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Identifying diamagnetic interactions in scattering and nonlinear optics
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In the generic formulation of optical interactions there is, beyond the familiar electric and magnetic multipolar
forms of coupling, an additional diamagnetization term that rarely receives attention. In fact it can give rise to
effects that should be observable in the general context of nonlinear optical spectroscopy, as well as scattering.
A quantum electrodynamical analysis reveals features of special interest in two specific cases: two-photon
absorption and Rayleigh scattering. Diamagnetic contributions are seen to be dispersion free with regards to
the frequency of input radiation, and can represent unique interactions within optical absorption and emission
processes. There is also a configuration in which diamagnetic couplings, which are quadratic in the magnetic field,
can supersede those that are dependent linearly on the electric field strength, such as the electric dipole. In this
connection the influence of retroreflected circularly polarized light, which leads to a local distance dependence
in magnitude of the electromagnetic fields, produces conditions in which the diamagnetization response can
become a prominent feature in two-photon absorption.
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I. INTRODUCTION

In the field of electrodynamics, optical processes are often
studied under the constraint of the electric-dipole approxi-
mation, wherein the wavelength of the incident or emergent
light is assumed to be much larger than the dimensions of
the irradiated particle. Under this supposition, the spatial
variation of the vector potential is neglected. In consequence,
higher-order couplings expressed in multipolar form, such as
the light-matter interactions mediated by a magnetic dipole,
can usually be disregarded. However, these higher-order terms
are important for certain systems, such as chiral discrimi-
nation in molecules of low symmetry [1,2], light-harvesting
complexes [3], nanomaterials [4–6], metamaterials [7,8] and
numerous theoretical studies including optical trapping [9–14].
Such terms also assume greater significance for systems
in which electric-dipole couplings are either very small or
vanish altogether—when, for example, a relevant electronic
transition is electric-dipole forbidden by symmetry. In fact, at
a level of magnitude approximately two orders smaller than
electric-dipole coupling, there are contributions to the quantum
amplitude from both magnetic dipole and electric quadrupole
terms, both of which are linear in the radiation field. Recent
research on thin films has even shown that, at judiciously
chosen wavelengths, higher-order nonlinear effects can be
larger than linear [15]. However, as will be shown, another
form of electromagnetic coupling can also become important
under certain circumstances, as discussed in the following.

In addition to electric and magnetic multipolar couplings,
one contribution that is very rarely discussed, or else assumed
unimportant, is the diamagnetic interaction. As we shall
see, this has many unique properties—including a quadratic
dependence on the electromagnetic field, so that its importance
grows with higher light intensities. Moreover, since each
field interaction involves the creation or annihilation of a
photon, it follows that this diamagnetic term is always present
in any process that fundamentally involves more than one
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photon event—for example, any form of light scattering or
multiphoton absorption. Indeed, the diamagnetic interaction
plays a part in every nonlinear optical interaction, by each and
every particle of matter.

This paper begins by laying down the theoretical foundation
for the diamagnetic form of interaction, starting with a
Lagrangian representation of the electrodynamics and moving
to the interaction Hamiltonian, thereby identifying the com-
mon origin of the diamagnetic interaction alongside the more
commonly known electric dipole and other higher-order mul-
tipoles. The lowest-order diamagnetic interaction Hamiltonian
is presented, and we then use it to study and develop the specific
cases of two-photon absorption and Rayleigh scattering. By
application of the Fermi rule, fully rotationally averaged rates
are derived and presented for both of these processes, and it
is shown how the rate expressions can be cast in terms of
more familiar electric-dipole transition moments. We finish
with a discussion highlighting the dispersive-free nature of
the diamagnetic interactions, also showing how by exploiting
retroreflection of circularly polarized beams it should be
possible to make diamagnetic contributions dominant in any
given multiphoton process.

II. THEORETICAL FOUNDATION

The treatment of particles and fields in a single electro-
dynamical system, in which energy can exchange between
radiation and matter, can be achieved either through a
Lagrangian or Hamiltonian formulation. The starting point
for any quantum electrodynamical framework is usually the
adoption of the minimal coupling Lagrangian or the multipolar
Lagrangian, in either case followed by canonical transforma-
tion to the respective Hamiltonian form [16]. In its application
to molecules, the advantage of the multipolar Hamiltonian
over the minimal coupling formulation is the fact that, in the
former, intermolecular Coulombic (instantaneous) interactions
are eliminated so that these interactions are mediated solely by
photons. Moreover, the minimal coupling method introduces
unnecessary additional complexity when examining radiation-
molecule and molecule-molecule interactions [17]. A strong
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case can be made that the multipole approach more directly
delivers physical insights with regard to selection rules: As
a result, this article focuses on the multipolar Hamiltonian
formulation. With the aim of highlighting the origin of
the diamagnetic interaction, a concise derivation from the
corresponding Lagrangian is outlined below. More detailed
derivations can be sourced elsewhere [16,17].

