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In the framework of the signal processing approach to single-atom resonance fluorescence with spectral
resolution, we diagrammatically derive an analytical formula for arbitrary-order spectral correlation functions
of the scattered fields that pass through Fabry-Perot interferometers. Our general expression is then applied to
study correlation signals in the limit of well separated spectral lines of the resonance fluorescence spectrum.
In particular, we study the normalized second-order temporal intensity correlation functions in the case of the
interferometers tuned to the components of the spectrum and obtain interferential corrections to the approximate
results derived in the secular limit. In addition, we explore purely spectral correlations and show that they can
fully be understood in terms of the two-photon cascades down the dressed state ladder.
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I. INTRODUCTION

Single-atom resonance fluorescence (RF) has for decades
served as a basic quantum electrodynamical model to study
light-matter interactions [1,2]. One of the most famous features
of RF is the emission spectrum of a strongly laser-driven atom
consisting of three Lorentzian peaks [3–7], which is often
referred to as the Mollow triplet. The RF spectrum provides
information about the elementary scattering processes of laser
photons on the atom. The identification of the scattering
processes that are correlated requires a study of higher-order
spectral correlation functions [8].

To measure frequency resolved RF photons, one puts a
spectral apparatus, such as a Fabry-Perot interferometer [9,10],
between a laser driven atom and a broadband detector. The
presence of an interferometer in the measurement setup poses
some fundamental questions, such as, what is the collapsed
atomic state following detection a spectrally resolved photon
[11]? Furthermore, finite resolution of any realistic filter leads
to deviations of the observed (i.e., physical) RF spectra and
spectral correlation functions from the ideal ones (i.e., resolved
infinitely sharply).

The problem of a theoretical description of spectral detec-
tion with a proper account of the filtering process in RF from
real atoms attracted much attention in the late 1970s till the
early 1990s [12–20]. In particular, temporal correlations be-
tween RF photons emitted into the components of the Mollow
triplet have been studied for a wide range of filter bandwidths
[12–14,19–21] in the limit of well separated spectral lines
[2,12,13], providing a good quantitative agreement with the
experiments [19,20,22].

In recent years, progress in coherent control of artificial
atoms (e.g., quantum dots, superconducting qubits, etc.) has
furnished interest in using their RF in applications, such
as quantum logic devices or single-photon generators [23].
Nonlinear optical spectroscopy with man-made quantum
emitters has become a mature field where such experimental
milestones as the observation of the Mollow triplet [23–27] and
of the bunching of the time-ordered emission of the sideband
photons [28] have been reached. However, the optimization
of the operation regimes of devices based on artificial atoms

requires a more accurate analysis of the spectral correlation
functions in RF than was hitherto obtained. Since RF from
both real and artificial atoms can be described by essentially
the same formalism, what remains is to generalize the theory of
spectral correlations in RF to arbitrary driving field strengths
and to arbitrary filter tuning frequencies.

This problem has been addressed in [29]. Based on the ap-
proach developed in [29], full two-color correlation functions
of light emitted by a quantum dot have been calculated [30,31].
In particular, it has been shown [31,32] that by spectrally
selecting pairs of RF photons it is possible to produce
frequency-entangled photon pairs or photons exhibiting strong
bunching. The latter effect has recently been experimentally
confirmed [33].

Our present contribution is motivated not by the need to
identify spectral filtration regimes that would further enhance,
e.g., the nonclassical properties of RF, but rather by the
following two factors. First, within the method of [29], each
interferometer is treated as a separate quantum system (sensor)
that is weakly coupled to a laser-driven quantum emitter.
Though this approach, being in the spirit of the theory of
cascaded quantum systems [34,35], is physically sound and
general, its implementation demands working in the Hilbert
space that is a tensor product of the constituents’ Hilbert
spaces. Since this implies exponentially increasing complexity
with the number of sensors, it is desirable to put forward an
alternative method that is free of this drawback. A method
which we develop in this work represents a generalization of
the so-called signal-processing approach of [15–20], where
each filter is treated as a black box, whose output is related to
the input by a spectral response function [9]. In this framework,
all calculations are performed in the Hilbert space of a single
atom.

Second, in order to quantify spectral correlations, correla-
tion functions that are normalized in one or other way have
been employed in [29,31,32]. In the limit of well separated
spectral lines, these functions attain large maxima on the tails
of the spectral distribution of RF. A special class of scattering
processes—the “leapfrog” processes—has been introduced to
explain the origin of these strong correlations [30]. However,
it is one of the goals of this paper to show that the concept
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of the “leapfrog” processes is not justified; large values of the
correlations functions stem from post-selection on the tails of
the RF spectrum.

The rest of the paper is structured as follows. In the next
section we recall the model of single-atom resonance fluores-
cence and define the general spectral correlation functions
of the scattered fields that are transmitted by Fabry-Perot
filters with arbitrary bandwidths and tuning frequencies.
In Sec. III we develop our method and derive a general
analytical expression for the spectral correlation functions.
Next, we adapt our method to the case of temporal and
spectral detection, and calculate the normalized second-order
temporal intensity correlation functions of spectrally filtered
fields. Section V is devoted to the application of our approach
in the limit of well separated spectral lines. Thereby, we
compare our results with the previous analytical results [20]
that were obtained in the secular approximation [2]. Besides,
we present an alternative explanation of the strong correlations
reported in [30] and calculate the unnormalized spectral
correlation function, which exhibits no signatures of the
leapfrog transitions. We conclude our work in Sec. VI.

II. SPECTRALLY RESOLVED DETECTION
OF RESONANCE FLUORESCENCE

We set out this section with the description of the model
of single-atom resonance fluorescence. We present a master
equation governing the dynamics of the atomic reduced density
operator, as well as its formal solution. In Sec. II B we consider
the problem of spectral detection of resonance fluorescence.
Here we recall the relation between the normally ordered
correlation functions of fields transmitted by Fabry-Perot
interferometers and the multitime atomic dipole correlation
functions.

A. Master equation

Our system of interest consists of a single immobile
two-level quantum emitter (an atom, molecule or a quantum
dot) interacting with the quantized radiation field (bath) and
with a monochromatic laser wave, whose frequency, ωL, is
close to the atomic transition frequency, ωA: |ωL − ωA| � ωA.
The laser field induces coherent dynamics of the atomic
populations and coherences, whereas the coupling of the atom
to the radiation field induces spontaneous emission as well
as a decay of the off-diagonal elements of the atomic density
matrix. The total Hamiltonian of this system reads

H = HA + HAL + HF + HAF , (1)

where HA is a free two-level atom Hamiltonian, HAL is an
interaction Hamiltonian of the atom with the laser field, HF

is a free Hamiltonian of the radiation field, and HAF is an
interaction Hamiltonian of the atom with the radiation field.
We assume that the field bath is initially in the vacuum
state and employ the standard Born-Markov and rotating
wave approximations to derive a master equation governing
the evolution of the reduced density matrix of the two-
level system ρ ≡ ρA = TrF (ρAF ), averaged over the radiation
field’s degrees of freedom (F ). In the frame rotating at the

laser frequency, the resulting master equation reads [36]:

ρ̇ = Lρ = i
�

2
[σz,ρ] − i

v

2
[σ+ + σ−,ρ]

+ γ (2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (2)

where L is a Liouvillian superoperator, σ+ = |2〉〈1|,σ− =
|1〉〈2| and σz = |2〉〈2| − |1〉〈1| are respectively the atomic
raising, lowering and inversion operators, � = ωL − ωA,v is
the Rabi frequency, and γ is half the spontaneous decay rate.

