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In this article we present a numerical study of the collective dynamics in a population of coupled semiconductor
lasers with a saturable absorber, operating in the excitable regime under the action of additive noise. We
demonstrate that temporal and intensity synchronization takes place in a broad region of the parameter space and
for various array sizes. The synchronization is robust and occurs even for a set of nonidentical coupled lasers.
The cooperative nature of the system results in a self-organization process which enhances the coherence of the
single element of the population too and can have broad impact for detection purposes, for building all-optical
simulators of neural networks and in the field of photonics-based computation.
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I. INTRODUCTION

Excitability is a fascinating phenomenon occurring in many
nonlinear systems but mostly studied in biology [1], especially
in relation to brain dynamics since it lies at the heart of
the neuronal cells spiking activity [2]. It occurs when a
system originally at an equilibrium stationary state is triggered
by a perturbation, the magnitude of which exceeds a given
threshold, and subsequently undergoes a big excursion in
phase space associated with the generation of a spike in the
time trace of one or more of its dynamical variables. After
a characteristic refractory time the system comes back to the
initial state and is ready to be excited again. In nonlinear
optics excitability has been observed experimentally in many
different systems such as active photonic crystals [3], lasers
with feedback [4], semiconductor amplifiers [5], CO, [6],
and semiconductor lasers with a saturable absorber [7].
Semiconductor lasers are versatile coherent light sources
with many well-established technological applications. In the
presence of an intracavity saturable absorber, they support the
existence of cavity solitons [8] being a promising tool towards
an all optical information processing and storage. They exhibit
excitability when sufficiently big perturbations to the (close to
threshold) nonlasing solution induce the generation of huge
light pulses [9]. The excitable nature of such systems is due
to the peculiar structure of their phase space which has the off
solution attractor located close to a saddle-point bifurcation
into a limit cycle. When strong enough perturbations make the
close to threshold laser reach the saddle-point bifurcation, a big
and well-defined excursion of the emitted intensity takes place:
the laser is switched on and produces a high intensity pulse.
The stimulated process depletes the gain and the laser comes
back to the original off state. The recovery time of the depleted
gain sets the characteristic scale of the refractory temporal
interval which separates the generation of two consecutive
pulses in the presence of persistent perturbations (noise). It
has been demonstrated that a laser with a saturable absorber in
the excitable regime exhibits coherence resonance, i.e., there
exists a specific value of the noise amplitude which makes the
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system response the most coherent and regular; in particular it
minimizes the jitter in the pulse train [9]. Among the striking
features of the semiconductor laser with a saturable absorber in
the excitable regime, we mention the existence of temporally
excitable spatially localized cavity solitons, the recently
theoretically demonstrated possibility of generating pulsating
excitable solitons, and the potentiality for pulse reshaping, due
to the fact that the output pulses features are independent of the
intensity and duration of the triggering perturbations [10,11].
Even more interestingly some studies have demonstrated the
possibility of exploiting excitability for coincidence detection
and for creating optical switches [12] but also to achieve
spatiotemporal pattern recognition [13,14]. Synchronization
of coupled linear and nonlinear oscillators is a universal and
ubiquitous phenomenon which occurs in a wealth of physical,
chemical, and biological systems ranging from simple coupled
pendula to nonlinear chemical reactions, including coupled
lasers, neurons populations, cardiac dynamics, electrical cir-
cuits, and fireflies flocks [15,16]. A broad literature can be
found on the experimental and analytical study of coupled
lasers, ranging from injection-locking [17], to lasers with
different frequencies [18], and to chaotic synchronization [19],
as well as on synchronization of coupled excitable systems
of different nature, for instance neuronal models [2,20,21].
Nevertheless a full characterization of the collective and
self-organized dynamics of coupled excitable lasers under the
action of random noisy perturbations, to the best of our knowl-
edge, is still missing. Only some particular cases have been
studied such as the two coupled semiconductor lasers sharing
the same saturable absorber [22,23] and some configurations
with very specific connectivity, low number of elements, and
well-defined pulselike external perturbation [13,14].