The total multipolar Lagrangian can be partitioned into
a sum of three terms: one for the molecules, Lmol (labeled
by ξ ), another for the radiation, Lrad, and the third for their
interactions, Lint. The molecular components are written in
terms of particles α with coordinates qα(ξ ) and velocities
q̇α(ξ ), and the vector potential field a(r) with time derivative
ȧ(r). In the absence of interaction between molecules and
radiation, Lmol and Lrad are simply the particle Lagrangian
and the free-field Lagrangian, whose respective dynamical
variables bear no influence on one another. However, in a
single dynamical system where the equations of motion of
both matter and radiation are dependent on one another, the
coupling appears as the interaction term Lint. The explicit form
of the multipolar Lagrangian is given by

Lmult = Lmol + Lrad + Lint, (1)

in which

Lmol =
∑

ξ

{
me

2

∑
α

q̇2
α(ξ ) − V (ξ )

}
, (2)

Lrad = ε0

2

∫
{ȧ2(r) − c2[∇ × a(r)]2}d3r, (3)

Lint =
∫

[∇ × m(r)] · a(r)d3r

−
∫

p⊥(r) · ȧ(r)d3r −
∑
ξ<ξ ′

Vinter(ξ,ξ ′). (4)

Here V(ξ ) is the intramolecular Coulomb potential energy
of molecule ξ , summing all the internal Coulombic interac-
tions, and Vinter(ξ,ξ ′) is the intermolecular energy between

molecules ξ and ξ ′. In Eq. (4), m(r) is the magnetization field
that is related to the current density of a medium and p⊥(r)
is the transverse component of the electric polarization field
[18], which also involves the charge distribution of a medium.

Changing from the multipolar Lagrangian to the multipolar
Hamiltonian requires a canonical transformation of Eq. (1).
This basically means that q̇ and ȧ are eliminated and replaced
by the canonical momenta p and �, such that

Hmult =
∑
ξ,α

pα(ξ ) · q̇α(ξ ) +
∫

�(r) · ȧ(r)d3r − Lmult.

(5)

The momentum pα(ξ ) is canonically conjugate to the
position vector qα(ξ ), as determined by the partial derivative,

pα(ξ ) = ∂Lmult

∂ q̇α(ξ )
= mq̇α(ξ ) −

∫
nα(ξ,r)×b(r)d3r, (6)

where the vector field, nα(ξ,r), is defined as

nα(ξ,r) = −e[qα(ξ ) − Rξ ]

×
∫ 1

0
λδ[r − Rξ − λ(qα(ξ ) − Rξ )]dλ. (7)

Here e is electric charge, Rξ denotes the center of
the molecule ξ , and the integral over λ is defined as∫ 1

0 λndλ = (n + 1)−1 (integration over this dimensionless pa-
rameter allows the multipole series to be expressed in a closed
form), with nα(ξ,r) signifying a distribution for polarization
that differs from pα(ξ,r) in its multipolar weightings. The
momentum conjugate to the vector potential a(r) is

�(r) = ∂Lmult

∂ ȧ
= ε0 ȧ(r) − p⊥(r) = −d⊥(r), (8)

where d⊥(r) is the transverse electric displacement field. Now
that the canonical momentum has been determined, we can
substitute for q̇ and ȧ in the Legendre transformation, and
by regrouping terms the following multipolar Hamiltonian is
found:

Hmult =
∑

ξ

{(
1

2m

) ∑
α

[
pα(ξ ) +

∫
nα(ξ,r)×b(r)d3r

]2

+ V (ξ )

}

+
∑
ξ<ξ ′

Vinter(ξ,ξ ′) + ε0

2

∫ {[
�(r) + p⊥(r)

ε0

]2

+ c2b2(r)

}
d3r. (9)

When using (6) and (8) to express the above equation in
terms of q̇α(ξ ) and ȧ(r), it can be seen that this expression
sums energy from the molecules and from the radiation field,
where each of these terms is a sum of kinetic and potential
energies. Thus the Hamiltonian takes the following form:

H = (T + V )mol + (T + V )rad. (10)