Equation (2) has a formal solution,

ρ(t) = eL(t−t0)ρ(t0),

or, in a matrix form,

ρkl(t) =
2∑

i,j=1

Dij

kl(t − t0)ρij (t0), (3)

whereDij

kl(t) are the matrix elements of the Green’s matrix [37]
of Eq. (2). By virtue of the quantum regression theorem [38],
arbitrary multitime dipole correlation functions for an atom
whose dynamics is governed by the Markov master equation
of type (2) can be expressed through products of Dij

kl(t) [37]
(see Sec. III A).

B. Correlation functions of spectrally filtered fields

According to Glauber’s photodetection theory [39], quan-
tum statistical properties of the electromagnetic field can be
characterized by a set of the normally ordered field correlation
functions,

G(n,m)(x1, . . . ,xn,xn+1, . . . ,xn+m)

= 〈E(−)(x1) · · · E(−)(xn)E(+)(xn+1) · · · E(+)(xn+m)〉, (4)

where E(+/−)(xi) denotes the positive-/negative-frequency part
of the electric field vector operator at the space-time point
xi ≡ {ri ,ti}.

Let us consider spectral detection of single-atom resonance
fluorescence, whereupon each of the field components scat-
tered by the atom is spectrally resolved by an interference
filter. Then the positive-frequency component of the field can
be represented as the following sum [40,41]:

E(+)(xi) = E(+)
free(xi) + E(+)

s (xi), (5)

where the first and second terms in the right-hand side are,
respectively, the free- and source-field components. Due to
the vacuum initial state of the radiation field, the free-field
component does not contribute to the normally ordered aver-
ages of the field operators, and will be dropped in subsequent
expressions.

The spectrally resolved field of the atomic source is given
by the convolution [9,41]

E(+)
s (r,t + �t + |r|/c) ∝

∫ t

0
dt ′Tf(t − t ′)σ−(t ′), (6)

where Tf(t) is the filter transmission function, �t is the time
delay caused by difference between the speed of light in a
dielectric medium of the filter and in vacuum, and σ−(t) is
the atomic lowering operator in the frame rotating at the laser
frequency. In passing, we note that the integral form (6) is
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typical of non-Markov processes [42,43], since the filtered
field at time t is determined by the distribution of the atomic
emission events over the entire atom-laser field interaction
history.

Throughout this work, we assume our filtering devices to
be Fabry-Perot interferometers, whose transmission response
functions can be approximated by a single exponential [9],

Tf(t) = �(t)�e−(�+iδ)t ,
(7)

≡ �(t)Re[λ]e−λt ,

where �(t) is the unit step function, � is the filter bandwidth,
and δ = ω − ωL is the detuning between the filter and laser
frequencies.

Before we move on, we would like to mention a recent work
on spectral correlations of photons emitted by a laser driven
single molecule [44], where the filtering device has implicitly
been referred to as the Fabry-Perot interferometer. However,
the expression for the frequency resolved field correlation
function in [44] differs from that given by Eq. (8) and rather
corresponds to the spectral decomposition performed by a
prism [43].

Equation (6) can be simplified if we ignore the retardation
effects and set �t + |r|/c = 0 for each atom-filter-detector
path. This approximation becomes exact in the steady state
limit t → ∞, on which we will focus henceforth. Furthermore,
we assume equal optical paths from the atom to each detector.
In this case the spatial dependence in (6) can be dropped and we
arrive at the following expression for the correlation function
of the spectrally resolved fields [17,18]

G(n,m)(λ1, . . . ,λn,λn+1, . . . ,λn+m) = lim
t→∞

∫ t

0
dt1 · · ·

∫ t

0
dtn

∫ t

0
dtn+1 · · ·

∫ t

0
dtn+m

× T ∗
f1

(t − t1) · · · T ∗
fn

(t − tn)Tfn+1 (t − tn+1) · · · Tfn+m (t − tn+m)〈−→T [σ+(t1) · · · σ+(tn)]
←−
T [σ−(tn+1) · · · σ−(tn+m)]〉, (8)

where
−→
T [· · · ] (

←−
T [· · · ]) are the operators of chronological

ordering which arrange the atomic raising (lowering) operators
such that their time arguments increase from left to right
(from right to left), as indicated by the arrows. Expression
(8) corresponds to simultaneous detection of n + m field
components (since ti = t for i = 1, . . . ,n + m) in a setup
where each positive- and negative-frequency field component
is filtered with an individual filter.

In the particular case of spectrally resolved intensity
correlation functions, one sets m = n and Tfi (t) = Tf2n+1−i

(t)
(i = 1, . . . ,n). After we present a recipe for calculating
the functions G(n,m)(λ1, . . . ,λn,λn+1, . . . ,λn+m) in Sec. III,
we will focus on a spectral and temporal detection of
resonance fluorescence for n = m = 2 in Sec. IV. In the
latter case, the intensity correlation function depends not only
on the parameters of two spectrometers, but also on a time
delay, τ , between the detection events of spectrally filtered
photons.

III. DERIVATION OF A GENERAL FORMULA FOR
G(n,m)(λ1, . . . ,λn+m)

In this section, we take the multifold integrals in the right
hand side of Eq. (8). We divide this task into two steps. In
Sec. III A, we introduce diagrams that allow us to express the
multitime dipole correlation function in a transparent way. In
Sec. III B, we use the Laplace transform to obtain the analytical
expression for this function.

A. Diagrammatic presentation of the multitime dipole
correlation functions

As seen from Eq. (8), the spectral field correlation function
represents a multifold convolution of the atomic dipole

correlation function,

C(n,m)(t1, . . . ,tn+m) ≡ 〈−→T [σ+(t1) · · · σ+(tn)]

× ←−
T [σ−(tn+1) · · · σ−(tn+m)]〉, (9)

with the filters’ transmission functions. The calculation of
C(n,m)(t1, . . . ,tn+m) is complicated by the fact that the atomic
operators do not commute with themselves at different times
[41]. Therefore, in order to find C(n,m)(t1, . . . ,tn+m), one needs
to split the multiple integral in the right-hand side of (8)
into a sum of (n + m)! time-ordered integrals and apply the
quantum regression theorem to each of the resulting functions
C(n,m)(t1, . . . ,tn+m), whose arguments now have a definite
order.

In the following we show that this task—the calculation of
the convolution integrals of the time-ordered correlation func-
tions C(n,m)(t1, . . . ,tn+m)—can be accomplished, and a general
analytical expression for the function G(n,m)(λ1, . . . ,λn+m) can
be derived for arbitrary n,m.

