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We investigate superradiance and subradiance of indistinguishable atoms with quantized motional states,
starting with an initial total state that factorizes over the internal and external degrees of freedom of the atoms.
Due to the permutational symmetry of the motional state, the cooperative spontaneous emission, governed by a
recently derived master equation [F. Damanet et al., Phys. Rev. A 93, 022124 (2016)], depends only on two decay
rates γ and γ0 and a single parameter �dd describing the dipole-dipole shifts. We solve the dynamics exactly for
N = 2 atoms, numerically for up to 30 atoms, and obtain the large-N limit by a mean-field approach. We find
that there is a critical difference γ0 − γ that depends on N beyond which superradiance is lost. We show that
exact nontrivial dark states (i.e., states other than the ground state with vanishing spontaneous emission) only
exist for γ = γ0 and that those states (dark when γ = γ0) are subradiant when γ < γ0.
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I. INTRODUCTION

Cooperative spontaneous emission of light from excited
atoms, which results from their common coupling with the
surrounding electromagnetic field, is a central field of research
in quantum optics. In a seminal paper [1], Dicke showed that
spontaneous emission can be strongly enhanced when atoms
are close to each other in comparison to the wavelength of the
emitted radiation. This phenomenon, called superradiance, and
its counterpart corresponding to reduced spontaneous emis-
sion, called subradiance, were first considered for distinguish-
able atoms at fixed positions. Depending on the geometrical
arrangement of the atoms in space, deeper analyses showed
later that virtual photon exchanges between atoms were likely
to destroy superradiance [2–4]. Due to the complexity involved
by the exact treatment of these dipole-dipole interactions,
analytical characterizations of superradiance have been found
only for particular geometries or for a small number of
atoms [4–9]. Yet cooperative emission processes are not re-
stricted to small atomic samples. They can also be observed in
dilute atomic systems for which the near-field contributions of
the dipole-dipole interactions are insignificant. Recent studies
concern single-photon superradiance [10–13], subradiance in
cold atomic gases [14,15], collective Lamb shift [16,17], and
localization of light [18,19]. Moreover, super- and subradiance
can be explained using a quantum multipath interference
approach and can be simulated from the measurement of
higher-order intensity correlation functions on atoms separated
by a distance larger than the emission wavelength [20,21].

The atomic motion can have a significant influence on the
spontaneous emission and scattering of light [22–27] and vice
versa (see, e.g., [28–34]). However, its role on cooperative
emission processes is not yet fully understood, especially in
large laser-driven atomic systems [35]. The interplay of atomic
motion and cooperative processes has been the subject of
recent experiments [36–40] and can lead to interesting effects
such as supercooling of atoms [41] or superradiant Rayleigh
scattering from a Bose-Einstein condensate (BEC) [42]. In
hot atomic samples, the motion can be treated classically
and leads to Doppler broadenings of the spectral lines. In

(ultra)cold atomic samples, the quantum nature of the motion
and the indistinguishability must be taken into account, as
they also lead to strong modifications of the dynamics. In this
paper we study super- and subradiance from indistinguishable
atoms, taking into account recoil, quantum fluctuations of
the atomic positions, and quantum statistics. To this end,
we solve a recently derived master equation describing the
cooperative spontaneous emission of light by N two-level
atoms in arbitrary quantum motional states [43].

Indistinguishability of atoms profoundly changes their
internal dynamics as compared to that of distinguishable
atoms. For distinguishable atoms with classical positions,
the solution of the master equation depends considerably on
the geometrical arrangement of the atoms in space. When
describing each atom as a two-level atom, the internal state of
the atoms thus evolves in the full Hilbert space of dimension
2N . The same general considerations can be made when
the atomic positions are treated quantum mechanically since,
despite changed rates and level shifts, the master equation [43]
then retains the same global form with the same Lindblad
operators. Hence, each configuration must be dealt with case
by case. However, for indistinguishable atoms, the global
state has to be invariant under exchange of the atoms. For
initial states that are separable between the internal degrees of
freedom and the motional degrees of freedom, both internal
and motional states must be invariant under permutation of
atoms. Furthermore, on the time scale of the spontaneous
emission in the optical domain, the motional state can be
considered frozen such that the permutational symmetry of
the motional state prevails throughout the entire emission
process. This leads to a permutationally invariant average
Lindblad-Kossakowski matrix of emission rates and permu-
tationally invariant dipole shifts, which limits the quantum
dynamics also of the internal degrees of freedom to the
permutation-invariant subspace of dimension O(N2) of the
global Hilbert space [44,45], thus greatly simplifying the
problem. However, the quantum fluctuations of the positions
of the atoms modify the cooperative effect of collective
emission, thus leading back from superradiance to individual
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spontaneous emission for large enough quantum uncertainty
in the positions.

The paper is organized as follows. In Sec. II we discuss the
general form of the master equation for the atomic internal
dynamics derived in [43] in the case of indistinguishable
atoms. In particular, we show that the master equation
preserves permutation invariance of the internal state. In
Sec. III we write the master equation in the coupled spin
basis as it is particularly suited for permutation-invariant states.
Finally, in Sec. IV we solve the master equation analytically
for N = 2 and numerically for up to N = 30 atoms in order
to study the impact of the quantization of the atomic motion
on super- and subradiance.

II. GENERAL FORM OF THE MASTER EQUATION
FOR INDISTINGUISHABLE ATOMS

A. Symmetry of the initial state

Let us consider N indistinguishable atoms in a mixture
ρA. Each wave function of the mixture has to be either
symmetric (bosons) or antisymmetric (fermions) under ex-
change of atoms. Let Pπ denote the permutation operator of a
permutation π defined through exchange of the atomic labels.
We have [see Eq. (A3)]

PπρAP
†
π ′ = (±1)pπ +pπ ′ ρA ∀π,π ′, (1)

where pπ is the parity of the permutation π (even or odd)
and (±1)pπ the phase factor picked up accordingly for bosons
(upper sign) or fermions (lower sign). Moreover, the Born
approximation performed in [43] assumes that the initial
atomic state is separable, i.e., ρA(0) = ρ in

A (0) ⊗ ρex
A , with ρex

A

the motional density operator at time t = 0. This implies
that both internal and external states are invariant under
permutation of atoms [see Eq. (A7)],

P in
π ρ in

A (0)P in†
π = ρ in

A (0) ∀π,

P ex
π ρex

A P ex†
π = ρex

A ∀π. (2)

B. Standard form

In the interaction picture, the master equation for the
reduced density matrix ρ in

A (t) describing the internal dynamics
of the system A composed of N indistinguishable atoms takes
the standard form [43]

dρ in
A (t)

dt
= L

[
ρ in

A (t)
] = − i

�

[
Hdd,ρ

in
A (t)

]+ D
[
ρ in

A (t)
]
, (3)

with the Liouvillian superoperator L[·] involving the dipole-
dipole Hamiltonian

Hdd = ��dd

N∑
i �=j

σ
(i)
+ σ

(j )
− , (4)

with �dd the dipole-dipole shifts, and the dissipator

D
[
ρ in

A

] = γ

N∑
i �=j

(
σ

(j )
− ρ in

A σ
(i)
+ − 1

2

{
σ

(i)
+ σ

(j )
− ,ρ in

A

})

+ γ0

N∑
i=1

(
σ

(i)
− ρ in

A σ
(i)
+ − 1

2

{
σ

(i)
+ σ

(i)
− ,ρ in

A

})
, (5)

with γ0 the single-atom spontaneous emission rate and γ the
cooperative (off-diagonal) decay rates. In Eqs. (4) and (5),
σ

(j )
+ = (|e〉〈g|)j and σ

(j )
− = (|g〉〈e|)j are the ladder operators

for atom j with |g〉 (|e〉) the lower (upper) atomic level of
energy −�ω0/2 (�ω0/2). Note that in Eq. (4) we do not
consider diagonal terms (i = j ) corresponding to the Lamb
shifts. They can be discarded by means of a renormalization
of the atomic frequency. The fact that all off-diagonal (i �= j )
decay rates are equal and all dipole-dipole shifts are equal
for any pairs of atoms is merely a consequence of the
indistinguishability of atoms (see Appendix B for a formal
derivation).