It transpires that the intermolecular Coulomb interaction
energy is exactly canceled by the intermolecular part of the
transverse polarization. In consequence, it follows from Eq. (9)

that the multipolar Hamiltonian becomes

Hmult = Hmol + Hrad + Hint + 1

2ε0

∫ ∑
ξ

| p⊥(ξ,r)|2d3r,

(11)

in which the final term is an intramolecular self-energy
independent of the electromagnetic field. The absence of
any contribution linking different molecules means that all
intermolecular interactions are mediated by the transverse
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electromagnetic field—i.e., all such couplings are fully re-
tarded. We now have

Hmol =
∑

ξ

{
1

2m

∑
α

p2
α(ξ ) + V (ξ )

}
, (12)

Hrad = 1

2

∫ {
�2(r)

ε0
+ c2ε0[∇×a(r)]2

}
d3r

= 1

2

∫ {
d⊥2(r)

ε0
+ c2ε0b2(r)

}
d3r, (13)

Hint = 1

ε0

∫
p⊥(r) · �(r)d3r −

∫
m(r) · [∇×a(r)]d3r

+ 1

2m

{∫
n(r)×[∇×a(r)]d3r

}2

= − 1

ε0

∫
p(r) · d⊥(r)d3r −

∫
m(r) · b(r)d3r

+ 1

2

∫
Oij (r,r ′)bi(r)bi(r ′)d3rd3r ′. (14)

Here, the last term of Eq. (14) represents the diamagnetic
interaction—the focus of interest in this paper—while the
first two terms yield the electric and magnetic multipole
expansions, respectively. It is interesting to observe that this
term is quadratically dependent on an electromagnetic field,
which represents an intrinsic nonlinearity in the interaction
Hamiltonian. For deployment in a QED framework the status
is clear; this term can contribute only to processes that entail
two or more fundamental interactions. However, it should be
borne in mind that such a distinction will be much less obvious
in any semiclassical treatment, where the usual additivity of
quantum amplitude contributions masks an assumed linear
dependence on the fields.

To continue, the material tensor involved in the diamagnetic
coupling is the local field Oij (r,r ′), given explicitly by

Oij (r,r ′) =
∑
ξ,ξ ′

1

m
εiklεjmlnk(ξ,r)nm(ξ,r ′). (15)

In most calculations, Hmult is expanded in terms of
multipole moments. While this is familiar for the electric
and magnetic polarization fields, denoted by p(r) and m(r),
respectively, the procedure can also be applied to Oij (r,r ′).
After carrying out the volume integral, the first few terms of
the interaction portion of the multipolar Hamiltonian, H mult

int ,
are identified as

H mult
int =

∑
ξ

{−ε−1
0 μ(ξ ) · d⊥(Rξ )

− ε−1
0 Qij (ξ )∇j d

⊥
i − m(ξ ) · b(Rξ )

}
+ e2

8m

∑
ξ,α

{[qα(ξ ) − Rξ ] × b(Rξ )}2 + · · · . (16)

Here, using the convention of implied summation over
repeated Cartesian indices, the result is now written in explicit
terms of the electric dipole, electric quadrupole, and magnetic

dipole, and the final cross-product term represents the lowest-
order diamagnetic coupling. Before proceeding further, it is
worth noting some differences of the diamagnetization con-
tribution from the more familiar electric quadrupole term—as
it, too, is cast in terms of a second-rank coupling tensor. The
latter, however, assumes a traceless form as a result of its
engagement with the derivative of the electric field, whose
components in the direction of the field itself vanish. (This is
because, in the interaction term Qij∇iej , the trace of Q delivers
∇iej , and while the gradient of the field lies in the direction of
propagation, the electric field is entirely transverse. In fact, the
same comment can be made about the magnetic quadrupole
term, since the magnetic field is intrinsically divergence free).

III. DIAMAGNETIZATION IN OPTICAL INTERACTIONS

In quantum electrodynamics, the mode expansion for the
electromagnetic field operator b is given as

b(r) = i
∑
k,η

(
�k

2ε0cV

)1/2

×{b(η)(k)a(η)(k)eik·r − b̄
(η)

(k)a†(η)(k)e−ik·r}, (17)

where a(η)(k) and a†(η)(k) are the normalized annihilation and
creation operators, respectively, for photons of the mode (k, η).
The polarization vector b(η)(k) is a unit vector in the direction
of the magnetic field and V is the quantization volume. Taking
the final term of Eq. (16) with the mode expansion (17), we
can rewrite the lowest-order diamagnetic contribution to the
interaction Hamiltonian in terms of field components, using
Levi-Civita symbols to express the vector cross products, as
follows:

H mult
int = − e2

8m
εijpεklp

∑
k,η
k′,η′

∑
α,ξ

(
�

2ε0cV

)
(kk′)1/2

×{[qα(ξ ) − Rξ ]
i
[qα(ξ ) − Rξ ]

k
}

× (bjaeik·Rξ − b̄j a
†e−ik·Rξ )

× (b′
la

′eik′·Rξ − b̄′
la

′†e−ik′·Rξ ). (18)

Here, the k and η dependence of the photon annihilation
and creation operators, along with the polarization vectors,
are implicit. From the above result, it is immediately clear
that the diamagnetic term can only participate in processes
that involve two or more photons. The reason is that the
photon creation and annihilation operators appear in quadratic
combinations, emerging from the product of the last two
bracketed terms in Eq. (18). Accordingly, if both of the photons
relating to these operators are from the same radiation mode,
the transition diamagnetization moment will depend on the
square of the field strength, and the corresponding rate on the
square of the radiation mode intensity. On the other hand, for
a scattering process in which the two magnetic interactions
relate to different radiation modes, this quadratic dependence
on the input does not, of course, apply. We now consider these
two cases in detail.

033837-3



FORBES, BRADSHAW, AND ANDREWS PHYSICAL REVIEW A 94, 033837 (2016)

FIG. 1. (a) Feynman diagram for the diamagnetic two-photon
absorption, where the molecule undergoes transition from an initial
state i to a final state f . (b) Conventional diagram for two-photon
absorption, where r is a virtual intermediate state.

A. Application to two-photon absorption

Two-photon absorption (TPA) is a well-studied process,
widely used in nonlinear spectroscopy [19]. Single-beam TPA
is a suitable process to exhibit how a scalar diamagnetic con-
tribution can become both readily identifiable and dominant
compared to other multipole contributions. We begin with
standard perturbation theory, which tells us the leading contri-
bution to the matrix element for the diamagnetic contribution
to TPA is of first order in the interaction term. In certain
respects this appears to be analogous to one-photon absorption
because, in the diamagnetic contribution, both photons are
annihilated at the same point on the world line in the Feynman
graph, Fig. 1(a). In contrast, the leading contributions of the
nondiamagnetic TPA terms, which originate from the other
orders of multipole (including dipole) interactions, are second
order in the interaction term, Fig. 1(b). Another key difference
between the diamagnetic and nondiamagnetic contributions is
now evident: the lack of an intermediate state in diamagnetic
interactions. It is an issue we shall return to later.

Let a beam of n photons with mode (k,η) be incident
upon a system of N molecules each with an initial energy E0.
For such a case, the matrix element Mf i for the diamagnetic
contribution to TPA is given by

Mf i = 〈f |Hint|i〉, (19)

where Hint is given by Eq. (18) and |i〉 = |n(k,η)〉|E0〉 and
〈f | = 〈n − 2(k,η)|〈Ef |. The radiation part of the matrix
element is written as

〈n − 2(k,η)|a(η)a(η)|n(k,η)〉
= √

n〈n − 2(k,η)|a(η)|n − 1(k,η)〉
= √

n
√

n − 1〈n − 2(k,η)|n − 2(k,η)〉
= {n(n − 1)}1/2. (20)

On the usual assumption that the two-photon transition
involves the promotion of only a single electron, and that
its wave function is to a first approximation exactly separable
from those of the other electrons, then it is possible to further
develop the matrix element into a form that entails transition

dipole moments. This simply involves use of the completeness
relation to introduce a sum over states |r〉, together with
the defining operator relation −e

∑
α [qα(ξ ) − Rξ ]

i
= μi(ξ ).

Hence we obtain

Mf i = εijpεklp

(
�k

16mε0cV

)
{n(n − 1)}1/2

∑
r

μ
f r

i μr0
k bjbl,

(21)

where

(μiμk)f 0 = 〈f |μiμk|0〉 =
∑

r

〈f |μi |r〉〈r|μk|0〉

=
∑

r

μ
f r

i μr0
k . (22)

To secure the rate, we now deploy the Fermi rule 	 =
(2π/�)|Mf i |2Nρf . In passing we observe that in applications
to multiphoton absorption, the most appropriate density of
states for application of this formula is the density of final
states ρf of the molecule, so that the result reduces to being
dependent on the line shape of only the molecular states.
Although in principle the density of states for any particular
process will reflect a combination of uncertainties from both
matter and radiation, it is the factor that contributes the highest
overall number of states per unit frequency, momentum, or
energy interval that will play the decisive role. For this
reason—especially since multiphoton absorption is invariably
studied with narrow-linewidth laser light—it is both expedient
and appropriate to deploy a density of final material states for
nonlinear absorption or other such excitation processes.