According to the definition of the normally ordered
correlation function (8), times t1, . . . ,tn are associated with
the atomic raising operator σ+, whereas times tn+1, . . . ,tn+m

are associated with the atomic lowering operator σ−. It is
instructive to represent an arbitrary temporal sequence using
double-row diagrams, where the upper and lower rows carry
times associated with the operators σ+ and σ−, respectively.
Figure 1 gives an example of a possible order of times
t1, . . . ,tn, namely, 0 � t1 � tn+1 � tn+2 � t2 � tn+3 � · · · �
tn � tn+m � t . This type of diagram is somewhat reminiscent
of the double-sided Feynman diagrams that have been exten-
sively used in nonlinear optical spectroscopy [45]. Subsequent
times are connected by a single or a double line (see Fig. 1)
in accordance with the following rule: If the line’s outgoing
time is in the upper row then the line is single; otherwise,
it is double. These lines correspond to two types of matrix
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0

t2;λ2

t

tn;λn

tn+1   ; 

t ;λ1 1

λn+1 t ;λn+2 n+2 t ;λn+m n+m

FIG. 1. Example of a diagram that corresponds to the following
time order: 0 � t1 � tn+1 � tn+2 � t2 � tn+3 � · · · � tn � tn+m �
t . Beside each time ti we include the exponents λi of the filter
transmission functions (7), with which the operators σ±(ti) are
convolved. Subsequent times are connected by single or double
lines that are associated with the propagators D[+](t) and D[−](t),
respectively [see Eq. (10)].

propagators that are needed to assess the multitime dipole
correlation functions. As already mentioned, such correlation
functions can be expressed through products of the Green’s
matrix elementsDij

kl(t) [i,j,k,l = 1,2; see Eq. (3)], whose total
number is 16. However, since the function C(n,m)(t1, . . . ,tn+m)
includes two types of atomic operators (σ+ and σ−), only
nine elements ofDij

kl(t) suffice to calculate C(n,m)(t1, . . . ,tn+m).
Consistently, three out of four density matrix elements ρij (t0)
come into play; they can be arranged into a three-component
vector. The resulting matrix propagators and vector read

D[+](t) =

⎛
⎜⎝
D11

12(t) 0 D21
12(t)

D11
21(t) 0 D21

21(t)

D11
22(t) 0 D21

22(t)

⎞
⎟⎠, (10a)

D[−](t) =

⎛
⎜⎝

0 D11
12(t) D12

12(t)

0 D11
21(t) D12

21(t)

0 D11
22(t) D12

22(t)

⎞
⎟⎠, (10b)

r(t) = [ρ12(t),ρ21(t),ρ22(t)]T , (10c)

where D[+](t) and D[−](t) correspond to single and dou-
ble lines in a diagram, respectively. The computation of
C(n,m)(t1, . . . ,tn+m) now reduces to the multiplication of the
vector r(t), taken at the earliest time, by the propagators
between subsequent times. Finally, C(n,m)(t1, . . . ,tn+m) is
given by the first (second) element of the resulting vector,
if the final time is in the upper (lower) row. As will become
clear shortly, it is convenient to denote these first and second
elements as {·}+ and {·}−, respectively.

The above rules provide an unambiguous way to find
C(n,m)(t1, . . . ,tn+m). For example, the expression for the multi-
time correlation function represented by the diagram in Fig. 1
reads

C(n,m)(t1, . . . ,tn+m) = {D[+](tn+m − tn) · · ·
× D[+](tn+3 − t2)D[−](t2 − tn+2)D[−](tn+2 − tn+1)

× D[+](tn+1 − t1)r(t1)}+, (11)

and its generalization to an arbitrary double-row diagram (i.e.,
arbitrary time ordering) is straightforward.

B. Calculation of the multifold convolution integrals

Now, expanding the right-hand side of (8) into a sum of
(n + m)! time ordered integrals, and using Eqs. (7) and (11),
we arrive at the following expression for the function G(n,m)

(for brevity, we omit its arguments):

G(n,m) =
∑

π(j1,...,jn+m)

lim
t→∞

∫ t

0
dtj1

∫ tj1

0
dtj2 . . .

∫ tjn+m−1

0
dtjn+m

×
n+m∏
k=1

�ke
−λjk

(t−tjk )
{
D[sj2 ]

(
tj1 − tj2

)
· · · D[sjn+m ]

(
tjn+m−1 − tjn+m

)
r
(
tjn+m

)}
sj1

, (12)

where π (j1, . . . ,jn+m) denotes permutations of indices
j1, . . . ,jn+m ∈ {1, . . . ,n + m}, and

sjk
=

{+ if jk ∈ {1, . . . ,n},
− if jk ∈ {n + 1, . . . ,n + m}. (13)

Due to the exponential form of the filter transmission functions
(7), the latter are nothing but kernels of the Laplace transforms,
with variables λk (note that for each k, Re [λk] = �k > 0),
shown beside the respective times, tk , in Fig. 1. This allows us
to take the convolution integrals in Eq. (12) exactly, with the
result (see Appendix B)

G(n,m) = 1

1

∑
π(j1,...,jn+m)

�j1

{[
n+m∏
k=2

�jk
D̃[sjk

](k)

]
r∞

}
sj1

,

(14)

where r∞ = limt→∞ r(t),

k =
n+m∑
l=k

λjl
, (15)

and D̃[±](p) is Laplace transform of the propagator D[±](t).
The explicit expressions for the elements of D̃[±](p) and r∞
are given in Appendix A. Thus, according to our result (14),
the calculation of the stationary spectrally resolved correlation
function G(n,m) amounts to a sum of (n + m)! products of
(n + m − 1) matrices D̃[±](p) [see Eq. (10b)]; a task which
can be efficiently implemented numerically.

It should be noted that the structure of the expression (14) is
similar to that of single-atom spectral response functions that
appear in the multiple scattering theory of intense laser light
from cold atoms [46]. The precise relationship between these
two types of functions will be established in future work.

For the particular case of spectrally resolved intensity
correlation functions, we have m = n and λk = (λ2n+1−k)∗
(k = 1, . . . ,n). The correlation function G(n,n) then depends
on n bandwidths and n detunings (instead of 2n bandwidths
and 2n detunings): G(n,n) ≡ G(n,n)(�1,δ1; . . . ; �n,δn).

For n = m = 1, Eq. (14) reduces to the first-order spectral
field correlation function, which is related to the stationary
physical spectrum, S(�,δ), via S(�,δ) = �−1G(1,1)(�,δ) [41],
or

S(�,δ) = Re [{D̃[+](� − iδ)r∞}−]. (16)

We illustrate the � dependence of the physical spectra
[see Eq. (16)] at a moderate generalized Rabi frequency,
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0.2
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0.5

(ω−ωL)/γ

S(Γ,ω−ωL) (arb. units)

Γ−> 0

0.1γ

0.5γ

1.0γ

Γ=2.0γ

FIG. 2. Stationary physical spectra S(�,ω − ωL), calculated us-
ing Eq. (16) at v = 10γ and � = 2γ (i.e., � ≈ 10.2γ ) for filter band-
widths �/γ = 0,0.1,0.5,1.0,2.0. The Mollow triplet corresponds to
lim�→0 S(�,ω − ωL).

