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We present an effective-medium model for a subwavelength periodically patterned metallic layer, its cavities
being filled with a nonlinear dielectric material, which accounts for both the linear and second-order behavior.
The effective nonlinear susceptibility for the homogenized layer is driven by the nonlinearity of the dielectric
material and by the geometrical parameters, thus leading to much higher susceptibility than existing materials.
This leads to a huge enhancement of nonlinear processes when used together with resonances. Furthermore,
multiple resonances are taking place in the metallic cavities and we investigate the mode-matching situations for
frequency conversion processes and show how it enhances further their efficiency.
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I. INTRODUCTION

Metamaterials are artificial materials, obtained with sub-
wavelength patterned elements, that exhibit effective electro-
magnetic properties that depend not only on the material,
but also on the geometry. They have given rise to original
and unprecedented behaviors in both linear and nonlinear
regimes, such as optical cloaking, phase-matched negative
index, or left-handed metamaterials [1–3]. Subwavelength
patterned elements can behave as nanoantennas able to funnel
the incoming light and concentrate it in a small volume,
which is extremely appealing in the context of nonlinear
optics [4–8]. Indeed, optical nanoantennas can provide huge
enhancement of the electric field and even if the volume at stake
is small compared to the whole device, nonlinear effects can
be boosted. Most of the nanoantennas reported in the literature
are metallic, as they can confine the field more easily than
dielectric antenna. So the surface nonlinearities of the metal
itself are enhanced [5,9–11], even if dielectric materials can
provide much-higher-volume nonlinearities.

To establish a nonlinear metamaterial model from a pat-
terned material, one has to exhibit the influence of its geometri-
cal parameters on the linear and nonlinear optical properties. It
can be done, for instance, with the Maxwell-Garnett formalism
[12], through field averaging [13] or by retrieving it from rig-
orous computations or experiments [14]. Once it is described
as an effective layer, multiple harmonic resonances can be
targeted and exploited to have each one of the wavelengths
involved in the frequency conversion process resonant. This
multiresonance situation is referred to as a mode-matching sit-
uation where several cavity modes are excited during the whole
nonlinear process. Recently, several metallic mode-matching
nanostructures have been suggested to further improve the
efficiency of nonlinear effects based on either plasmonic
nanoantennas [15,16] or phase-array sources [17].

In this paper we report on mode matching in a high-
susceptibility metasurface for frequency conversion. The
investigated structure consists of a patterned metallic layer,
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filled with a nonlinear dielectric, that melts the high-
confinement properties of metallic nanoantennas and the high
nonlinear susceptibility of chosen dielectric materials. One
of the main differences from previously studied plasmonic
structures lies in the monitoring of the nonlinear response
by the material filling the holes in the metallic layer rather
than the metallic surface generation itself. It additionally
exhibits multiple Fabry-Pérot resonances that can be used for
mode matching. These harmonic resonances are studied in
Sec. II. Then Sec. III presents an effective-medium model that
fairly accounts for both linear and nonlinear behaviors of the
structure. The effective linear and nonlinear optical properties
are found to be mainly determined by the aperture ratio.
Section IV deals with the ways to achieve mode matching in
the case of second-harmonic generation (SHG) and difference
frequency generation (DFG), allowing us to reach resonantly
enhanced conversion efficiency. These results are scalable to
large spectral ranges and can be adapted in the context of
metasurfaces based on metal-insulator-metal antennas.

II. LINEAR RESPONSE

We aim at describing both linear and nonlinear behaviors
of a subwavelength periodic metal-dielectric layer where the
dielectric inclusions display a second-order nonlinear suscep-
tibility. Two configurations of this system are considered, as
shown in Fig. 1. In the first case, the metal-dielectric layer is
placed upon a metallic substrate, forming a grating of grooves
[Fig. 1(a)], and acts as a reflection device. In the other case, the
metal-dielectric layer is standing in air, forming a grating of
slits [Fig. 1(b)]. The permittivity of the metal εm is considered
identical in the layer and the substrate, while the dielectric
inclusions bear a permittivity εd and a nonlinear susceptibility
tensor χ

(2)
d that contains only χ

(2)
iii terms. The incoming wave

is normally incident and transverse magnetic (TM) polarized,
at the wavelength λ with a wave vector k0 = 2π/λ. The period
d is a subwavelength and the grooves or slits have a height h

and a width w.
The nonlinear material, gallium arsenide, is described by

a Sellmeier formula, meaning it is lossless in the spectral
region of interest 2–10 μm, sufficiently far from the absorption
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FIG. 1. (a) Periodic grating (period d) of metallic grooves of
width w and height h, filled with a nonlinear dielectric acting
in reflection (permittivity εd and nonlinear susceptibility χ

(2)
d ).