The master equation (3) is valid for arbitrary motional
quantum states and can be applied well-beyond the Lamb-
Dicke regime. All effects related to the quantization of the
atomic motion are encoded in the values taken by the dipole-
dipole shift �dd and the decay rate γ . We give their exact
expressions for arbitrary motional symmetric or antisymmetric
states in Appendix B [see Eqs. (B12) and (B13)]. They
depend not only on the average atomic positions (classical
atomic positions) but also on their quantum fluctuations and
correlations as described by the quantum motional (external)
state ρex

A of the atoms. In particular, their values can strongly
depend on the statistical nature (bosonic or fermionic) of the
atoms. In the next section, we give analytical expressions of γ

for BECs in different regimes.

C. Off-diagonal decay rates γ for Bose-Einstein condensates

We first consider the case of a noninteracting BEC confined
in an isotropic harmonic trap at zero temperature. In this
case, all atoms are in the same motional state φ(r) =
e−|r|2/4	2

/(
√

2π	)3/2, with 	 = √
�/2M
 the width of the

spatial density, M the atomic mass, and 
 the trap frequency.
The decay rate γ for this motional state follows from Eq. (B15)
with ρ1(r) = |φ(r)|2 and is given by

γ = γ0e
−η2

, (6)

with η = k0	 the Lamb-Dicke parameter and k0 the radiation
wave number. Since the size of a BEC typically lies in the range
10–103 μm [46], significant modifications of the decay rate γ

should be observable for internal transitions in the visible and
near-infrared domain.

We now consider the case of a BEC with strong repulsive
interactions at zero temperature, for which the spatial density
ρ1(r) is given in the Thomas-Fermi approximation by

ρ1(r) =
{

M
4π�2a

[μ − Vext(r)] for μ � Vext(r)

0 for μ < Vext(r),
(7)

where a is the scattering length, μ is the chemical potential, and
Vext(r) = M
2r2/2 is the harmonic trap potential. Inserting
Eq. (7) into Eq. (B15) yields after integration

γ = 225γ0
[3x cos x + (x2 − 3) sin x]2

x10
, (8)

where x = η 5
√

60Na/	, with N the number of atoms in the
BEC. Figure 1 shows Eq. (8) as a function of x. In particular,
when x → 0 (small recoil), γ tends to γ0.
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FIG. 1. Off-diagonal decay rate γ as a function of the dimen-
sionless variable x = η 5

√
60Na/	 for a BEC with strong repulsive

interactions in the Thomas-Fermi limit.

We finally study the transition from a thermal cloud to a
noninteracting BEC by considering a gas of trapped bosonic
atoms in thermal equilibrium at finite temperature T . The
spatial density of the gas is given by [47]

ρ1(r) = 1

N (2π	2)
3
2

∞∑
k=1

zk(
1 − e−2kβ�


) 3
2

e
− r2

2	2 tanh( kβ�


2 )
, (9)

where z = eβμ is the fugacity and β = 1/kBT , with kB the
Boltzmann constant. Inserting Eq. (9) into Eq. (B15) yields
after integration

γ = γ0

N2

[ ∞∑
k=1

zke3kβ�


(1 − ekβ�
)3
e− η2

2 coth( kβ�


2 )

]2

. (10)

For z → 0, Eq. (9) tends to a thermal cloud profile ρ1(r) =
e−(r/2R)2

/(2πR2)3/2 with R =
√

kBT /m
2 and we get

γ = γ0e
−k2

0R2
, (11)

where e−k2
0R2

is the Debye-Waller factor. Figure 2 shows
Eq. (10) as a function of η for β�
 = 1/10 and different values
of the fugacity. The curves γ (η) switch gradually from Eq. (11)
for z = 0 to Eq. (6) for z = 1 as the fugacity is increased, as
a consequence of the formation of a condensed phase (see the
inset of Fig. 2). For fixed Lamb-Dicke parameter and β�
, γ

increases monotonically with the fugacity. Hence, cooperative
effects will be more pronounced when all atoms are in the
condensed phase (a pure BEC).

D. Lindblad form

Before we discuss the Lindblad form of the master
equation (3), let us note that the dipole-dipole Hamiltonian (4)
can be rewritten in terms of collective spin operators only as

Hdd = ��dd
[
J+J− − 1

2 (N1 + 2Jz)
]
, (12)

where 1 is the identity operator acting on the internal atomic
states, J± =∑N

j=1 σ
(j )
± are the collective spin ladder operators,
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FIG. 2. Off-diagonal decay rate γ as a function of the Lamb-
Dicke parameter η for a gas of trapped bosonic atoms at thermal
equilibrium for β�
 = 1/10 and different values of the fugacity,
from z = 0 (left) to z = 1 (right). The inset shows spatial density
profiles for the same parameters.

and Jz = 1
2

∑N
j=1 σ

(j )
z with σ

(j )
z = (|e〉〈e| − |g〉〈g|)j . As for

the dissipator (5), it also involves individual spin operators
and can be rewritten as

D
[
ρ in

A

] = γ

(
J−ρ in

A J+ − 1

2

{
J+J−,ρ in

A

})

+ (γ0 − γ )

(
N∑

i=1

σ
(i)
− ρ in

A σ
(i)
+ − 1

4

{
N1 + 2Jz,ρ

in
A

})
.

(13)

The Lindblad form is obtained from the diagonalization of the
N × N matrix of decay rates

γ =

⎛
⎜⎜⎜⎜⎝

γ0 γ · · · γ

γ γ0 · · · γ

...
...

. . .
...

γ γ · · · γ0

⎞
⎟⎟⎟⎟⎠, (14)

with |γ | � γ0 [43]. Associated with each eigenvector with
nonzero eigenvalue 
	 is a Lindblad operator F	. Degenerate
eigenvalues give rise to several Lindblad operators. The
matrix (14) has eigenvalues


1 = γ0 + (N − 1)γ ≡ Nγ + �γ, (15a)


2 = γ0 − γ ≡ �γ, (15b)

with onefold and (N − 1)-fold degeneracy, respectively. For
the dynamics to be Markovian, the matrix γ has to be positive.
This implies that −γ0/(N − 1) � γ � γ0 and 0 � �γ �
γ0N/(N − 1). An eigenvector v1 with the largest eigenvalue

1 is the vector with all components equal to 1/

√
N .

The corresponding Lindblad operator is F1 = J−/
√

N . The
remaining eigenvectors with degenerate eigenvalue �γ span
the subspace CN−1 orthogonal to v1 and lead to Lindblad
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operators F	. The Lindblad form of the dissipator thus reads

D
[
ρ in

A

] = 
1

N

(
J−ρ in

A J+ − 1

2

{
J+J−,ρ in

A

})

+�γ

(
N∑

	=2

F	ρ
in
A F

†
	 − 1

2

{
F

†
	 F	,ρ

in
A

})
. (16)

When �γ = 0 (γ = γ0), the system evolves under the sole
action of the collective spin operator J−. As a consequence,
starting from an internal symmetric state, the dynamics is
restricted to the symmetric subspace of dimension N + 1. This
is the superradiant regime [4].

When �γ > 0 (γ < γ0), all the additional Lindblad op-
erators are involved in the dynamics. The superoperator
multiplying �γ in Eq. (16) can be rewritten as

N∑
i=1

σ
(i)
− ρ in

A σ
(i)
+ − J−ρ in

A J+
N

− 1

2

{
N1

2
+ Jz − J+J−

N
,ρ in

A

}
.