� ≈ 10.2γ by several examples in Fig. 2. Like the Mollow
triplet, the stationary physical spectrum consists of three
Lorentzian components that are symmetrically shifted by �

from the central peak, located at the laser frequency. Although
the line shape of the physical spectra, in general, deviates from

that of the Mollow triplet [4], it tends to the latter in the limit
� → 0.

Let us finally note that the expression (16) for the stationary
physical spectrum can be generalized to a multilevel atom,
where it is possible to control interference between emission
processes from different dipole transitions of the atom through
variation of the filter bandwidth [47,48].

IV. TEMPORAL AND SPECTRALLY RESOLVED
DETECTION. CASE n = m = 2

Having obtained the general expression, Eq. (14), for
the function G(n,m), we now specialize on the case of n =
m = 2, where the two photodetection events are separated
by a time delay τ . From the definition of the temporal
intensity correlation function, we move on to a discussion
of its symmetry properties with respect to the filter tuning
frequencies at τ = 0. Finally, we consider arbitrary time delays
and introduce diagrams that help us to take the emerging
convolution integrals.

A. Definition

In this section, we consider the case of simultaneous
temporal and spectral detection, focusing on the second-
order temporal intensity correlation function of the spectrally
resolved fields. For equal filter bandwidths, �1 = �2 = �, this
function is defined as

G(2,2)
τ (�; δ1,δ2) = lim

t→∞

∫ t

0
dt1

∫ t+τ

0
dt2

∫ t+τ

0
dt3

∫ t

0
dt4T

∗
f1

(t − t1)T ∗
f2

(t − t2)Tf2 (t − t3)Tf1 (t − t4)

×〈−→T [σ+(t1)σ+(t2)]
←−
T [σ−(t3)σ−(t4)]〉, (17)

where time delay τ � 0 corresponds to the case where a photon
resolved by the interferometer with the detuning δ1 is detected
first.

B. Symmetry properties at τ = 0

The zero-delay second-order intensity correlation function
reads [compare to Eq. (14)],

G
(2,2)
0 (�,δ1,δ2)≡ �3

4

∑
π(j1,...,j4)

{[
4∏

k=2

D̃[sjk
]

(
4∑

l=k

λjl

)]
r∞

}
sj1

.

(18)

Henceforth, all spectral correlation functions corresponding
to simultaneous detection (τ = 0) will for definiteness be
furnished by the subscript 0. Consistently, the notation G

(1,1)
0

will be reserved for the stationary first-order field correlation
function.

For simultaneous detection, the order of the detunings δ1

and δ2 in Eq. (18) becomes immaterial, which leads to the
mirror reflection symmetry about the diagonal in the (δ1,δ2)
plane,

G
(2,2)
0 (�,δ1,δ2) = G

(2,2)
0 (�,δ2,δ1). (19)

Furthermore, at exact resonance (� = 0), there appears an
additional mirror reflection symmetry about the antidiagonal
δ1 = −δ2:

G
(2,2)
0 (�,δ1,δ2) = G

(2,2)
0 (�, − δ1, − δ2). (20)

Both symmetry properties can be explicitly demonstrated by
the perturbative calculation of the correlation signals using the
two-photon scattering amplitudes, which is valid in the limit
v � γ . From Eq. (18) we obtain the result

G
(2,2)
0 =

(
�v

2

)4
P

Q
+ O((v/γ )5), (21)

where

P = 8�γ δ1δ2 + 8γ�3 + 4�2[�2 + 2δ1δ2 − �(δ1 + δ2)]

+ 4�4+[
δ2

1+δ2
2−�(δ1+δ2)

]2+γ 2[4�2+(δ1 + δ2)2],

(22a)

Q = (γ 2 + �2)
(
�2 + δ2

1

)(
�2 + δ2

2

)
[4�2 + (δ1 + δ2)2]

× [(� + γ )2 + (� − δ1)2][(� + γ )2 + (� − δ2)2].

(22b)
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In the nonperturbative regime, Eqs. (19) and (20) also hold
true. In this case the symmetry G

(2,2)
0 (�,δ1,δ2) = G

(2,2)
0 (�,

− δ1, − δ2), at � = 0, is related to the equal state populations
of the eigenstates of laser-atom interaction Hamiltonian
(dressed states [2]; see Sec. V A 1).

C. Decomposition of Eq. (17)

Without loss of generality, we assume that τ � 0 (the result
for τ < 0 follows upon the replacements δ1 ↔ δ2), and expand
the fourfold integral in Eq. (17) into four terms:

G(2,2)
τ =

4∑
k=1

Ik(τ ), (23)

where

I1(τ ) = lim
t→∞

∫ t

0
dt1

∫ t

0
dt2

∫ t

0
dt3

∫ t

0
dt4

×F(t,τ )(t1 . . . ,t4), (24a)

I2(τ ) = lim
t→∞

∫ t

0
dt1

∫ t+τ

t

dt2

∫ t

0
dt3

∫ t

0
dt4

×F(t,τ )(t1 . . . ,t4), (24b)

I3(τ ) = lim
t→∞

∫ t

0
dt1

∫ t

0
dt2

∫ t+τ

t

dt3

∫ t

0
dt4

×F(t,τ )(t1 . . . ,t4), (24c)

I4(τ ) = lim
t→∞

∫ t

0
dt1

∫ t+τ

t

dt2

∫ t+τ

t

dt3

∫ t

0
dt4

×F(t,τ )(t1 . . . ,t4), (24d)

with

F(t,τ )(t1 . . . ,t4) = �4e−2�τ

4∏
k=1

e−λk (t−tk )

×〈−→T [σ+(t1)σ+(t2)]
←−
T [σ−(t3)σ−(t4)]〉.

(25)

Since I1(τ ) coincides, up to the exponential prefactor e−2�τ ,
with G

(2,2)
0 [see Eqs. (24a), (25), and (17)], we obtain

I1(τ ) = e−2�τG
(2,2)
0 , (26)

where G
(2,2)
0 is given by Eq. (18).

The remaining three integrals, given by Eqs. (24b)–(24d),
are partially temporarily ordered.

By analogy with the case of the function G(n,m) (see
Sec. III A), we expand these integrals into fully time-ordered
ones, and use double-row diagrams to calculate the dipole
correlation functions 〈−→T [σ+(t1)σ+(t2)]

←−
T [σ−(t3)σ−(t4)]〉. Ex-

amples of fully time-ordered diagrams corresponding to
integrals I2(τ ), I3(τ ), and I4(τ ) are presented in Fig. 3. It
is easy to see that there are overall six terms in the expansions
of I2(τ ) and I3(τ ) into the fully time-ordered integrals. As
for I4(τ ), it can be decomposed into four fully time-ordered
integrals. The derivation of the analytical expressions for I2(τ ),
I3(τ ), and I4(τ ) is given in Appendix C.

(c)

(a) (b)

0

t

t2; λ2

t3; λ3 t ; λ4 4

t ; λ1 1

t ; λ1 1

t2; λ2

t3; λ3t ; λ4 4
0 t+τ

t t+τ t

t ; λ1 1 t2; λ2

t3; λ3t ; λ4 4
0 t+τ

FIG. 3. Examples of time-ordered diagrams that contribute to (a)
I2(τ ), (b) I3(τ ), and (c) I4(τ ).