(b) Periodic grating of metallic slits filled with a nonlinear dielectric,
with parameters similar to those for the reflecting case and acting
in transmission. The waves are normally incident and TM polarized
with wave vectors k lying in the xOz plane. (c) Reflectivity for
the reflection resonator and (d) transmissivity for the transmission
one, as functions of the wavelength. The parameters are d = 1 μm,
w = 200 nm, and h = 500 nm for the reflection case and h = 1 μm
for the transmission case.

wavelengths:

εd(ω) = a0 +
3∑

l=1

al

ωl − ω
, (1)

where ω1, ω2, and ω3 correspond to λ1 = 0.443 μm, λ2 =
0.875 μm, and λ3 = 36.9 μm, respectively, and a0 = 5.373,
a1 = 27.84, a2 = 0.031, and a3 = 0.001 [18]. The metal,
which is gold, is described by a Drude model with a plasma

frequency at λp = 159 nm:

εm(ω) = 1 − ω2
p

ω2 + i�ω
, (2)

where � = γωp = 0.0048ωp [19]. The losses are induced by
the two metallic surfaces and become higher as the width gets
smaller.

Numerical studies show that the optical response of the
resonator is a consequence of the guiding of the light inside
the slits forming a subwavelength cavity. To determine its
resonant wavelengths, the normalized propagation constant of
the fundamental mode

√
εTM of the plane waveguide set by

the two metallic surfaces is deduced from the equation [20]

tanh

(
k0

√
εTM − εd

w

2

)
= − εd

εm

√
εTM − εm

εTM − εd
. (3)

After some tedious calculations, this equation can be solved at
the first order since |εd| � |εm|, and εTM is written as

εTM = εd

(
1 + 2δ

w
− εd

εm

)
, (4)

where δ = iλ/2π
√

εm is the metal skin depth. The incoming
light on the structure is either reflected or funneled into the slit
[21,22], so the energy in the metal-dielectric layer is contained
in the dielectric inclusions.

As a consequence, the linear response of both structures
shows Fabry-Pérot resonances leading to reflectivity dips and
transmissivity peaks [see Figs. 1(c) and 1(d)], at wavelengths
determined by solving the phase condition inside the cavity

λm = 2
√

εTMh∗

m − φ/2π
, (5)

where mεN∗ and φ is the phase of the bottom reflection
coefficient. It is equal to zero for the transmission situation
and to π for the reflection case. To take into account the
penetration of the propagating mode in the bottom metal
in the asymmetric case, an equivalent height h∗ = h + δ is
introduced in the reflection case and h∗ = h in the transmission
one. At resonance, the electric-field distributions inside the
slits correspond to the establishment of stationary waves
inside the guiding slits (see Fig. 2). They are given in
the incidence plane at wavelengths corresponding to the
normalized harmonic resonances. Exaltation is observed in
both reflection and transmission, promising interesting results
for nonlinear purposes. The position of the amplitude nodes
is predicted by the order of the considered harmonics as in a
classical Fabry-Pérot interferometer. Such a description of the
system is sustained by the subwavelength feature that implies
the funneling effect. Plus, the refractive index of the dielectric
filling the cavity is high enough to induce an optical path that
allows the presence of stationary waves in spite of the thinness
of the component compared to the wavelength.