Continuing, the rate 	 is thus given by

	 =
(

2πN

�

)(
�k

16mε0cV

)2

ρf n(n − 1)εijpεklpεqruεstu

×
∑

r

μ
f r

i μr0
k μ̄f r

q μ̄r0
s bj bl b̄r b̄t . (23)

When the product of Levi-Civita tensors is evaluated
using the tensor identity εijpεklpεqruεstu = δikδjlδqsδrt +
δilδjkδqt δrs − δikδjlδqt δrs − δilδjkδqsδrt , (23) becomes

	 =
(

2πN

�

)(
�k

16mε0cV

)2

ρf n(n − 1)

×
∑

r

(
μ

f r

i μr0
i μ̄f r

q μ̄r0
q |b · b|2

−μ
f r

i μr0
i μ̄

f r
t μ̄r0

s (b · b)b̄t b̄s

− μ̄f r
q μ̄r0

q μ
f r

k μr0
l (b̄ · b̄)bkbl

+μ
f r

k μr0
l μ̄

f r
t μ̄r0

s bkbl b̄t b̄s

)
. (24)

With the aid of standard techniques [20] we can now
perform a rotational average on the rate, which is required
when the orientations of the absorbing molecules are random,
as in a gas or liquid. It is instructive to show the results of the
averaging technique for each of the different rank tensors in
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Eq. (24). These are given as follows: 〈
μ

f r

i μr0
i μ̄f r

q μ̄r0
q

〉|b · b|2 = μ
f r

λ μr0
λ μ̄f r

μ μ̄r0
μ |b · b|2, (25)

− 〈
μ

f r

i μr0
i

〉
b · b

〈
μ̄

f r
t μ̄r0

s

〉
b̄t b̄s = − 1

3μ
f r

λ μr0
λ μ̄f r

μ μ̄r0
μ |b · b|2, (26)

− 〈
μ̄f r

q μ̄r0
q

〉
b̄ · b̄

〈
μ

f r

k μr0
l

〉
bkbl = − 1

3μ
f r

λ μr0
λ μ̄f r

μ μ̄r0
μ |b · b|2. (27)

The final term within the bracket of Eq. (24) corresponds to a rank four tensor and, therefore, is more complicated to use in a
rotational average procedure, as is shown below:〈

μ
f r

k μr0
l μ̄

f r
t μ̄r0

s

〉
bkblb̄t b̄s = bkblb̄t b̄s

1
30 [δklδts(4δλμδνπ − δλνδμπ − δλπδμν) + δkt δls(−δλμδνπ + 4δλνδμπ − δλπδμν)

+ δksδlt (−δλμδνπ − δλνδμπ + 4δλπδμν)]μf r

λ μr0
μ μ̄f r

ν μ̄r0
π , (28)

Upon contracting the greek indices, (28) becomes〈
μ

f r

k μr0
l μ̄

f r
t μ̄r0

s

〉
bkblb̄t b̄s = bkblb̄t b̄s

1
30

[
δklδts

{
4μ

f r

λ μr0
λ μ̄f r

μ μ̄r0
μ − μ

f r

λ μr0
μ μ̄

f r

λ μ̄r0
μ − μ

f r

λ μr0
μ μ̄f r

μ μ̄r0
λ

}
+ δkt δls

{−μ
f r

λ μr0
λ μ̄f r

μ μ̄r0
μ + 4μ

f r

λ μr0
μ μ̄

f r

λ μ̄r0
μ − μ

f r

λ μr0
μ μ̄f r

μ μ̄r0
λ

}
+ δksδlt

{−μ
f r

λ μr0
λ μ̄f r

μ μ̄r0
μ − μ

f r

λ μr0
μ μ̄

f r

λ μ̄r0
μ + 4μ

f r

λ μr0
μ μ̄f r

μ μ̄r0
λ

}]
. (29)

In all of the above, latin indices refer to the laboratory-fixed frame and the greek indices to the molecule-fixed frame.
Contracting the latin indices of Eq. (29) gives the final result as〈

μ
f r

k μr0
l μ̄

f r
t μ̄r0

s

〉
bkblb̄t b̄s = 1

30

[(
4|b · b|2 − 2

)
μ

f r

λ μr0
λ μ̄f r

μ μ̄r0
μ − (|b · b|2 − 3)

(
μ

f r

λ μr0
μ μ̄

f r

λ μ̄r0
μ + μ

f r

λ μr0
μ μ̄f r

μ μ̄r0
λ

)]
. (30)