Using the results obtained in this section, we will next
analyze the behavior of the second-order temporal intensity
correlation function of frequency resolved RF in the limit of
well separated spectral lines.

V. NUMERICAL RESULTS: LIMIT OF WELL-SEPARATED
COMPONENTS

In this section, we apply the general expressions that we
derived in Secs. III and IV to analyze correlation signals
in resonance fluorescence with spectral resolution in the
limit of well-separated components, � � γ . Thereby, we
attain two goals. One the one hand, we obtain corrections
to the approximate expressions for the second-order temporal
intensity correlation functions that were obtained in [20]. On
the other hand, it is in this regime of strong atom-laser field
coupling where the authors of [30] introduced a new class of
elementary processes to explain the behavior of the normalized
second-order intensity correlation functions with spectral
resolution. We show that the observed features stem from
normalization, whereas spectral correlations can be understood
using the “standard” transitions down the dressed-state ladder.

A. Normalized second-order intensity correlation function

1. Approximate versus rigorous treatment

As already mentioned, in the limit � � γ , where � =
(�2 + v2)1/2 is the generalized Rabi frequency, the emission
spectrum of resonance fluorescence splits into three compo-
nents [4], each of which has a width of the order of γ , that are
centered at the well-separated frequencies ωL − �, ωL, and
ωL + �. In this case, the spectral lines of the RF triplet can
be attributed to spontaneous transitions down the ladder of the
so-called dressed states [12] (see Fig. 4),

|−〉 = cθ/2|1〉 − sθ/2|2〉, (27a)

|+〉 = sθ/2|1〉 + cθ/2|2〉, (27b)

where θ = arccos(�/�), and cx ≡ cos x, sx ≡ sin x. States
|±〉 are the eigenstates of the laser-atom interaction Hamil-
tonian [upper line of Eq. (2)]. An analysis of the transitions
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ωL − Ω ωL + ΩωL

|

|

|+

|+
F R T

FIG. 4. Dressed levels, |+〉 and |−〉 [see Eq. (27)], and sponta-
neous transitions giving rise the resonance fluorescence triplet in the
limit of well-separated spectral lines. The components of the triplet
are centered at the frequencies ωL − �, ωL, and ωL + �, which for
� = ωL − ω0 > 0 are referred to as fluorescence (F), Rayleigh (R),
and three-photon (T) lines, respectively.

between the dressed states makes it possible not only to inter-
pret the RF triplet, but also to identify temporal correlations
between the components thereof [13,49]. However, the results
of [13,49] do not explicitly include spectral filters, which can
alter the statistics of the detected photons [50]. Furthermore,
the treatments of [13,49] are based on the secular approx-
imation (see below). The description of photon correlations
between the components of the Mollow triplet in the secular
limit, but with the incorporation of the frequency filters, has
been done in [19–21,51]. Some of the theoretical predictions
[19,20] have found a good agreement with the experimental
observation using broad filters, γ � � � � [19,20].

In this section, we present the results of our rigorous
calculations of the temporal correlations between the peaks of
the RF triplet. Thereby, we obtain corrections to the previous
approximate results [19,20] which are consistent with the small
error due to the secular approximation [2]. We recall that, to
derive the approximate master equation [20], one introduces
the atomic transition and inversion operators between the
dressed states,

S− = |−〉〈+|, S+ = |+〉〈−|, Sz = |+〉〈+| − |−〉〈−|.
(28)

Using Eq. (28), one can express the atomic operators of the
bare states basis as

σ− = S−
F + S−

R + S−
T , (29a)

σ+ = S+
F + S+

R + S+
T , (29b)

where the operators

S−
F = c2

θ/2S−, S−
T = −s2

θ/2S−, S−
R = sθ/2cθ/2Sz/2 (30)

describe the emission of photons into the fluorescence (F),
Rayleigh (R), and three-photon (T) lines of the triplet (see
Fig. 4), with the account of the θ -dependent weights of the

corresponding processes. Using the representation (29), and
employing the secular approximation [2] wherein interference
between the emission processes down the dressed states giving
rise to different peaks of the triplet is ignored, it is possible
to reduce the dissipative part of Eq. (2) to an incoherent sum
of spontaneous decay processes into the three components of
the RF triplet [20]. The temporal normalized second-order
intensity correlation functions of photons transmitted by two
wide spectral filters (γ � � � �), tuned to the components
α,β of the triplet (α,β = F,R,T, which means that the filters’
resonance frequencies coincide with the positions of the peaks
of the RF triplet: δ1,δ2 = −�,0,�; see Fig. 4), can then be
found analytically [20] (see Appendix D). In Fig. 5, along with
the approximate results obtained in [20], we present our results
for the normalized temporal second-order intensity correlation
function,

g
(2)
� (αβ; τ ) ≡ G(2,2)

τ (�; α,β)

G
(1,1)
0 (�; α)G(1,1)

0 (�; β)
, (31)

where the numerator and denominator in the right-hand side
of Eq. (31) are given by Eqs. (23) and (16), respectively.

In all cases, the approximate analytical results of [20]
are very close to the exact behavior (see Fig. 5). The only
feature that is not captured within the approximate treatment
are the oscillations of g

(2)
� (αβ; τ ) with the frequency �

and amplitude ∼γ /� � 1. These oscillations arise due to
interference between the emission processes giving rise to
different lines of the RF spectrum. The interference effect
is very small when the filters are tuned to the peaks of the
triplet (the small amplitude of the oscillations is consistent
with the error due to the secular approximation [2,38]).
However, setting the filters’s resonance frequencies in between
the Rayleigh peak and either of the sidebands enhances
the interference effect. In particular, interference between
different spontaneous emission processes down the dressed
state ladder results in the inversion of the reduced atomic
state following detection of the frequency filtered photon
[52]. Another situation where interference between different
emission processes cannot be ignored occurs beyond the limit
of well-separated spectral lines. For instance, a decrease of the
Rabi frequency down to � = 20γ , see Fig. 6, results in the
increase of the amplitude of the interferential oscillations of
the function g

(2)
� (αβ; τ ) and in the overall significant deviations

of the exact behavior thereof from the predictions of [20].
Let us briefly remind the main properties of the function

g
(2)
� (αβ; τ ) that are manifest in Fig. 5. Namely, the photons

within the Rayleigh line exhibit the Poisson statistics, that
is, they are uncorrelated [g(2)

� (RR; 0) ≈ 1, see Fig. 5(a)]. In
contrast, the photons emitted into the sidebands, as well
as the photons from the central peak and either of the
sidebands exhibit antibunching [g(2)

� (T T ; 0) = g
(2)
� (FF ; 0) =

g
(2)
� (RT ; 0) = g

(2)
� (RF ; 0) ≈ 0, see Fig. 5(b,c)]. Finally, the

photons from different sidebands are uncorrelated at � = 0
[see Fig. 5(d)]. Nonzero detunings � lead to the asymmetry of
the time-delayed coincidence rate and to bunching of photons
from different sidebands [g(2)