(17)

Hence, it cannot be expressed as a function of collective
spin operators only. However, it affects each atom identically.
Therefore, the Liouvillian superoperator does not distinguish
between atoms and commutes with Pπ for all permutations π ,
i.e.,

PπL[ρ]P †
π = L[PπρP †

π ] ∀ρ,π. (18)

It couples symmetric states with the broader class of
permutation-invariant states. These states, denoted hereafter
by ρPI , are states satisfying [48]

ρPI = PπρPIP
†
π ∀π. (19)

They act on a subspace whose dimension grows only as
N2 [44,45].

III. MASTER EQUATION IN THE COUPLED SPIN BASIS

From now on, we will denote the internal density matrix
ρ in

A by ρ. In this section we express the master equation (3)
in the coupled spin basis, which is particularly suited for the
study of permutation-invariant states.

A. Coupled spin basis

The Hilbert spaceH of an ensemble of N two-level systems
admits the Wedderburn decomposition [48–51]

H = (C2)⊗N �
N/2⊕

J=Jmin

HJ ⊗ KJ , (20)

with Jmin = 0 for even N and 1/2 for odd N . In Eq. (20),
HJ is the representation space of dimension 2J + 1 on which
the irreducible representations of the group SU(2) act. The
number of degenerate irreducible representations with total
angular momentum J is equal to the dimension

dJ
N = (2J + 1)N !

(N/2 − J )!(N/2 + J + 1)!
(21)

of the multiplicity space KJ on which the irreducible repre-
sentations of the symmetric group SN act. The total Hilbert

FIG. 3. Bratteli diagram representing the degeneracy structure
dJ

n × J of N coupled spins 1/2. The two colored paths leading to the
same angular momentum J = 0 correspond to two different values
of the quantum number kJ=0.

space H is therefore spanned by the states |J,M,kJ 〉 ≡
|J,M〉 ⊗ |kJ 〉, where |J,M〉 are basis states of the subspaces
HJ (J = Jmin, . . . ,N/2; M = −J, . . . ,J ) and |kJ 〉 are basis
states of the subspaces KJ (kJ = 1, . . . ,dJ

N ). The 2N basis
states {|J,M,kJ 〉} form the coupled spin basis [45]. By
construction, |J,M,kJ 〉 are spin-J states satisfying

J2|J,M,kJ 〉 = J (J + 1)|J,M,kJ 〉,
Jz|J,M,kJ 〉 = M|J,M,kJ 〉, (22)

J±|J,M,kJ 〉 =
√

(J ∓ M)(J ± M + 1)|J,M ± 1,kJ 〉,

with J2 = J 2
x + J 2

y + J 2
z and Jm = 1

2

∑N
j=1 σ

(j )
m (m = x,y,z).

The degenerate structure of the decomposition (20) is depicted
in the Bratteli diagram shown in Fig. 3. There are dJ

N ways to
obtain an angular momentum J from the coupling of N spins
1/2, each way being associated with a path in the Bratteli
diagram. The quantum number kJ = 1, . . . ,dJ

N enables one to
distinguish these different paths.

B. Permutation-invariant states in the coupled spin basis

According to the Schur-Weyl duality [52,53], any permu-
tation Pπ acts only on the multiplicity subspaces KJ [see
decomposition (20)] and thus has the form

Pπ =
N/2⊕

J=Jmin

1HJ
⊗ PJ (π ), (23)

where 1HJ
is the identity operator on HJ and PJ (π ) is

an irreducible representation of SN of dimension dJ
N . A

permutation-invariant mixed state ρPI commutes with Pπ for
any permutation π [see Eq. (19)] and thus admits in the coupled
spin basis a block-diagonal form [48]

ρPI =
N/2⊕

J=Jmin

ρJ ⊗ 1KJ
, (24)

033838-4



COOPERATIVE SPONTANEOUS EMISSION FROM . . . PHYSICAL REVIEW A 94, 033838 (2016)

where 1KJ
is the identity operator on KJ and

ρJ =
J∑

M,M ′=−J

ρ
M,M ′
J |J,M〉〈J,M ′|, (25)

with the density matrix elements

ρ
M,M ′
J ≡ 〈J,M,kJ |ρPI |J,M ′,kJ 〉 ∀kJ . (26)

The block-diagonal form illustrated in Fig. 4 shows that ρPI

does not contain any coherences between blocks of different
angular momenta J . For each J , there are dJ

N identical
subblocks. Since the matrix elements in these blocks do
not depend on the label kJ = 1, . . . ,dJ

N , the number of real
parameters needed to specify a permutation-invariant state ρPI

corresponds to the sum of the density matrix elements of all ρJ ,

N/2∑
J=Jmin

(2J + 1)2 = 1

6
(N + 1)(N + 2)(N + 3)=O(N3). (27)

This number is much smaller than the total number (22N − 1)
of a general N -atom density operator and highlights the
convenience of this representation.

Note that a symmetric mixed state ρS is just a
particular case of permutation-invariant state (24) with
ρ

M,M ′
J = 0 for J �= N/2. The nonvanishing matrix el-

ements of symmetric states all lie in the upper
block ρN/2 of dimension N + 1 depicted in Fig. 4.

FIG. 4. Block-diagonal form of the density matrix representing a
permutation-invariant state in the coupled spin basis. To each value
of the angular momentum J corresponds dJ

N subblocks of dimension
(2J + 1) × (2J + 1). The block with J = N/2 is unique and is
spanned by symmetric states.

C. Projection of the master equation in the coupled spin basis

Let us write the master equation (3) in terms of matrix
elements of the density operator in the coupled spin basis. By
inserting Eq. (24) into Eq. (3) and using Eqs. (12) and (22),
we get

[Hdd,ρ(t)] = ��dd

N/2∑
J=Jmin

J∑
M,M ′=−J

ρ
M,M ′
J (t)(M ′2 − M2)|J,M〉〈J,M ′| ⊗ 1KJ

, (28)

D[ρ(t)] =
N/2∑

J=Jmin

J∑
M,M ′=−J

ρ
M,M ′
J (t)

⎧⎨
⎩γA

J,M
− A

J,M ′
− |J,M − 1〉〈J,M ′ − 1| ⊗ 1KJ

− 1

2
[γ (AJ,M

− )2 + γ (AJ,M ′
− )2

+�γ (N + M + M ′)]|J,M〉〈J,M ′| ⊗ 1KJ
+ �γ

N∑
j=1

σ
(j )
−
[|J,M〉〈J,M ′| ⊗ 1KJ

]
σ

(j )
+

⎫⎬
⎭. (29)

The last term in Eq. (29) cannot be written solely in terms of collective spin operators but affects each atom identically. It has
been evaluated in [44] and reads

N∑
j=1

σ
(j )
−
[|J,M〉〈J,M ′| ⊗ 1KJ

]
σ

(j )
+

= 1

2J
A

J,M
− A

J,M ′
−

(
1 + αJ+1

N (2J + 1)

dJ
N (J + 1)

)
|J,M − 1〉〈J,M ′ − 1| ⊗ 1KJ

+ B
J,M
− B

J,M ′
− αJ

N

2JdJ−1
N

|J − 1,M − 1〉〈J − 1,M ′ − 1| ⊗ 1KJ−1

+D
J,M
− D

J,M ′
− αJ+1

N

2(J + 1)dJ+1
N

|J + 1,M − 1〉〈J + 1,M ′ − 1| ⊗ 1KJ+1 , (30)

where

A
J,M
± =

√
(J ∓ M)(J ± M + 1), (31)

B
J,M
− = −

√
(J + M)(J + M − 1), (32)

D
J,M
− =

√
(J − M + 1)(J − M + 2), (33)
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and

αJ
N =

N/2∑
J ′=J

dJ ′
N . (34)

Equation (28) shows that dipole-dipole interactions do not
couple blocks of different angular momentum J , but couple
nondiagonal (M �= M ′) density matrix elements within a
block. The term (30) describes transitions giving rise to energy
loss due to photon emissions, since it reduces the value of the
quantum numbers M and M ′ by one unit. Such transitions
from a block of angular momentum J occur either within a
same block or in neighboring blocks of angular momentum
J ± 1. The former preserve the symmetry of the state while
the latter modify it.