In this article we present the first study of the collective
dynamics of an array of coupled semiconductor lasers with
a saturable absorber, described by the Yamada model [9,24],
under the action of independent additive noise perturbations.
We have characterized the dynamical properties of the array
as a function of various parameters such as the intensity of
the noise, the strength of the coupling, and the number of
coupled oscillators. Our study demonstrates that the system
self-organizes in such a way that synchronization of the pulses
generated by different lasers, both in intensity and in time,
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takes place and reaches a maximum value in some specific
configurations. Furthermore the cooperative nature of the
interacting lasers results in a beautiful example of array-
enhanced coherence resonance [21,25]. The performances
of the single laser are improved; in particular its dynamics
can result in a more stable and predictable output, which
minimizes the jitter and the pulses’ peak intensity fluctuations.
Additionally the array-enhanced coherence resonance has the
effect of increasing the synchronization inducing an effect that
we define as array-enhanced synchronization.

II. THE MODEL

Initially we have considered a one-dimensional array of
n coupled identical semiconductor lasers with a saturable
absorber. The ith laser’s dimensionless dynamical variables,
complex electric-field amplitude F;, inversion G;, and absorp-
tion Q; obey the following set of coupled nonlinear equations
(the dot denotes the temporal derivative):

. 1 K
Fi = 3Gy = Qi = DF, 40 + — [Fip1 + Fry = 2F)

Gi = vi(Ai — G; — I,Gy), (1)
Qi = yi(Bi — Qi — a; O: 1),

where I; = |F;|? is the field intensity, A; is the bias current
of the gain, g; is the differential absorption relative to the
differential gain, B; is the background absorption, while y; is
the absorber and gain decay rate that, being much smaller than
the unit, gives to the field amplitudes F; the role of the slow
variables of the system. o; is a delta-correlated Gaussian noise
term with (0;(#1)0;(t2)) = ~/2D8(t; — 12)8;; which provides
the necessary perturbations to the close to threshold off solution
in order to induce the excitable behavior. The phenomeno-
logical coupling term K describes the exchange of radiation
between first-neighbor lasers scaled to the intensity damping
rate of the single laser (see [26] for the uncoupled model’s
normalization details). The interaction can be physically
implemented using semitransparent mirrors with the desired
transmittance, which couple light from one laser cavity to the
adjacent ones. Periodic conditions at the array boundaries have
been assumed. During all the study the value of K has been
chosen to be constant along the whole array (this assumption
allows us to consider it as real valued without loss of general-
ity). We notice that the presence of the coupling term in the field
equations introduces an effective discrete one-dimensional
Laplace operator which acts as a diffusion, spreading the local
electric-field intensity gradients which form in the laser array
due to the stochastic fluctuations induced by the noise. In
order to study the synchronization properties of the array we
have first considered various numbers of coupled identical
lasers described by the following set of parameters: A; = 6.5,
B; =5.8,a; = 1.8, and y; = 1073 Vi. With K = 0 the single
laser exhibits excitability for A; € [6.06,6.8] [9].

III. TEMPORAL DYNAMICS

In the presence of coupling (K # 0), we observe the
emergence of two interesting features (see Fig. 1). First of
all we observe a modification of the single laser’s dynamics:
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FIG. 1. (a) A time trace of the intensity of five uncoupled lasers,
different colors (gray scales or line styles) corresponding to different
lasers, obtained for D = 0.015 and K = 0. (b) A simulation done
with the same parameters as in (a) but with K = 0.2 shows a clear
example of temporal synchronization. (¢) and (d) Zooms of the
regions indicated by a dashed-line box for the uncoupled (a) and
coupled (b) configuration, respectively. Both the abscissa and the
ordinate in all the plots are in dimensionless units.