� (FT ; 0) > 1, see Fig. 5(e,f)].
The asymmetry of the function g

(2)
� (FT ; τ ) is a manifestation

of a definite time order between the processes giving rise
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FIG. 5. Temporal normalized second-order intensity correlation function, g
(2)
� (αβ; τ ), for the components α,β = F,R,T of the RF triplet

(see Fig. 4) that are resolved by the interference filter(s) with � = 20γ in the limit of well separated spectral lines (v = 200γ ). Our numerical
results (“numer.”) are plotted for exact resonance (� = 0) and for the detuned driving (see legends) along with the analytical solutions
(“analyt.”), derived in [20] (see Appendix D). (a) αβ = RR, analyt. = Eq. (D1a); (b) αβ = RF = RT, analyt. = Eq. (D1b); (c) αβ = FF = TT,
analyt. = Eq. (D1c); (d), (e) αβ = TF, analyt. = Eqs. (D1d), (D1e); (f) αβ = FT, analyt. = Eqs. (D1d), (D1e). Note that analytical results are
independent of � in plots (a) and (b). Further on, plots (a) and (c) are presented only for τ � 0, since the function g

(2)
� (αα; τ ) is time symmetric

for α = F,R,T.

to the detected photons – fluorescence (F) occurs after the
three-photon (T) scattering process, in agreement with [22].

2. The function g(2)
� (δ1,δ2; 0) and “leapfrog” transitions

The results of Sec. V A 1 suggest that the zero-delay
coincidence rate g

(2)
� (αβ; 0) allows one to distinguish between

(a) (b)

(c) (d)

FIG. 6. Same as in Fig. 5 but for v = 20γ , � = 0, and � = 6γ .
(a) αβ = RR, analyt. = Eq. (D1a); (b) αβ = RF = RT, analyt. =
Eq. (D1b); (c) αβ = FF = TT, analyt. = Eq. (D1c); (d) αβ = TF,
analyt. = Eq. (D1d).

three different kinds of statistics: Poisson, bunching, and anti-
bunching. The type of the statistics stems from the dependence
of photon correlations on the particular two-photon emission
cascade down the dressed state ladder [13,49]. Therefore, in
a certain sense, the function g

(2)
� (αβ; 0) reflects information

about the elementary scattering processes on a laser driven
atom.

This fact has encouraged some authors to consider the func-
tion g

(2)
� (δ1,δ2; 0), where δ1 and δ2 are arbitrary, as a quantity

identifying possible scattering processes [29,30]. Examples of
the normalized correlation function g

(2)
� (δ1,δ2; 0) are presented

in Fig. 7. This function exhibits the mirror reflection symmetry
about the diagonal δ1 = δ2 and – at � = 0 – about the antidiag-
onal δ1 = −δ2, in agreement with Eqs. (19,20). However, the
most prominent feature of g

(2)
� (δ1,δ2; 0) is its very large values

� 1 (‘resonances’) for the values of δ1,δ2 that lie outside the
positions of the maxima of the RF spectrum. The origin of these
resonances has been attributed to a special class of elementary
scattering processes termed leapfrog transitions [30]. Accord-
ing to [30], these transitions cannot be described as emission
cascades down the dressed states’ ladder (see Fig. 4), but occur
via two-photon jumps mediated by virtual states. Recently,
strong correlations of the function g

(2)
� (δ1,δ2; 0) in the domains

of δ1,δ2-values predicted in [30] have been measured in [33]
and regarded as the experimental evidence of the leapfrog
transitions.

However, the above interpretation of the function
g

(2)
� (δ1,δ2; 0) outstretches the physical meaning of this quantity.

Indeed, it is the emission spectrum that shows which of
the scattering processes are possible, whereas the spectral
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FIG. 7. Contour plots of the normalized correlation function g
(2)
� (δ1,δ2; 0) in the limit of well separated spectral lines, at � = 0.4γ , and (a)

v = 100γ, � = 0; (b) v = 50γ, � = 80γ . Both plots exhibit strong correlations at the values of δ1,δ2 that lie beyond the positions the peaks
of the Mollow triplet at (a) δ1,δ2 = 0, ± 100γ , (b) δ1,δ2 = 0, ± 94.34γ .

intensity correlation function identifies which of them are
correlated [2]. Hence, the maxima of the function g

(2)
� (δ1,δ2; 0)

should not be associated with a new kind of scattering
processes.

Therefore, we would like to present an alternative expla-
nation of the behavior of the function g

(2)
� (δ1,δ2; 0) in Fig. 7.

The resonances in Fig. 7 can be understood using the dressed
state picture, if we recall that g

(2)
� (δ1,δ2; 0) is the normalized

correlation function. Its very large values are attained on the
tails of the Lorentzian distribution (i.e., for |δ1,2 − ωM | � 10γ ,
with ωM = 0, ± �), where the denominator of Eq. (31) (the
product of spectral intensities) is very small. Yet the intensity
correlation function [the numerator of Eq. (7)] can be relatively
large, resulting in the magnitude of the ratio � 1. Such a
condition is realized, for example, for pairs of the transmitted
photons whose frequencies satisfy the energy conservation
relation, ω1 + ω2 = 2ωL [i.e., δ1 + δ2 = 0, which corresponds
to the main antidiagonals δ1 = −δ2 in Figs. 7(a) and 7(b)].
Other domains of strong correlations in Fig. 7 lie along the
lateral antidiagonals δ1 = −δ2 ± �. In this case the normal-
ized correlation function attains the maximum values on the
crossings with the main diagonal; that is, at δ1 = δ2 = ±�/2,
which lie in between the central peak and one of the sidebands.
In this case, interference between the processes giving rise to
the Rayleigh peak and to either of the sideband resonances of
the Mollow triplet, comes into play. Thus, such properties as
two-photon entanglement, violations of classical inequalities,
etc., are not due to special virtual transitions [31,32,53] but
rather due to frequency (post)selection on the tails of the
spectral distribution of the light resonantly scattered by an
atom.

Having thus shed light on the behavior of the function
g

(2)
� (δ1,δ2; 0), we will next present a true measure of spectral

correlations in RF which exhibits pronounced resonances only

in the frequency domains that coincide with positions of the
peaks of the RF spectrum.

B. A true measure of spectral correlations
in resonance fluorescence

To characterize spectral correlations in RF, instead of
g

(2)
� (δ1,δ2; 0) we will use the unnormalized function [8]

�G(2)(�; δ1,δ2)

≡ G
(2,2)
0 (�; δ1,δ2) − G

(1,1)
0 (�; δ1)G(1,1)

0 (�; δ2). (32)

By definition, the function �G(2)(�; δ1,δ2) possesses the
symmetry properties (19) and (20). Furthermore, this function
has the following meaning: it attains positive (negative)
values for correlated (anticorrelated) pairs of spectrally filtered
photons and it vanishes for uncorrelated pairs thereof. It
was predicted in [8] that in the limit � → 0 the sideband
photons satisfying the condition ω1 + ω2 = 2ωL are strongly
correlated, but the function (32) has not been systematically
studied.