By injecting Eqs. (28) and (29) into the master equation (3)
and projecting onto the states |J,M,kJ 〉, we get a system of
O(N3) [see Eq. (27)] differential equations for the density
matrix elements ρMM ′

J (t) that reads

dρ
M,M ′
J (t)

dt
= −


(1)
M,M′
J

ρ
M,M ′
J (t) + 


(2)
M+1,M′+1
J

ρ
M+1,M ′+1
J (t)

+

(3)
M+1,M′+1
J+1

ρ
M+1,M ′+1
J+1 (t)

+

(4)
M+1,M′+1
J−1

ρ
M+1,M ′+1
J−1 (t), (35)

with



(1)
M,M′
J

= i�dd(M ′2 − M2) + γ

2
[(AJ,M

− )2 + (AJ,M ′
− )2]

+ �γ

2
(N + M + M ′),



(2)
M+1,M′+1
J

= A
J,M
+ A

J,M ′
+

[
γ + �γ

2J

(
1 + αJ+1

N (2J + 1)

dJ
N (J + 1)

)]
,



(3)
M+1,M′+1
J+1

= �γ
B

J+1,M+1
− B

J+1,M ′+1
− αJ+1

N

2(J + 1)dJ
N

,



(4)
M+1,M′+1
J−1

= �γ
D

J−1,M+1
− D

J−1,M ′+1
− αJ

N

2JdJ
N

. (36)

Equations (36) for the transition rates show that the populations
ρ

M,M
J are decoupled from the coherences ρ

M,M ′
J (M �= M ′).

More specifically, coherences specified by M,M ′ are only
coupled to coherences with the same difference M − M ′,
and populations ρ

M,M
J can only feed populations ρ

M ′,M ′
J ′

with M ′ � M and J ′ � (J − M)/2. This can be seen from
Eqs. (35) and (36) and Fig. 5, which shows the couplings
between the populations together with the corresponding rates.
Indeed, in Eq. (35), the derivative of ρ

M ′,M ′
J ′ depends only on

density matrix elements with equal or larger quantum numbers
M , which implies that starting from a state with a given
M , only states with M ′ � M can be populated during the
dynamics. As for the quantum number J ′, it can decrease or
increase through the channels with rates 
(3) and 
(4) (see
Fig. 5). However, it cannot decrease indefinitely. Consider the
initial state |J,M〉: All states |J − Q,M − Q〉 with positive
half-integer Q can be populated provided J − Q � Jmin and
J − Q � M − Q � −(J − Q). The first inequality of the
latter expression is always satisfied since M � J , but the

FIG. 5. Couplings between the populations ρ
M,M
J (small closed

circles) lying in the different blocks ρJ of angular momentum J =
N/2,N/2 − 1,N/2 − 2, . . . (gray squares), as described by Eq. (35).
The large closed and open circles at the bottom right of each block
are the populations ρ

−J,−J
J corresponding to subradiant states when

�γ = 0 (see Sec. IV B). The arrows show the different couplings
between populations characterized by the rates 
(r) (with r = 1,2,3,4
and where the subscripts have been dropped for the sake of clarity).
The rates 
(1) and 
(2) are related to transitions within a block, while
the rates 
(3) and 
(4) (proportional to �γ ) are related to transitions
between different blocks ρJ . This diagram shows that starting with the
initial condition ρ

M,M
J (0) = 1, only populations ρ

M ′,M ′
J ′ with M ′ � M

and J ′ � (J − M)/2 can be nonzero during the radiative decay. When
�γ > 0, 
(3) and 
(4) are nonzero and the state |N/2, − N/2〉 (large
closed circle) is the only stationary state for any initial conditions.

second inequality imposes Q � (J + M)/2. This in turn
implies the minimal value (J − M)/2 for the quantum number
J ′ ≡ J − Q.

IV. SOLUTIONS OF THE MASTER EQUATION

The solutions of the master equation for indistinguishable
atoms only involve the rates γ , �γ = γ0 − γ , and �dd. In
this section we compute numerical solutions up to 30 atoms
for different values of these rates. The solutions allow us to
study the modifications of super- and subradiance arising from
a proper quantum treatment of the atomic motion. In addition,
we obtain analytical results for large N by applying a mean-
field approximation.

In order to quantify the modifications in the release of
energy from the atomic system, we calculate the normalized
radiated energy rate [4]

I (t) = − d

dt
〈Jz〉(t). (37)
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For permutation-invariant states (24), Eq. (37) can be ex-
pressed in terms of the populations ρ

M,M
J as

I (t) = −
N/2∑

J=Jmin

dJ
N

J∑
M=−J

M
dρ

M,M
J (t)

dt
. (38)

By inserting Eq. (35) into (38) and after algebraic manipula-
tions, we get

I (t) =
N/2∑

J=Jmin

dJ
N

J∑
M=−J

cM
J ρ

M,M
J (t) (39)

with positive coefficients cM
J given by

cM
J = (J + M)(J − M + 1)γ +

(
M + N

2

)
�γ. (40)

A. Superradiance

The superradiance phenomenon is usually observed when
the atoms are initially in a symmetric internal state |N/2,M〉.
In this section we choose for initial state the symmetric state
|N/2,N/2〉 ≡ |e,e, . . . ,e〉. This choice allows us to study the
superradiant radiative cascade starting from the highest energy
level.

1. Analytical results for two atoms

For two atoms, a simple analytical solution of the master
equation can be obtained and is given in Appendix C. For the
initial condition ρ(0) = |1,1〉〈1,1| ≡ |e,e〉〈e,e|, the radiated
energy rate (39) resulting from the solution (C3) given in the
Appendix reads

I (t) = e−2(γ+�γ )t

(2γ + �γ )�γ
[(2γ + �γ )2�γ + �γ 2(2γ + �γ )

+ (2γ + �γ )3(e�γ t − 1) + �γ 3(e(2γ + �γ )t − 1)]. (41)

In the absence of quantum fluctuations of the atomic positions
and for colocated atoms [43], i.e., when �γ = 0 (γ = γ0),
pure superradiance occurs during which all symmetric Dicke
states |1,1〉, |1,0〉, and |1, − 1〉 are gradually populated. In this
case, Eq. (41) reduces to the superradiant radiated energy rate

I (t) = 2γ0e
−2γ0t (1 + 2γ0t). (42)

When �γ > 0, the singlet state |0,0〉 is coupled to the
symmetric Dicke states and the radiated energy rate is reduced
at small times, as can be seen in Fig. 6. When γ = 0,
�γ = γ0 and Eq. (41) reduces to the pure exponential decay
characteristic of individual spontaneous emission

I (t) = 2γ0e
−γ0t . (43)

2. Numerical results for N > 2

In this section we solve numerically the set of coupled
equations (35) for the initial condition ρ(0) = ρ

N/2,N/2
N/2 =

|e,e, . . . ,e〉〈e,e, . . . ,e| and for different values of �γ . We
then compute the radiated energy rate (39). Figure 7 shows
I (t), as a function of time, from 3 to 30 atoms, where each
panel corresponds to a different value of �γ . For �γ = 0,
pure superradiance occurs (first panel). For �γ = γ0, the

210

1.5

1

0.5

0

γ0t

I(t)

32.521.510.50

2

1.5

1

0.5

0

γ0t

I(t)

FIG. 6. Radiated energy rate for two atoms in the initial state
|e,e〉 as a function of time for γ = γ0 (blue solid curve), γ = 3γ0/4
(green dotted curve), and γ = 0 (orange dashed curve). The blue
solid curve corresponds to pure superradiance [Eq. (42)], the orange
dashed curve to independent spontaneous emission [Eq. (43)], and
the green dotted curve to altered superradiance [Eq. (41)]. The inset
shows the radiated energy rate for the initial state |0,0〉 and the same
parameters.

radiated energy rate decreases according to I (t) = Nγ0e
−γ0t ,

as is typical of individual spontaneous emission (last panel).
The middle panels show the crossover between these two
regimes. Figure 8 is a three-dimensional plot of I (t) showing
the crossover for N = 30.