the pulse train’s repetition rate decreases with respect to the
uncoupled situation. This fact can be explained considering
that the coupling acts in a diffusive fashion, redistributing
the energy of the strongest noisy spikes forming in a given
laser to its neighbors. Since excitability requires a particularly
high perturbation in order to be triggered, if the noise is
not too strong, the presence of coupling makes the crossing
of the threshold less likely, with a consequent reduction of
the repetition rate of the pulse train. The second feature
is the manifestation of temporal synchronization, as it can
be clearly qualitatively observed from the intensity temporal
series depicted in Fig. 1. To investigate in a quantitative way the
synchronization properties of the lasers, we have numerically
simulated the system’s dynamics for a total time 77 = 100 000
and repeated the simulation for a set of pairs (K, D) chosen,
respectively, in the interval [0,2] and [0.001,0.35]. The choice
of weak-coupling limit is motivated by the fact that if K is too
large Eqgs. (1) lose their validity because the single lasers cannot
be any longer regarded as independent. This procedure allowed
us to obtain a map of the interesting physical observables in the
(K, D) plane. In order to take into account the stochasticity of
the system, for each quantity of interest a map obtained from
an average of ten independent realizations has been plotted.
The white regions in all the following plots in the (K,D)
plane correspond to situations where less than ten pulses were
observed.

IV. ARRAY-ENHANCED COHERENCE RESONANCE

Before providing a characterization of the synchronization
of the coupled lasers spiking activity, we give a description
of the beneficial effects that the laser array has on the
behavior of the single laser, in terms of pulse train jitter
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FIG. 2. The normalized jitter J, panels (a)—(d), and intensity peak
standard deviation o, panels (e)—(h), are plotted as functions of
coupling strength K and noise intensity D in left and right columns,
respectively, for values of n indicated on the figures.

reduction and of the increased uniformity of the pulses
peak intensity. To this purpose we plot in the (K, D) plane
the single laser jitter defined as J = or/(T), where (T)
is the average temporal interval between two consecutive
pulses and o7 is the corresponding standard deviation (see
Fig. 2). By increasing K, the high coherence region [i.e.,
the region of low jitter depicted in dark blue (dark gray) in
Figs. 2(a)-2(d)] along the D direction becomes broader and
broader till reaching a saturation regime where increments
of K do not lead to any further significative increase of the
region. This is particularly evident for n = 2 and 5. For larger
n, saturation is reached for higher coupling values but the
low jitter region is sensibly broader: due to the collective
dynamics of the whole system low jitter is achieved for a
bigger set of noise amplitudes D. We are in the presence of a
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clear example of array-enhanced coherence resonance [21,25].
The array-enhanced coherence resonance exhibits as well a
saturation process with respect to increasing n; indeed the
case of n = 20 shows only minor differences from the case
of n = 10. A measure of the regularity of the single laser
intensity emission can be provided by the standard deviation
of the pulse intensity distribution o; normalized to the mean
pulse intensity. From Fig. 2 we can conclude that when the
single laser emission is coherent in time then it is coherent
in intensity too. Concerning the most extreme regimes in the
excitability region we can comment that for low noise values
the lasers do not emit high intensity pulses (white regions
on the left in Fig. 2). For high values of D—yellow (light
gray) regions of Figs. 2(a)-2(d)—the intensity traces exhibit
relatively strong fluctuations between the giant pulses and no
“clean” refractory time is present anymore. Nevertheless, high
intensity pulses with large signal-to-noise ratio induced by the
excitable nature of the lasers are still present. For very intense
noise [white region on the right in Figs. 2(a)-2(h)] no clear
excitable pulses can be observed.

V. SYNCHRONIZATION OF IDENTICAL LASERS

To characterize the temporal synchronization properties
we used the method described in [21] which associates to
each element of the array a phase value at each instant of
the temporal evolution. The phase of the ith array element is
defined as [27]

t— 1
¢i(t) = ———— + 2kn (2
Tk+1 — Tk
where t; is the time of the kth firing event, i.e., the position
in time of the kth pulse. In order to describe the degree of
synchronization the following quantity is considered:

2
s; = sin (—¢i —2¢,-+1> , 3)

which after the spatiotemporal average yields the S indicator
that provides a measure of the synchronization degree:

1 T
S=T1er;ﬁ/0 (;;si)dt. )

The maximum synchronization is described by S =0
while in complete absence of synchronization § = 0.5. In
Figs. 3(a)-3(d) we have depicted log,,(S) as a function of
coupling strength and noise amplitude for different values
of n. Synchronization is a multifaceted concept and the
temporal aspect constitutes only one side of the phenomenon.
Synchronization in the intensity of the pulses emitted by
different lasers has been characterized by computing the linear
correlation coefficient p; over the peak intensities of twin
pulses in the (K-D) plane. p; has been calculated for the
ith laser by considering, for each of its generated pulses, the
linear correlation coefficient between the intensity of the pulse
and the intensity of the closest (in time) pulse emitted by the
(i + 1)th laser, then averaging over all the pulses emitted by
the ith laser and finally over all the lasers.