In this work we illustrate Eq. (32) in Fig. 8 for the same
parameters’ values as used in Fig. 7. It is clear that the location
of the resonances in Figs. 7 and 8 are complementary to each
other: In Fig. 8 their position in the (δ1,δ2) plane coincides with
the position of the peaks of the RF triplet. Outside these regions
of pronounced (anti)correlations (which for � � γ spread over
areas with a linear size ∼γ ), the spectral correlation function
in Fig. 8 forms a background where the absolute value of
�G(2)(�; δ1,δ2) is several orders of magnitude smaller than
that at the peaks.

Finally, let us discuss the character of spectral correlations
featured in Fig. 8. We remind that a variation of the filters’
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(ii) (iii)

(i) (ii)

(iii) (iv)

(i) (ii)

(iii) (iv)

(a)

(b)

(i)

(iv)

(i) (ii)

(iii) (iv)

-5.7 -3.9 -2.1 -2.4 1.6 3.4 5.2 7.0 8.8

-5
X10

FIG. 8. Contour plots of the spectral correlation function �G(2)(�; δ1,δ2) at � = 0.4γ and (a) v = 100γ, � = 0, and (b) v = 50γ, � = 80γ .
Left panels show that �G(2)(�; δ1,δ2) exhibits (a) nine and (b) seven resonances. Four of the resonances in (a) and (b) are framed in
dashed boxes and labeled by roman numerals (i), (ii), (iii), and (iv). Right panels show magnified resonances (i)–(iv). The structure of
the remaining resonances can be extracted using the symmetry properties (a), (b) �G(2)(�; δ1,δ2) = �G(2)(�; δ2,δ1) [see Eq. (19)] and (a)
�G(2)(�; δ1,δ2) = �G(2)(�; −δ1, − δ2) [see Eq. (20)].

bandwidths can lead to a modification of the photon statistics
[50,51]. In other words, the statistics of the fields that are
valid for relatively narrow filters, with � � γ , in general
differ from the statistics in the case � � γ , discussed in
Sec. V A 1 (note also Fig. 5 at τ = 0). Figures 8(a) panels
(i,iv) and 8(b) panels (i,iv)] feature strong correlations for the
filters tuned either both to the Rayleigh peak or to the opposite
sidebands. Furthermore, within the Rayleigh lines, filters tuned

symmetrically with respect to the laser frequency and filters
tuned to the same frequency are also correlated. The former
correlation results from the energy conservation for photons
satisfying the relation δ1 + δ2 = 0; the latter one has a purely
classical origin, since �G(2)(�; δ,δ) has the meaning of the
variance. A signature of the latter (classical) correlation can
be noticed also when both filters are tuned to the sidebands
[see Fig. 8(a), panel (ii)]. The remaining (negative) resonances
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emerge when one of the filters is tuned to the central peak and
another one to either of the sidebands [see Figs. 8(a), panel
(iii); 8(b), panels (ii,iii)]. Also, photons from the central peak
are anticorrelated when the filters are tuned asymmetrically
with respect the laser frequency [see Figs. 8(a) and 8(b), panel
(i)]. The given summary is consistent with the results of [21],
where temporal correlations between the fields, passed through
narrow filters that were tuned within the components of the RF
triplet, have been analyzed.

VI. CONCLUSION

We developed an efficient method to calculate spectral
correlation functions in single-atom resonance fluorescence.
Our method represents a generalization of the so-called signal
processing approach [16–18] to spectral filtration—wherein
an interferometer is treated as a black box relating the
output to the input by the response function—to arbitrary
parameters of the filters and laser driving field. An appealing
feature of our method is an intuitive character of its diagram-
matic implementation and the possibility to derive general
expressions for the correlation functions in an analytical
form.

In this work we applied our method to assess spectral
correlations in the limit of well separated spectral lines of
the RF spectrum and restricted ourselves to the second-order
intensity correlation signals passed through the Fabry-Perot
interferometers with equal bandwidths. Thereby we, on the
one hand, checked the validity of our results by comparing
them with the ones obtained previously [20] in the secular
limit. On the other hand, we showed that interference effects
between the contributions to the different components of the
RF triplet are not entirely negligible.

Finally, we critically examined the concept of “leapfrog”
transitions [30]. We showed that large values of the normalized
spectral intensity correlation function and associated effects
reported in [30,31] can be understood as a result of spectral
post-selection. Moreover, we explored a true measure of
spectral correlations and showed that its behavior can fully
be understood by considering the spontaneous two-photon
cascades down the dressed states ladder, without introducing
any new kind of transitions.

It would be interesting to apply our present method to study
higher-order spectral correlations of RF in future work. We
would also like to clarify the connection between the spectral
correlation functions in RF with spectral resolution and the
single-atom spectral response functions that appear in the
theory of multiple scattering of light by atoms [46].
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APPENDIX A: GREEN FUNCTIONS

Here we provide the explicit expressions for the Laplace
transforms of the atomic Green’s matrix elements which
are needed to determine matrices D̃[+](p) and D̃[−](p) [see
Eq. (10b)]:

D̃11
12(p) = [

D̃11
21(p)

]∗

= − i(p + 2γ )(p + γ − i�)v

2pQ(p)
, (A1a)

D̃11
22(p) = (p + γ )v2

2pQ(p)
, (A1b)

D̃21
12(p) = D̃12

21(p) = v2

2Q(p)
, (A1c)

D̃21
21(p) = [

D̃12
12(p)

]∗

= 2(p + 2γ )(p + γ + i�) + v2

2Q(p)
, (A1d)

D̃21
22(p) = [

D̃12
22(p)

]∗ = − i(p + γ + i�)v

2Q(p)
, (A1e)

where Q(p) = (p + 2γ )[�2 + (p + γ )2] + (p + γ )v2. It can
be shown [4] that for an arbitrary detuning �, the three roots
of the polynomial Q(p) have negative real parts; these roots
are either all real or one of them is real, whereas the remaining
two are complex conjugates of each other. At exact resonance
(� = 0) the roots of Q(p) are p0 = −γ,p± = −3γ /2 ± i�,
where � =

√
v2 − γ 2/4 is the modified Rabi frequency.

Let us finally present also the steady-state solution r∞ =
limt→∞ r(t) for the vector r(t) = [ρ12(t),ρ21(t),ρ22(t)]T :

ρ12(∞) = −i(γ − i�)v

2(γ 2 + �2) + v2
, (A2a)

ρ21(∞) = [ρ12(∞)]∗, (A2b)

ρ22(∞) = v2

4(γ 2 + �2) + v2
. (A2c)

APPENDIX B: DERIVATION OF EQ. (14)

To take the convolution integrals in Eq. (12), we introduce
new integration variables, x1,x2, . . . ,xn+m, which are related
to the old ones through

tjk
= t −

k∑
l=1

xl (k = 1, . . . ,n + m). (B1)

It is easy to check that the Jacobian of this transformation
J = |∂(tj1, . . . ,tjn+m

)/∂(x1, . . . ,xn+m)| = 1. In new variables,

033835-11



VYACHESLAV N. SHATOKHIN AND SERGEI YA. KILIN PHYSICAL REVIEW A 94, 033835 (2016)

the right-hand side of Eq. (12) transforms to

G(n,m) =
∑

π(j1,...,jn+m)

lim
t→∞

∫ t

0
dx1

∫ t−x1

0
dx2 . . .