In order to characterize the superradiant pulse in the
intermediate regime, we compute its relative height AI and
the time tI at which its maximum occurs. These quantities are
defined as

AI = max
t

[I (t)] − I (0) = I (tI ) − Nγ0. (44)

Our results, displayed in Fig. 9, show that the height AI of the
pulse is maximal for �γ = 0, decreases monotonically with
�γ , and vanishes for �γ � �γ ∗, where the critical value
�γ ∗ depends only on the number of atoms. The decrease as
a function of �γ is more and more linear as N increases.
We explain this behavior in the next section on the basis of a
mean-field approximation. For sufficiently large N , the time
tI at which the maximum occurs increases as a function of
�γ before dropping to zero at �γ = �γ ∗. The critical value
�γ ∗ increases as the number of atoms increases, as shown in
Fig. 10, and tends to γ0 for N → ∞. This means that for a
fixed value of �γ , superradiance can always be observed for
a sufficiently large number of atoms. Indeed, the derivative of
the radiated energy rate (39) reads

dI (t)

dt
=

N/2∑
J=Jmin

dJ
N

J∑
M=−J

c̃M
J ρ

M,M
J (t), (45)

with

c̃M
J = 2(J + M)(J − M + 1)[(M − 1)γ − �γ ]γ

−
(

M + N

2

)
�γ 2. (46)
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0.90.70.50.30.1

Δγ/γ0 = 1

0.90.70.50.30.1

Δγ/γ0 = 0.8

γ0t

0.90.70.50.30.1

6

4

2

0

Δγ/γ0 = 0.6

Δγ/γ0 = 0.4Δγ/γ0 = 0.26

4

2

0

Δγ/γ0 = 0

I(t)

Nγ0

FIG. 7. Radiated energy rate as a function of time for different values of �γ = γ0 − γ (corresponding to the different panels) and different
numbers of atoms (N = 3, . . . ,30 from bottom to top on the left of each panel). The case �γ = 0 (pure superradiance) is illustrated in the
first panel, while the case �γ = γ0 corresponding to independent spontaneous emissions is illustrated in the last panel.

If the derivative of the radiated energy rate at initial time is
strictly positive, a nonzero superradiant pulse height (AI >

0) is always obtained. For an initial fully excited state, this
sufficient condition in terms of the critical value �γ ∗(N ) reads

�γ < γ0

(
1 − 1√

N − 1

)
≡ �γ ∗(N ). (47)

As shown in Fig. 10, our numerical results are in excellent
agreement with Eq. (47).

FIG. 8. Radiated energy rate as a function of time and �γ for
N = 30 atoms. The superradiant pulse progressively disappears as
�γ increases from 0 to �γ ∗ = 0.817γ0. For �γ = γ0, I (t) decays
exponentially at a rate γ0. The white line indicates the location of the
maximum of the pulse.

10.80.60.40.20

2

1.5

1

0.5

0

Δγ/γ0

t I
(Δ

γ
)/

t I
(0

)

1

0.8

0.6

0.4

0.2

0

· · ·Δγ∗(4)
γ0

Δγ∗(3)
γ0

A
I
(Δ

γ
)/

(N
2
γ

0
/4

)

N ↑

FIG. 9. Shown on top is the height AI of the superradiant pulse
rescaled by N 2γ0/4 as a function of �γ = γ0 − γ for N = 3, . . . ,30
(from left to right). The bottom shows the delay time tI (�γ ) after
which the radiated intensity attains a maximum, rescaled by tI (0). The
dashed green curves correspond to the mean-field results [Eqs. (60)
and (62)].
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superradiance

N

Δγ∗(N)

γ0

30262218141062

1

0.8

0.6

0.4

0.2

0

FIG. 10. Critical value �γ ∗ at which the superradiant pulse
height AI drops to zero and remains zero for �γ > �γ ∗, plotted
as a function of the number of atoms. The circles show the values
extracted from numerical computations. The solid line shows the
analytical prediction given by Eq. (47).

3. Mean-field approach

When the number of atoms is large, a mean-field approxi-
mation can be made [54,55] that assumes an internal state of
the form

ρ(t) ≈ σ (t) ⊗ · · · ⊗ σ (t). (48)

In the mean-field approximation, all atoms lie in the same
quantum state σ (t). The global state ρ(t) is permutation
invariant at any time t but not necessarily symmetric. However,
when σ (t) is a pure state, ρ(t) is symmetric and has only
components in the block of maximal angular momentum
J = N/2. When �γ = 0, the superradiant cascade takes
place only in the block J = N/2 and σ (t) is usually chosen
pure [54]. When �γ �= 0, the ratio between the transition
rates within the block J = N/2 and the neighboring block
J = N/2 − 1 for the emission of the sth photon with s � 1
is much larger than 1, i.e.,



(2)
N/2−s+1,N/2−s+1
N/2



(3)
N/2−s+1,N/2−s+1
N/2

≈ s
γ

�γ
� 1. (49)

Hence, during the main part of the radiative cascade (when
s is large), the dynamics takes place essentially in the block
J = N/2, so we also choose σ (t) to be a pure state.

By inserting Eq. (48) into the master equation (3) and
tracing over N − 1 atoms, we get the following nonlinear
equation for σ (t):

dσ (t)

dt
= − i

�
{VH [σ (t)] + VD[σ (t)],σ (t)} + Dse[σ (t)].

(50)

In Eq. (50), VH is the nonlinear Hartree potential (proportional
to the dipole-dipole shift �dd)

VH [σ (t)] = ��dd(N − 1)(〈σ+〉σ− + 〈σ−〉σ+), (51)

where 〈·〉 = Tr[·σ (t)], VD is the nonlinear dissipative potential

VD[σ (t)] = i�γ
N − 1

2
(〈σ+〉σ− − 〈σ−〉σ+), (52)

and Dse is the single-atom dissipator accounting for sponta-
neous emission

Dse[σ (t)] = γ0
[
σ−σ (t)σ+ − 1

2 {σ+σ−,σ (t)}]. (53)

Equation (50) cannot be solved analytically because of the
presence of the term (53). However, as N gets large, this one
can be neglected in comparison to (51) and (52) provided
γ �= 0 and N − 1 can be replaced by N . Equation (50) can then
be related for pure states σψ (t) = |ψ(t)〉〈ψ(t)| to a nonlinear
Schrödinger equation for |ψ(t)〉 of the form (in the interaction
picture) [54,56,57]

d|ψ(t)〉
dt

= − i

�
{VH [σψ (t)] + VD[σψ (t)]}|ψ(t)〉. (54)

As in [54], we parametrize the state |ψ(t)〉 by

|ψ(t)〉 =
√

p(t)eiθ(t)|e〉 +
√

1 − p(t)|g〉, (55)

with p(t) = |〈e|ψ(t)〉|2 the mean number of atoms in the
excited state. By inserting Eq. (55) into (54) we get

dp(t)

dt
= −Nγp(t)[1 − p(t)], (56a)

dθ (t)

dt
= −N�dd[1 − p(t)]. (56b)