033839-3



A.M. PEREGO AND M. LAMPERTI

©)
.l
'

(f)
r

@

] (h)
0 0.2

_D:I _D:I
-15 -10 -5 0 02 04 06 0.8
FIG. 3. log,,(S) is plotted in the (K-D) plane for various values
of n, panels (a)—(d). The minimal synchronization theoretically

achievable corresponds to log,,(S) &~ —0.69. The intensity linear
correlation coefficient p; is depicted, panels (e)—(h).

An inspection of Fig. 3 reveals a striking feature. Indeed,
analogously to the case of array-enhanced coherence reso-
nance, strong temporal synchronization [that we can phe-
nomenologically identify as starting from the green (medium
gray) regions log,,(S) &~ —7] takes place for a larger interval
of values of D if the number of lasers is increased. A
sufficiently strong coupling is needed if the arrays are very big.
We define this phenomenon array-enhanced synchronization.
Concerning the intensity synchronization p; exhibits an almost
homogeneous plateau for all the considered cases showing a
good intensity synchronization in the parameters region where
temporal synchronization takes place. It is interesting to notice
how the synchronization in pulse intensity is maximal in the
center of the excitable region, while the regularity in the pulse
intensity requires low values of noise to be optimal [minimum
of o; in Figs. 2(e)-2(h)].

PHYSICAL REVIEW A 94, 033839 (2016)

(e)

U]

(9)

(d) : f (h)

0.2
D D
B = S

-14-12-10-8 -6 -4 -2 0 0.2 04 0.6 0.8

o

FIG. 4. The equivalent of Fig. 3 but for a population of noniden-
tical lasers. The large inhomogeneity among different lasers implies,
as intuitively expected, the necessity of a stronger coupling in order
to achieve the same degree of synchronization compared to the case
of identical lasers.

VI. SYNCHRONIZATION OF NONIDENTICAL LASERS

In order to test the robustness of synchronization we have
performed a characterization using the same parameters as
in the case of identical lasers, but with the pump current
of the ith laser, A;, being a uniformly distributed random
number generated in the interval [6.3,6.7]. Figure 4 shows
that, qualitatively, the results of identical lasers are recovered
for nonidentical lasers too, but with an important difference: a
larger value of the coupling strength is necessary to achieve a
good degree of synchronization, and for increasing population
sizes the synchronization region is strongly reduced compared
to the case of identical lasers.

Understanding the properties of the synchronization in a
population of different lasers can be relevant for experimen-
tal studies of the phenomenon because of the unavoidable
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fluctuations of real-world systems where a certain degree of
inhomogeneity cannot be avoided or to explore more complex
scenarios. The improvement of the single laser performances,
such as jitter reduction and more regular intensity emission, has
been achieved for an array of nonidentical elements too, and as
it happens for synchronization the inhomogeneity introduces
a less regular behavior.

VII. CONCLUSIONS

In conclusion, we have demonstrated array-enhanced co-
herence resonance and synchronization in a one-dimensional
array of coupled excitable semiconductor lasers with a sat-
urable absorber, described by the Yamada model. The study
has been conducted using realistic parameters and offers
the possibility of an experimental verification which could
be realized with currently available technological facilities.
Other interesting properties could be revealed by considering
networks with a higher dimensionality, more elaborated
connectivities between the elements, and delayed coupling.
We believe that our study of the collective dynamics in a
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population of excitable lasers can have impact on future
technology: arrays of coupled excitable lasers could become
an important tool for detection and measurement purposes; in
particular we have demonstrated that the features of collective
excitability could be tailored by varying the number of
coupled elements and their parameters. Populations of coupled
excitable lasers are good candidates to constitute the corner
stone in the construction of integrated all-optical simulators
of neural networks due to their fast dynamics and possible
scalability, once synaptic plasticity will be included [28-30];
furthermore they could become the building blocks towards
the development of ultrafast self-organized computational
networks [31].
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