1(f,g,c)|2∑M
m=0

2m

m! |Fm(f,g,c)|2 . (C1)

In the present work, we controlled the convergence by verify-
ing that the addition of two further elements does not affect

M

â†â M

FIG. 10. Numerical cutoff M̃ as a function of the corresponding
mean photon density 〈â† â〉M̃ [Eq. (C1)] for different system
parameters. The plot was obtained setting the convergence criterion
as explained in the text. Each point in the diagram corresponds to
γ = η = 0.1U , while we varied �/U ∈ [−30,30] and F/U,G/U ∈
[0,60]

the result beyond the sixth relevant digit. In other words, we
chose the smallest M̃ ensuring that | 〈â†â〉M̃ − 〈â†â〉M̃−2 | <

10−6 〈â†â〉M̃. In Fig. 10, we show the required cutoff M̃ as
a function of the corresponding value of the mean photon
number for different system parameters. It turns out that M̃
grows roughly linearly with 〈â† â〉M̃. We verified that similar
convergence criteria efficiently apply to the other quantities
defined by Eqs. (15), (16), and (20) over a wide range of
system parameters. In general, the numerical evaluation of the
exact solution can be performed with arbitrary precision. Such
a computation is faster and much less memory demanding than
numerical approaches, in particular, for high-density regimes.

2. Closed forms for F = 0

The general model described by the master equation, (6),
can be specialized to many cases. Among them, a case of
particular interest is that in which one-photon pumping is
absent, that is, when F = 0 [14,25,36,37]. Remarkably, in
this case one finds that

F2m+1(0,g,c) = 0, (C2a)

F2m(0,g,c) = (i
√

g)2m
2F̃ 1 (−2m, − c; −2c; 2)

= (−g)m
1√
π

�
(

1
2 − c

)
�(−2c)

�
(

1
2 + m

)
�

(
1
2 + m − c

)
≡ (−g)m

�
(

1
2 + m

)
�

(
1
2 + m − c

) , (C2b)

where, in the last identity, we have dropped further m-
independent factors which would be naturally absorbed in the
normalization.
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Making use of Eqs. (C2), we derived the following closed forms:

〈â† (2i)â(2j )〉 = �
(

1
2 + j

)
�

(
1
2 + i

)
√

π
(−g)j (−g∗)i

2F̃ 3
(

1
2 + j, 1

2 + i; 1
2 , 1

2 + j − c, 1
2 + i − c∗; |g|2)

1F̃ 2
(

1
2 ; 1

2 − c, 1
2 − c∗; |g|2) , (C3a)

〈â† (2i+1)â(2j+1)〉 = �
(

3
2 + j

)
�

(
3
2 + i

)
√

π
(−g)j+1(−g∗)i+1 2F̃ 3

(
3
2 + j, 3

2 + i; 3
2 , 3

2 + j − c, 3
2 + i − c∗; |g|2)

1F̃ 2
(

1
2 ; 1

2 − c, 1
2 − c∗; |g|2) , (C3b)

〈â† (2i)â(2j+1)〉 = 〈â† (2i+1)â(2j )〉 = 0, (C3c)

〈2p|ρ̂|2q〉 = �
(

1
2 + p

)
�

(
1
2 + q

)
√

π (2p)!(2q)!
(−g)p(−g∗)q

2F̃ 3
(

1
2 + p, 1

2 + q; 1
2 , 1

2 + p − c, 1
2 + q − c∗;

∣∣ g

2

∣∣2)
1F̃ 2

(
1
2 ; 1

2 − c, 1
2 − c∗; |g|2) , (C4a)

〈2p + 1|ρ̂|2q + 1〉 = �
(

3
2 + p

)
�

(
3
2 + q

)
2
√

π (2p + 1)!(2q + 1)!
(−g)p+1(−g∗)q+1 2F̃ 3

(
3
2 + p, 3

2 + q; 3
2 , 3

2 + p − c, 3
2 + q − c∗;

∣∣ g

2

∣∣2)
1F̃ 2

(
1
2 ; 1

2 − c, 1
2 − c∗; |g|2) , (C4b)

〈2p|ρ̂|2q + 1〉 = 〈2p + 1|ρ̂|2q〉 = 0, (C4c)

W (z) = 2

π

∣∣
0F1

(
1
2 − c; −g(z∗)2

)∣∣2

1F2
(

1
2 ; 1

2 − c, 1
2 − c∗; |g|2) e−2|z|2 . (C5)

In the equations above, pFq denotes a generalized hypergeometric function [39], defined by the analytic extension of

pFq(a1, . . . ,ap; b1, . . . ,bp; z) =
∞∑

k=0

∏p

n=1 (an)k∏q

m=1 (bm)k

zk

k!
, (C6)

with (a)k = �(a + k)/�(a). The regularized hypergeometric functions pF̃ q are defined as

pF̃ q(a1, . . . ,ap; b1, . . . ,bp; z) = pFq(a1, . . . ,ap; b1, . . . ,bp; z)∏q

m=1 �(bm)
. (C7)

The closed forms presented above are computationally much more efficient than the corresponding implicit forms, (15), (16),
and (20).
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Deveaud-Plédran, Nat. Mater. 9, 655 (2010).
[48] N. Takemura, S. Trebaol, M. Wouters, M. T. Portella-Oberli, and

B. Deveaud, Nat. Phys. 10, 500 (2014).
[49] D. Gerace, H. E. Tureci, A. Imamoglu, V. Giovannetti, and R.

Fazio, Nat. Phys. 5, 281 (2009).
[50] I. Carusotto, D. Gerace, H. E. Tureci, S. De Liberato, C. Ciuti,
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