With the conditions p(tI ) = 1/2 and θ (0) = θ0, the system
of equations (56) has the unique solution

p(t) = 1

1 + eNγ (t−tI )
, (57)

θ (t) = θ0 + �dd

γ
ln[p(t)(1 + e−Nγ tI )], (58)

where tI corresponds to the time at which half the photons
have been emitted and is identified with the delay time
of superradiance [4]. The phase θ (t) depend on both the
dipole-dipole shift �dd and the decay rate γ , while the
population p(t) depends only on the rate γ . In other words,
the dissipative dynamics is not affected by the dipole-dipole
shift. The radiated energy rate in the mean-field approximation
reads

Imf(t) = −N
dp(t)

dt
= N2γ

4
cosh−2

[
Nγ

2
(t − tI )

]
(59)

and is of the same form as the pure superradiant pulse for
colocated atoms [4,54], but with γ0 replaced by γ and a priori a
different delay time tI . The quantum fluctuations of the atomic
positions modify the value of γ as compared to γ0, and thus
the shape of the superradiant pulse, which is, however, always
present except for γ = 0. The height AI,mf of the pulse (59),
given by

AI,mf = N2γ

4
= N2γ0

4

(
1 − �γ

γ0

)
, (60)

is always smaller than the height N2γ0/4 of the pure
superradiant pulse since γ � γ0. Equation (60) is compared
with numerical simulations in Fig. 9 (green dashed curve, top
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panel). As for the delay time tI , it cannot be evaluated precisely
in the mean-field approach. Nevertheless, an approximation
can be obtained in the limit N → ∞ and for γ �= 0 by
evaluating the sum of the typical times between each photon
emission [4]. We find

tI ∼ ln N

Nγ
, (61)

which corresponds to the result of Gross and Haroche [4] but
with γ0 replaced by γ . The ratio between the delay time for
�γ �= 0 and the one for �γ = 0 (pure superradiance) is thus
given by

tI (�γ )

tI (0)
= γ0

γ
= 1

1 − �γ/γ0
. (62)

It is always larger than 1 and increases with �γ , meaning
that the larger �γ is, the longer it takes before the radiated
energy rate attains a maximum. Equation (62) is compared with
numerical simulations in Fig. 9 (green dashed curve, bottom
panel).

B. Subradiance

Subradiant states are states for which the radiated energy
rate decays slowly as compared to the one corresponding
to independent spontaneous emission. Dark (or decoherence-
free) states are a particular class of subradiant states for which
the radiated energy rate (39) vanishes. According to Eq. (40),
their only nonzero populations ρ

M,M
J are those for which J and

M are such that cM
J = 0. When �γ = 0, the condition cM

J = 0
is satisfied for M = −J [58]. As a consequence, all states
|J, − J 〉 (in number α

Jmin
N ; see, e.g., [59]) are dark states. When

�γ > 0, the only dark state is obtained for J = M = N/2 and
corresponds to the ground state |g, . . . ,g〉.

In the following we study the time evolution of the state
|J0, − J0〉 (with J0 ∈ {Jmin, . . . ,N/2}) when �γ > 0. The
initial nonzero matrix element ρ

−J0,−J0
J0

is only coupled to

the matrix elements ρ
−J,−J
J with higher angular momenta

J , i.e., J0 � J � N/2, as can be seen from Fig. 5. The
system will thus gradually populate all states |J, − J 〉 with
J > J0 before finally reaching the ground state |N/2, − N/2〉.
The populations ρ

−J,−J
J are obtained from Eq. (35), which

simplifies to

dρ
−J,−J
J (t)

dt
= −�γ

[(
N

2
− J

)
ρ

−J,−J
J (t)

− dJ−1
N

dJ
N

(
N

2
− J + 1

)
ρ

−J+1,−J+1
J−1 (t)

]
(63)

and admits the solution

ρ
−J,−J
J (t) =

(
N
2 − J0

)
!e−�γ (N/2−J0)t

dJ
N

(
N
2 − J

)
!(J − J0)!

(e�γ t − 1)J−J0 . (64)

Inserting this expression into Eq. (39) for the radiated energy
rate yields after some calculations

I (t) = �γ

(
N

2
− J0

)
e−�γ t . (65)

Hence, I (t) decreases exponentially regardless of the initial
angular momentum J0, except for the case J0 = N/2 (ground
state) for which I (t) = 0 at any time t . We also see that the
states |J0, − J0〉 are subradiant, since the emission rate �γ is
always smaller than γ0, the single-atom spontaneous emission
rate.

V. CONCLUSION

We have investigated superradiance and subradiance from
indistinguishable atoms with quantized motional state based
on the master equation derived in [43]. The indistinguishability
of the atoms implies that for an initially factorized state
between the external (center-of-mass) and internal degrees
of freedom the motional state must be invariant under per-
mutation of atoms. As a consequence, the whole dynamics is
parametrized only by three real numbers, namely, the diagonal
γ0 and off-diagonal γ � γ0 decay rates and a dipole-dipole
shift �dd that is identical for all atoms. All three parameters
can be “quantum programmed” by appropriate choice of the
motional state of the atoms. For γ = γ0 standard superradiance
results, whereas for γ → 0 individual spontaneous emission
of the atoms prevails. A continuous transition between
these two extreme cases can be achieved. A superradiant
enhancement of the emitted intensity is always observed
for γ > γ0/

√
N − 1, where N is the number of atoms. All

nontrivial dark states (i.e., states other than the ground state
with strictly vanishing emission of radiation) are immediately
lost as soon as γ < γ0. This implies that for harmonically
trapped atoms, exact decoherence free subspaces that protect
against spontaneous emission through destructive interference
of individual spontaneous emission amplitudes exist only in
the limit of classically localized atoms, i.e., atoms in infinitely
steep traps. Finally, we showed that the states that are dark
when γ = γ0 are only subradiant when γ < γ0.
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APPENDIX A: SYMMETRY OF THE DENSITY MATRIX
UNDER PERMUTATION OF INDISTINGUISHABLE ATOMS

In this appendix we give general properties under permu-
tation of atoms of the (reduced) density matrices describing
the states of indistinguishable atoms. Consider a set of N

indistinguishable atoms (bosons or fermions) with internal
and external degrees of freedom. We define the orthonormal
basis vectors as |ν〉|φ〉 ≡ |ν1, . . . ,νN 〉|φ1, . . . ,φN 〉, where |νj 〉
(|φj 〉) are the internal (external) orthonormal basis states of
the particle j . The permutation operator Pπ corresponding to
the permutation π is defined through exchange of the particle
labels in the basis states, i.e.,

Pπ |ν〉|φ〉 = ∣∣νπ1 , . . . ,νπN

〉∣∣φπ1 , . . . ,φπN

〉 ≡ |νπ 〉|φπ 〉. (A1)

We have Pπ = P in
π ⊗ P ex

π , where P in
π and P ex

π are such that
P in

π |ν〉 = |νπ 〉 and P ex
π |φ〉 = |φπ 〉.
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An arbitrary pure state |ψ〉 of the full system can be written
as

|ψ〉 =
∑
νφ

ανφ|ν〉|φ〉 (A2)

and must be invariant under permutations up to a global
phase, i.e., Pπ |ψ〉 = (±)pπ |ψ〉, where pπ is the parity of the
permutation (even or odd) and (±)pπ the phase factor picked
up accordingly for bosons (+) or fermions (−). Then we have
the following:

Lemma 1. An arbitrary mixed state ρ of indistinguishable
bosons or fermions (density operator on the full Hilbert space)
satisfies

PπρP
†
π ′ = (±)pπ +pπ ′ ρ ∀π,π ′. (A3)

Proof. The mixed state of a system of indistinguishable
bosons (fermions) must be a mixture of pure states that have
all the full permutation symmetry (antisymmetry), i.e.,

ρ =
∑

i

pi |ψ (i)〉〈ψ (i)|, (A4)

where pi are probabilities and Pπ |ψ (i)〉 = (±)pπ |ψ (i)〉 for all i.
Applying Pπ from the left and P

†
π ′ from the right immediately

yields the claim. �
Consider now the reduced density matrix corresponding to

the internal degrees of freedom only. Inserting the decompo-
sition (A2) for each state |ψ (i)〉 in the convex sum (A4), we
obtain

ρ in ≡ Trexρ =
∑

φ

〈φ|ρ|φ〉 =
∑

i

pi

∑
φ,ν,μ

α
(i)
νφα

(i)∗
μφ |ν〉〈μ|.