Inserting (25)–(27) and (30) into the rate equation (24) gives the final rotationally averaged result as

〈	〉 =
(

πN

15�

)(
�k

16mε0cV

)2

ρf n(n − 1)
∑

r

[(
14|b · b|2 − 2

)
μ

f r

λ μr0
λ μ̄f r

μ μ̄r0
μ

− (|b · b|2 − 3)
(
μ

f r

λ μr0
μ μ̄

f r

λ μ̄r0
μ + μ

f r

λ μr0
μ μ̄f r

μ μ̄r0
λ

)]
. (31)

The premultiplier can be rewritten more succinctly by taking into account the degree of second-order coherence g(2) [21],
where g(2) = 〈n(n − 1)〉/〈n〉2, and then making use of the fact that the beam intensity may be given as the mean irradiance
Ī = 〈n〉c�ω/V . The rate equation (31) finally becomes expressible as

〈	〉 = NĪ 2g(2)Bdia , (32)

where the polarization-dependent molecular factor Bdia is the diamagnetic two-photon analog of the Einstein B coefficient, given
explicitly as follows:

Bdia = πρf

3840m2c6�ε2
0

∑
r

[
(14|b · b|2 − 2)μf r

λ μr0
λ μ̄f r

μ μ̄r0
μ − (|b · b|2 − 3)

(
μ

f r

λ μr0
μ μ̄

f r

λ μ̄r0
μ + μ

f r

λ μr0
μ μ̄f r

μ μ̄r0
λ

)]
. (33)

The absorption rate thus depends on the polarization of the incident radiation through the scalar product (b · b), which is
unity for linear polarization. Conversely this factor becomes zero for left or right circular polarization, for which we have
bL/R = (−i/

√
2)(î ± i ĵ ).

It is illuminating to compare the above result with the standard electric dipole–electric dipole result—as given by1

〈	〉 = NĪ 2g(2)BTPA, (34)

where

B
TPA = πρf

120ε2
0�

[
(2|e · e|2 − 1)αf i

λλ(ω,ω)ᾱf i
μμ(ω,ω) − (|e · e|2 − 3)αf i

λμ(ω,ω)ᾱf i

λμ(ω,ω)
]
. (35)

1A minor difference from the result reported by Craig and
Thirunamachandran is that our results are written explicitly in terms
of the square of the input irradiance, reflecting our decision on the
most appropriate form for the density of states factor.

In Eq. (35), α
f i

λλ(ω,ω) is a scalar, the trace of the second-
rank tensor α

f i

λμ(ω,ω); the latter is the usual (electric-dipole
response) molecular two-photon absorption tensor. Although
this tensor is not intrinsically index symmetric in its con-
struction, it can be treated as such since only its index-
symmetric part can give a nonzero result when, in the detailed
theory, it is duly coupled to the two equivalent input photon
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FIG. 2. (a) Feynman diagram for the diamagnetic contribution
to Rayleigh scattering. (b) Conventional diagram for Rayleigh
scattering.

polarization vectors. The standard selection rules for TPA
are a consequence of this form. Comparing in more detail
Eq. (33), it is evident that the selection rules with which the
diamagnetization contribution is associated are determined by
properties of the dyadic μ

f r

λ μr0
μ . Since it, too, acquires an

effectively index-symmetric form due to its tensor contraction
with magnetic polarization vectors, it yields precisely the same
TPA selection rules.

B. Application to Rayleigh scattering

The two-photon scattering process involving one creation
and one annihilation of a photon is studied here and illustrated
by the Feynman diagrams of Fig. 2. Both Raman and Rayleigh

scattering are types of two-photon scattering. As with TPA,
nondiamagnetic leading contributions to the matrix element
are of second order in the interaction, but diamagnetic
contributions are first order in the interaction. The matrix
element for the latter contribution to scattering is readily found
to be

Mf i = εijpεklp

(
�

16mε0cV

)√
nkk′

∑
r

μ
f r

i μr0
k bj b̄

′
le

i(k−k′)·R.

(36)

Using the Fermi rate rule together with [22] ρemission =
k′2d�′V /(2π )3

�c (as it is now more appropriate to associate
the degree of uncertainty with the precise axis of emission for
the final state of the radiation field) allows us to express the
scattering rate differential scattering cross section, using the
infinitesimal scattering rate below:

d	 =
(

2π

�

)(
�

16mε0cV

)2
nkk′3d�′V

(2π )3
�c

×
∣∣∣∣∣εijpεklp

∑
r

μ
f r

i μr0
k bj b̄

′
l

∣∣∣∣∣
2

. (37)

This rate may be converted into an infinitesimal cross
section by dividing by the photon flux number (nc/V ):

dσ = kk′3d�′

256m2ε2
0(2π )2c4

∣∣∣∣∣εijpεklp

∑
r

μ
f r

i μr0
k bj b̄

′
l

∣∣∣∣∣
2

.