∫ t−x1−...−xn+m−1

0
dxn+m

×
n+m∏
k=1

�jk
e−λjk

∑k
l=1 xl

{
D[sj2 ](x2) . . . D[sjn+m ](xn+m)r

(
t −

n+m∑
l=1

xl

)}
sj1

=
∑

π(j1,...,jn+m)

∫ ∞

0
dx1e

−1x1

∫ ∞

0
dx2e

−2x2 . . .

∫ ∞

0
dxn+me−n+mxn+m

×
n+m∏
k=1

�jk

{
D[sj2 ](x2) . . . D[sjn+m ](xn+m)r∞

}
sj1

= 1

1

∑
π(j1,...,jn+m)

�j1

{[
n+m∏
k=2

�jk
D̃[sjk

](k)

]
r∞

}
sj1

, (B2)

where r∞ is given by Eq. (A2),

k =
n+m∑
l=k

λjl
, (B3)

with λjl
= �jl

+ iδjl
, and D̃[±](p) is Laplace transform of the propagator D[±](t):

D̃[±](p) =
∫ ∞

0
dte−ptD[±](t), Re [p] � 0. (B4)

The elements of the matrices D̃[±](p) are given in Eq. (A1).

APPENDIX C: TEMPORAL CORRELATION FUNCTIONS OF SPECTRALLY RESOLVED PHOTONS

We begin with the calculation of I2(τ ). Expanding the right-hand side of Eq. (24b) into fully time-ordered integrals, we obtain

I2(τ ) = lim
t→∞

∑
π(j1,j2,j3)

∫ t+τ

t

dt2

∫ t

0
dtj1

∫ tj1

0
dtj2

∫ tj2

0
dtj3�

4e−2�τ

4∏
k=1

e−λk (t−tk )

× {D[sj1 ]
(
t2 − tj1

)
D[sj2 ]

(
tj1 − tj2

)
D[sj3 ]

(
tj2 − tj3

)
r(tj3 )}+, (C1)

where j1,j2,j3 ∈ {1,3,4}. After the transformation of variables

t2 = t + τ − x1, tjk
= t + τ −

k+1∑
l=1

xl (C2)

that, up to a time shift τ , coincides with (B1) (hence, its Jacobian |J | = 1), we arrive at

I2(τ ) = lim
t→∞

∑
π(j1,j2,j3)

∫ τ

0
dx1

∫ t+τ−x1

τ−x1

dx2

∫ t+τ−x1−x2

0
dx3

∫ t+τ−x1−x2−x3

0
dx4

× �4e2�τ e−λ2x1

3∏
k=1

e−λjk

∑k+1
l=1 xl

{
D[sj1 ](x2)D[sj2 ](x3)D[sj3 ](x4)r

(
t + τ −

4∑
l=1

xl

)}
+

= �4e2�τ
∑

π(j1,j2,j3)

∫ τ

0
dx1

∫ ∞

τ−x1

dx2

∫ ∞

0
dx3

∫ ∞

0
dx4

× e−(λ2+
∑3

k=1 λjk
)x1e− ∑3

k=1 λjk
x2e−(λj2 +λj3 )x3e−λj3 x4{D[sj1 ](x2)D[sj2 ](x3)D[sj3 ](x4)r∞}+

= �4e2�τ
∑

π(j1,j2,j3)

∫ τ

0
dx1e

−4�x1

∫ ∞

τ−x1

dx2e
− ∑3

k=1 λjk
x2

{
D[sj1 ](x2)D̃[sj2 ]

(
λj2 + λj3

)
D̃[sj3 ]

(
λj3

)
r∞}+, (C3)

where we have used the identity λ2 + ∑3
k=1 λjk

= 4�. Thus, the calculation of I2(τ ) involves a double integration and requires
the expression for the time-dependent propagators D[±](t). The latter can easily be found by the inverse Laplace transform of
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D̃[±](p). Namely, each element of D[±](t) represents a sum of decaying exponentials (see Appendix A), such that taking the
integrals in (C3) is elementary.

In full analogy with the above result, for I3(τ ) we obtain

I3(τ ) = �4e2�τ
∑

π(i1,i2,i3)

∫ τ

0
dx1e

−4�x1

∫ ∞

τ−x1

dx2e
− ∑3

k=1 λik
x2

{
D[si1 ](x2)D̃[si2 ]

(
λi2 + λi3

)
D̃[si3 ]

(
λi3

)
r∞

}
−, (C4)

where i1,i2,i3 ∈ 1,2,4.
Finally, we calculate I4(τ ). By definition,

I4(τ ) = lim
t→∞

∑
π(i1,i2),π(j1,j2)

∫ t+τ

t

dti1

∫ ti1

t

dti2

∫ t

0
dtj1

∫ tj1

0
dtj2

× �4e−2�τ

4∏
k=1

e−λk (t−tk )
{
D[si2 ]

(
ti1 − ti2

)
D[sj1 ]

(
ti2 − tj1

)
D[sj2 ](tj1 − tj2 )r

(
tj2

)}si1
, (C5)

where i1,i2 ∈ {2,3} and j1,j2 ∈ {1,4}. Performing the transformation of variables

tik = t + τ −
k∑

l=1

xl, tjk
= t + τ −

k+2∑
l=1

xl, (C6)

that is, similarly to (C2), and taking the limit t → ∞, we obtain the result

I4(τ ) = �4e2�τ
∑

π(i1,i2),π(j1,j2)

∫ τ

0
dx1e

−4�x1

∫ τ−x1

0
dx2e

−(λi2 +2�)x2

∫ ∞

τ−x1−x2

dx3e
−2�x3

{
D[si2 ](x2)D[sj1 ](x3)D̃[sj2 ]

(
λj2

)
r∞

}
si1

.

(C7)

APPENDIX D: ANALYTICAL FORMULAS FOR THE FUNCTION g(2)
� (αβ,τ )

For reference, here we reproduce the analytical expressions for the functions g
(2)
� (αβ; τ ) (α,β = F,R,T) that were derived on

the basis of an approximate master equation in [20]:

g
(2)
� (RR; τ ) = 1, (D1a)

g
(2)
� (FR; τ ) = g

(2)
� (RF; τ ) = g

(2)
� (TR; τ ) = g

(2)
� (RT; τ ) = (1 − e−�τ )2, (D1b)

g
(2)
� (TT; τ ) = g

(2)
� (FF; τ ) = 1 − e−γ1τ , (D1c)

g
(2)
� (TF; τ ) = c4

θ/2

s4
θ/2

(e−γ1τ − 1) +
(

1 + c4
θ/2

s4
θ/2

)(
1 − 1

2
e−�τ

)2

+
(

1 + s4
θ/2

c4
θ/2

)
1

4
e−2�τ , (D1d)

g
(2)
� (FT; τ ) = s4

θ/2

c4
θ/2

(e−γ1τ − 1) +
(

1 + s4
θ/2

c4
θ/2

)(
1 − 1

2
e−�τ

)2

+
(

1 + c4
θ/2

s4
θ/2

)
1

4
e−2�τ , (D1e)

where γ1 = 2γ (c4
θ/2 + s4

θ/2) and cθ/2,sθ/2 are defined after Eq. (27).
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