(A5)

Similarly, the reduced density matrix corresponding to the
external degrees of freedom reads

ρex ≡ Trinρ =
∑

ν

〈ν|ρ|ν〉 =
∑

i

pi

∑
ν,φ,ψ

α
(i)
νφα

(i)∗
νψ |φ〉〈ψ |.

(A6)

Then we have the following.
Lemma 2. The arbitrary reduced density matrices ρ in and

ρex of indistinguishable atoms (bosons or fermions) satisfy

P in
π ρ inP in†

π = ρ in ∀π,

P ex
π ρexP ex†

π = ρex ∀π.
(A7)

Proof. We present here the proof for ρ in. The symmetry of
the full state implies the symmetry of the coefficients α

(i)
νφ ,

Pπ |ψ (i)〉 =
∑
νφ

α
(i)
νφ|νπ 〉|φπ 〉 (A8)

=
∑
νφ

α
(i)
ν

π−1 φ
π−1

|ν〉|φ〉 = (±)pπ |ψ (i)〉, (A9)

and projecting onto the basis states gives

(±)pπ α
(i)
νφ = α

(i)
νπ−1 φπ−1

. (A10)

As a consequence,

P in
π ρ inP in†

π =
∑

i,φ,ν,μ

piα
(i)
νφα

(i)∗
μφ |νπ 〉〈μπ |

=
∑

i,φ,ν,μ

piα
(i)
νπ−1 φα

(i)∗
μπ−1 φ|ν〉〈μ|

=
∑

i,φ,ν,μ

piα
(i)
νπ−1 φπ−1

α
(i)∗
μπ−1 φπ−1

|ν〉〈μ| = ρ in,

where in the penultimate step permutation π was absorbed in
the sum over all φ and the last step follows from Eqs. (A10)
and (A5). �

Note that in general for the reduced density matrix ρ in

the statement corresponding to Eq. (A3) does not hold, i.e.,
Pπρ inP

†
π ′ �= ρ in for π �= π ′: Going through the last proof again

with the second π replaced by π ′, one realizes that in at least
one of the coefficients α

(i)
νπ−1 φ or α

(i)∗
μ

π
′−1 φ , φ cannot be replaced

by φπ−1 or φπ
′−1 if π �= π ′, and in general ανφ �= ανπ−1 φ

π
′−1

even for bosons.

APPENDIX B: GENERAL EXPRESSIONS OF DECAY
RATES AND DIPOLE-DIPOLE SHIFTS

In this appendix we show that all off-diagonal (i �= j )
decay rates γij and all dipole-dipole shifts �ij are equal
for any pair of indistinguishable atoms i and j in arbitrary
permutation invariant motional states. Then we give their
general expressions for arbitrary symmetric or antisymmetric
motional states.

As shown in [43], the diagonal decay rates are equal to the
single-atom spontaneous emission rate γ0 for any motional
state, while the off-diagonal decay rates and dipole-dipole
shifts are given, respectively, by

γij =
∫
R3

γ cl(r)F−1
r

[
Cex

ij (k)
]
dr, (B1)

�ij =
∫
R3

�cl(r)F−1
r

[
Cex

ij (k)
]
dr, (B2)

withF−1
r [Cex

ij (k)] the inverse Fourier transform of the motional
correlation function [60]

Cex
ij (k) = Trex

[
eik·r̂ij ρex

A

]
, (B3)

where r̂ij = r̂i − r̂j is the difference between the position
operators of atoms i and j . In Eqs. (B1) and (B2), γ cl(r)
and �cl(r) are the classical expressions of the decay rates and
dipole-dipole shifts, respectively, for a pair of atoms connected
by r and a radiation of wave number k0 [61–63],

γ cl(r) = 3γ0

2

[
p

sin(k0r)

k0r
+ q

(
cos(k0r)

(k0r)2
− sin(k0r)

(k0r)3

)]
(B4)

and

�cl(r) = 3γ0

4

[
− p

cos(k0r)

k0r
+ q

(
sin(k0r)

(k0r)2
+ cos(k0r)

(k0r)3

)]
,

(B5)
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with p and q angular factors given by

p =
{

sin2 α for a π transition
1
2 (1 + cos2 α) for a σ± transition

(B6)

and

q =
{

1 − 3 cos2 α for a π transition
1
2 (3 cos2 α − 1) for a σ± transition,

(B7)

where α = arccos(er · ez) is the angle between the quantization
axis and r.

Indistinguishability of atoms implies that their motional
state is invariant under permutation [see Appendix A], i.e.,

P ex
π ρex

A P ex†
π = ρex

A ∀π. (B8)

Upon using the latter equation, the motional correlation
function (B3) is found to satisfy

Cex
ij (k) = Trex

[
eik·r̂ij P ex

π ρex
A P ex†

π

]
= Trex

[
P ex†

π eik·r̂ij P ex
π ρex

A

]
= Trex

[
eik·r̂π(i)π(j )ρex

A

] = Cex
π(i)π(j )(k). (B9)

The equality of Cex
ij (k) for any pair of atoms [Eq. (B9)] implies

the equality of the decay rates (B1) [or the dipole-dipole
shifts (B2)] for any pair of atoms.

Consider now an arbitrary symmetric or antisymmetric
motional state of the form

ρ
ex,±
A =

M∑
m=1

pm

∣∣�(m),±
A

〉〈
�

(m),±
A

∣∣, (B10)

where pm are the weights of the statistical mixture (pm � 0
and

∑
m pm = 1) and |�(m),±

A 〉 (m = 1, . . . ,M) are symmetric
(+) or antisymmetric (−) N -atom motional pure states. Any
state |�(m),±

A 〉 can be written as

∣∣�(m),±
A

〉 =
√

n
φ

(m)
1

! · · · n
φ

(m)
N

!

N !