(38)

The differential cross section dσ/d�′ follows immediately
which is the Kramers-Heisenberg dispersion formula. We can
once again perform a rotational average on the result which
yields

dσ = kk′3d�′

7680m2ε2
0(2π )2c4

∑
r

[
(14|b · b̄′|2 − |b · b′|2 − 1)μf r

λ μr0
λ μ̄f r

μ μ̄r0
μ − (|b · b̄′|2 − 4|b · b′|2 + 1)μf r

λ μr0
μ μ̄

f r

λ μ̄r0
μ

− (|b · b̄′|2 + |b · b′|2 − 4)μf r

λ μr0
μ μ̄f r

μ μ̄r0
λ

]
. (39)

Now using I (k′) = d	
d�′ �ck′ and writing the result for an assembly of identical atoms non–forward scattering, we have

I (k′) = NIk′4

30720m2ε2
0π

2c4

∑
r

[
(14|b · b̄′|2 − |b · b′|2 − 1)μf r

λ μr0
λ μ̄f r

μ μ̄r0
μ − (|b · b̄′|2 − 4|b · b′|2 + 1)μf r

λ μr0
μ μ̄

f r

λ μ̄r0
μ

− (|b · b̄′|2 + |b · b′|2 − 4)μf r

λ μr0
μ μ̄f r

μ μ̄r0
λ

]
. (40)

Finally, if we make the common assumption that the transition dipoles are real quantities, and express all of the Cartesian
index contractions as scalar products, we can write, more simply,

I (k′) = NIk′4

30720m2ε2
0π

2c4

∑
r

[(13|b · b̄′|2 − 2|b · b′|2 + 3)(μf r · μr0)
2 − (|b · b̄′|2 − 4|b · b′|2 + 1)|μf r |2|μr0|2]. (41)

There is one especially striking difference between this
result and the usual equation that emerges from electric-
dipole-only coupling, which is cast in terms of the molecular
polarizability [16], the lack of a dispersion character, beyond

the fourth power dependence on frequency (inverse fourth
power of wavelength) that is a common hallmark of scattering
intensities. The dispersion character that results from two
dipole interactions is, in fact, a common feature associated
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with all conventional multipolar contributions. This means
that in a study of Rayleigh scattering over any wavelength
region where the kind of line shape arises that is associated
with proximity to an electronic absorption band, or its wings,
the diamagnetization contribution that we have identified is
unique, and will be in principle analytically separable.

IV. DISCUSSION

It has usually been argued that one of the most significant
effects of diamagnetization coupling is a relatively small con-
tribution to the dispersion interaction between molecules, in
which it features alongside magnetic-dipole–magnetic-dipole,
electric-quadrupole-electric-quadrupole, and the cross-term
couplings. Elsewhere, inclusion of the diamagnetic coupling
terms is justified on the basis that they are the same magnitude
as other higher-order terms that are regularly studied [23–25]
and in some cases are seen to be larger [26]. As indicated at the
outset, this is commonly the primary basis for the inclusion
of diamagnetic interactions; it leads to results that account
properly for all processes within a given physical phenomenon.
However, there are other features, of broader application, to
which we can now draw further attention.

First, we have observed, with regard to its role in Rayleigh
scattering, that the diamagnetization term delivers a contri-
bution without the optical dispersion character with which
that process is usually associated—as emerged in Eq. (41).
Another interesting feature is the independence of the Rayleigh
scattering intensity arising from diamagnetic coupling on
wavelength; a similar behavior was obtained in the dispersion
potential between two diamagnetic atoms [27]. In principle, a
careful study of the wavelength dependence, over a region of
significant dispersion, ought therefore to enable specific identi-
fication and quantification of the diamagnetization effect. This
might be achieved, for example, by best-fitting the dispersion
curve to a suitable line-shape function, running the residuals
into a log-log plot against wavelength, and recognizing a
-4 gradient. A similar effect could also, in principle, arise

in two-photon absorption—if twin-beam excitation with two
different optical frequencies were to be used (to allow a degree
of freedom in the frequency input).