∑
π

(±1)pπ
∣∣φ(m)

π(1) · · ·φ(m)
π(N)

〉
,

(B11)

where |φ(m)
j 〉 (j = 1, . . . ,N) are normalized (but not necessar-

ily orthogonal) single-atom motional states, n
φ

(m)
j

is the number

of atoms occupying the state |φ(m)
j 〉, and the sum runs over all

permutations π of the atoms.
The off-diagonal decay rates and the dipole-dipole shifts for

the motional state (B10) can be expressed in terms of exchange
integrals as [43]

γij =
M∑

m=1

pm

∑
π,π ′

λ
(m),±
ij,ππ ′

∫∫
R3×R3

γ cl(r − r′)φ(m)
π(i)(r)

×φ
(m)∗
π ′(i)(r)φ(m)

π(j )(r
′)φ(m)∗

π ′(j )(r
′)dr dr′, (B12)

�ij =
M∑

m=1

pm

∑
π,π ′

λ
(m),±
ij,ππ ′

∫∫
R3×R3

�cl(r − r′)φ(m)
π(i)(r)

×φ
(m)∗
π ′(i)(r)φ(m)

π(j )(r
′)φ(m)∗

π ′(j )(r
′)dr dr′, (B13)

with φ
(m)
j (r) = 〈r|φ(m)

j 〉 the single-atom motional states in the
position representation, and

λ
(m),±
ij,ππ ′ =

(±1)pπ +pπ ′ ∏N
n=1

n �=i,j

〈
φ

(m)
π ′(n)

∣∣φ(m)
π(n)

〉
∑

π̃ ,π̃ ′ (±1)pπ̃ +pπ̃ ′
∏N

n=1

〈
φ

(m)
π̃ ′(n)

∣∣φ(m)
π̃(n)

〉 . (B14)

The cooperative decay rates and dipole-dipole shifts (B12)
and (B13) depend on their classical expressions (B4) and (B5),
which oscillate and decrease as a function of the interatomic
distance on a length scale of the order of the wavelength
of the emitted radiation. In addition, they depend on the
single-atom wave packets and can vary as a function of their
extensions and overlaps. The indistinguishability of atoms
is reflected by the summations over all permutations of the
atoms, which implies the equality of all off-diagonal decay
rates γij and all dipole-dipole shifts �ij . Note that when
all atoms occupy the same motional state ρ1 with spatial
density ρ1(r) = 〈r|ρ1|r〉, the global motional state ρex

A = ρ⊗N
1

is symmetric and separable and the decay rates (B12) and
dipole-dipole shifts (B13) merely read

γij =
∫∫

R3×R3
γ cl(r − r′)ρ1(r)ρ1(r′)dr dr′, (B15)

�ij =
∫∫

R3×R3
�cl(r − r′)ρ1(r)ρ1(r′)dr dr′. (B16)

APPENDIX C: GENERAL SOLUTION FOR TWO ATOMS

In this appendix we give the most general solution of the
master equation (3) for N = 2 atoms. In this case, J = 0,1
and the decomposition (20) of the internal Hilbert space of the
atomic system reads

H = C2 ⊗ C2 � (H0 ⊗ K0) ⊕ (H1 ⊗ K1), (C1)

where the dimensions of K0 and K1 are d0 = d1 = 1. The
value J = 1 defines the triplet states {|1,1〉,|1,0〉,|1, − 1〉},
which are all symmetric, while the value J = 0 corresponds to
the singlet state |0,0〉, which is antisymmetric. In the standard
basis {|e,e〉,|e,g〉,|g,e〉,|g,g〉}, they read

|1,1〉 = |e,e〉,
|1,0〉 = |e,g〉 + |g,e〉√

2
,

|1, − 1〉 = |g,g〉, |0,0〉 = |e,g〉 − |g,e〉√
2

. (C2)
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The solutions of (35) for the density matrix elements ρ
M,M ′
J (t) in terms of γ , �γ , and �dd are in this case given by

ρ
1,1
1 (t) = ρ

1,1
1 (0)e−2(γ+�γ )t , ρ

0,0
1 (t) = ρ

0,0
1 (0)e−(2γ+�γ )t + 2γ + �γ

�γ
ρ

1,1
1 (t)(e�γ t − 1),

ρ
−1,−1
1 (t) = 1 − ρ

1,1
1 (t) − ρ

0,0
1 (t) − ρ

0,0
0 (t), ρ

0,0
0 (t) = ρ

0,0
0 (0)e−�γ t + �γ

2γ + �γ
ρ

1,1
1 (t)(e(2γ+�γ )t − 1),

ρ
1,0
1 (t) = ρ

1,0
1 (0)e−(4γ+3�γ+2i�dd)t/2, ρ

1,−1
1 (t) = ρ

1,−1
1 (0)e−(γ+�γ )t ,

ρ
0,−1
1 (t) = ρ

0,−1
1 (0)e−(2γ+�γ−2i�dd)t/2 + ρ

1,0
1 (t)

2γ + �γ

γ + �γ + 2i�dd
(e(γ+�γ+2i�dd)t − 1). (C3)
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Science 328, 1248 (2010).
[17] Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, and R. Ozeri,

Phys. Rev. Lett. 113, 193002 (2014).
[18] E. Akkermans, A. Gero, and R. Kaiser, Phys. Rev. Lett. 101,

103602 (2008).
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FRANÇOIS DAMANET, DANIEL BRAUN, AND JOHN MARTIN PHYSICAL REVIEW A 94, 033838 (2016)

[51] D. Bacon, I. L. Chuang, and A. W. Harrow, Phys. Rev. Lett. 97,
170502 (2006).

[52] L. Arnaud, Phys. Rev. A 93, 012320 (2016).
[53] M. Christandl, The structure of bipartite quantum states, Ph.D.

thesis, University of Cambridge, 2006.
[54] H.-P. Breuer and F. Petruccione, The Theory of Open

Quantum Systems (Oxford University Press, Oxford,
2006).

[55] H. Spohn, Rev. Mod. Phys. 52, 569 (1980).
[56] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics

(Cambridge University Press, Cambridge, 1995).
[57] G. A. Prataviera and S. S. Mizrahi, Rev. Bras. Ensino Fı́s. 36,

4303 (2014).

[58] R. I. Karasik, K.-P. Marzlin, B. C. Sanders, and K. B. Whaley,
Phys. Rev. A 76, 012331 (2007); 77, 052301 (2008).

[59] D. Braun, Dissipative Quantum Chaos and Decoherence,
Springer Tracts in Modern Physics Vol. 172 (Springer, Berlin,
2001).

[60] In this work, we use for the Fourier transform Fk[·] and its
inverse F−1

r [·] the convention Fk[f ] = ∫R3 e−ik·rf (r)dr and
F−1

r [g] = ∫R3 eik·rg(k) dk
(2π )3 , respectively.

[61] M. J. Stephen, J. Chem. Phys. 40, 669 (1964).
[62] R. H. Lehmberg, Phys. Rev. A 2, 889 (1970).
[63] G. S. Agarwal, Quantum Statistical Theories of Spontaneous

Emission and Their Relation to Other Approaches, Springer
Tracts in Modern Physics Vol. 70 (Springer, Berlin, 1974), p. 1.

033838-14

http://dx.doi.org/10.1103/PhysRevLett.97.170502
http://dx.doi.org/10.1103/PhysRevLett.97.170502
http://dx.doi.org/10.1103/PhysRevLett.97.170502
http://dx.doi.org/10.1103/PhysRevLett.97.170502
http://dx.doi.org/10.1103/PhysRevA.93.012320
http://dx.doi.org/10.1103/PhysRevA.93.012320
http://dx.doi.org/10.1103/PhysRevA.93.012320
http://dx.doi.org/10.1103/PhysRevA.93.012320
http://dx.doi.org/10.1103/RevModPhys.52.569
http://dx.doi.org/10.1103/RevModPhys.52.569
http://dx.doi.org/10.1103/RevModPhys.52.569
http://dx.doi.org/10.1103/RevModPhys.52.569
http://dx.doi.org/10.1103/PhysRevA.76.012331
http://dx.doi.org/10.1103/PhysRevA.76.012331
http://dx.doi.org/10.1103/PhysRevA.76.012331
http://dx.doi.org/10.1103/PhysRevA.76.012331
http://dx.doi.org/10.1103/PhysRevA.77.052301
http://dx.doi.org/10.1103/PhysRevA.77.052301
http://dx.doi.org/10.1103/PhysRevA.77.052301
http://dx.doi.org/10.1063/1.1725188
http://dx.doi.org/10.1063/1.1725188
http://dx.doi.org/10.1063/1.1725188
http://dx.doi.org/10.1063/1.1725188
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRevA.2.889