Secondly, there is one other aspect worthy of attention. In
arriving at Eqs. (32) and (41), it may be observed that there is
an underlying assumption—namely, that the usual free-space
relationship between electric and magnetic field strengths
applies. This is how the anticipated dependence on irradiance
emerges. Indeed, by applying the relevant quantum operators it
is readily shown that in their quadratic forms, each contributes
exactly half of the (n + 1

2 )�ω energy for a state with photon
occupancy n, in a mode of frequency ω. However, as a recent
spate of publications [28–31] has shown, curious anomalies
can arise with circularly polarized light, in the vicinity of
a mirror upon which it has normal incidence. As a result
of the superposition of forward and backward propagating
light, the relative strengths of the electric and magnetic fields
are then found to vary over distance, within the space of a
wavelength. It thus transpires that for any observations of
phenomena that can engage diamagnetization coupling with
an input or reflected beam (such as the two-photon absorption
studied above), the quadratic dependence on the magnetic
field should manifest an exceptional position dependence,
according to displacement from the mirror surface. A detailed
analysis shows that diamagnetization contribution acquires a
position-modified form, and the corresponding rate, as given
by Eq. (32), becomes multiplied by a factor of cos4kd, where
d is the distance from the mirror. In particular, it also emerges
that the usually dominant electric-dipole form of interaction
(involving the α tensor) is most strongly suppressed at the same
location (due to quantum uncertainty the result is not exactly
zero). In consequence, the diamagnetization response should
dominate two-photon absorption at this position, alongside a
weak magnetic-dipole–magnetic-dipole effect.
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Stanojevic, R. Côté, E. E. Eyler, and P. L. Gould, Phys. Rev. A
79, 052509 (2009).

[25] J. Deiglmayr, H. Saßmannshausen, P. Pillet, and F. Merkt, Phys.
Rev. Lett. 113, 193001 (2014).

[26] M. Marinescu and L. You, Phys. Rev. A 59, 1936 (1999).
[27] A. Salam, J. Phys. B: At., Mol. Opt. Phys. 33, 2181 (2000).
[28] Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901

(2010).
[29] Y. Q. Tang and A. E. Cohen, Science 332, 333 (2011).
[30] E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala,

and T. J. Davis, Nano Lett. 12, 3640 (2012).
[31] M. M. Coles and D. L. Andrews, Opt. Lett. 38, 869 (2013).

033837-8

http://dx.doi.org/10.1002/andp.19314010303
http://dx.doi.org/10.1002/andp.19314010303
http://dx.doi.org/10.1002/andp.19314010303
http://dx.doi.org/10.1002/andp.19314010303
http://dx.doi.org/10.1002/anie.200805257
http://dx.doi.org/10.1002/anie.200805257
http://dx.doi.org/10.1002/anie.200805257
http://dx.doi.org/10.1002/anie.200805257
http://dx.doi.org/10.1063/1.434725
http://dx.doi.org/10.1063/1.434725
http://dx.doi.org/10.1063/1.434725
http://dx.doi.org/10.1063/1.434725
http://dx.doi.org/10.1103/PhysRevA.64.012507
http://dx.doi.org/10.1103/PhysRevA.64.012507
http://dx.doi.org/10.1103/PhysRevA.64.012507
http://dx.doi.org/10.1103/PhysRevA.64.012507
http://dx.doi.org/10.1103/PhysRevA.79.052509
http://dx.doi.org/10.1103/PhysRevA.79.052509
http://dx.doi.org/10.1103/PhysRevA.79.052509
http://dx.doi.org/10.1103/PhysRevA.79.052509
http://dx.doi.org/10.1103/PhysRevLett.113.193001
http://dx.doi.org/10.1103/PhysRevLett.113.193001
http://dx.doi.org/10.1103/PhysRevLett.113.193001
http://dx.doi.org/10.1103/PhysRevLett.113.193001
http://dx.doi.org/10.1103/PhysRevA.59.1936
http://dx.doi.org/10.1103/PhysRevA.59.1936
http://dx.doi.org/10.1103/PhysRevA.59.1936
http://dx.doi.org/10.1103/PhysRevA.59.1936
http://dx.doi.org/10.1088/0953-4075/33/12/302
http://dx.doi.org/10.1088/0953-4075/33/12/302
http://dx.doi.org/10.1088/0953-4075/33/12/302
http://dx.doi.org/10.1088/0953-4075/33/12/302
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1021/nl3012787
http://dx.doi.org/10.1021/nl3012787
http://dx.doi.org/10.1021/nl3012787
http://dx.doi.org/10.1021/nl3012787
http://dx.doi.org/10.1364/OL.38.000869
http://dx.doi.org/10.1364/OL.38.000869
http://dx.doi.org/10.1364/OL.38.000869
http://dx.doi.org/10.1364/OL.38.000869