III. EFFECTIVE-MEDIUM MODEL

The classical effective-medium theory [23] cannot be
applied here because the electromagnetic fields are nearly zero
inside the metallic region. Energy-conservation considerations
are rather used in our case as it was previously suggested for
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FIG. 2. Electric-field maps inside the slits filled with GaAs for (a) and (b) reflection and (c)–(f) transmission resonators. The maps show
the absolute value of the electric field in the incident plane xOz normalized to the incoming one (normally incident TM-polarized plane wave).
They are computed at resonant normalized wavelengths λ/λ1, with λ1 being the highest resonant wavelength. The parameters are w = 200 nm,
d = 1 μm, and (a) and (b) h = 500 nm and (c)–(f) h = 1 μm.

the transmission device [see Fig. 3(b)]. It has been described
as a metamaterial for perfect metals and involved an effective
thickness [24,25]. Here we aim at taking a real lossy metal into
account without considering any influence of the thickness h

FIG. 3. (a) Reflection case of periodic grating (period d) of
metallic grooves of width w and height h, filled with a nonlinear
dielectric (permittivity εd and nonlinear susceptibility χ

(2)
d ). The

waves are normally incident and TM polarized with wave vectors
k lying in the xOz plane. Shown on the bottom is the equivalent
effective medium, which consists of a homogeneous layer with
effective permittivity, permeability, and nonlinear susceptibility.
(b) Transmission case of periodic grating of metallic slits filled with
a nonlinear dielectric, with parameters similar to the those in the
reflecting case.

on the constitutive parameters of the effective medium, namely
ε̄, μ̄, and χ̄ (2). The detailed analytical model treats the grating
as a metasurface: It consists of a homogeneous layer of the
effective medium of the same height h presenting the same
optical properties (see Fig. 3). No effective thickness h̄ is
used and no prior assumption about this parameter is needed
to establish the model. It is shown that varying this value
even permits the monitoring of the resonant properties of the
structure as these stem from the Fabry-Pérot cavity formed
within the slits or grooves.

A. Dispersive approach

We seek the effective permittivity ε̄ and permeability μ̄ of
a homogenized layer bearing the same optical response of the
structure illuminated by TM-polarized light. The stored energy
is the same in the effective layer as in the dielectric part of the
resonators. In addition, as the waves are mainly propagating in
the dielectric part, the losses of the effective layer are assumed
infinitesimal, thus allowing the use of the Landau formula for
the internal electromagnetic energy in this dispersive medium
[26], here expressed in one subwavelength grating period d,

U =
∫∫

x,z

[∂ω(ωε(x,z))E(x,z)2

+ ∂ω(ωμ(x,z))H (x,z)2]dx dz. (6)

Stating that the resonator and the effective layer must contain
the same amount of energy leads to (with nonmagnetic
materials μ = 1)∫∫

x,z

∂ω(ωε)E2 + H 2 =
∫∫

x,z

∂ω(ωε̄)Ē2 + ∂ω(ωμ̄)H̄ 2. (7)
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In the slits, the TM-polarized light is vertically guided and
behaves as a plane wave experiencing an effective permittivity
denoted by εTM. This feature is justified by both the funneling
effect [21] and numerical field maps that are given at resonance
in Fig. 2. We can then make use of the link between the various
electromagnetic fields of the plane wave propagating inside the
slits, εE2 = μH 2 and ε̄Ē2 = μ̄H̄ 2 (even valid for dispersive
media),∫∫

x,z

[∂ω(ωε) + ε]E2 =
∫∫

x,z

[
∂ω(ωε̄) + ∂ω(ωμ̄)ε̄

μ̄

]
Ē2.

(8)

The bounds of integration along x are limited to the dielectric
since the energy stored in the metallic sidewalls is negligible.
Indeed, at the metal-dielectric interface, the x component of
the electric field is discontinuous and the normal electric fields
on each side are linked by∣∣∣∣Ex(x = w−)

Ex(x = w+)

∣∣∣∣ =
∣∣∣∣εm

εd

∣∣∣∣ � 1, (9)

leading to an amplitude of the electric fields inside the
dielectric inclusion that is far greater than that inside the
metal. Plus, the fundamental guided mode presents phase
and amplitude invariance along the x direction, simplifying
the lateral integration. Eventually both the slit resonator and
the effective layer have to present Fabry-Pérot resonances
(see Fig. 2). Thus, electromagnetic fields have known vertical
distributions analogous to stationary-wave amplitudes. Under
these circumstances, we obtain at any frequency

w[∂ω(ωεd) + εd]E2 = d

[
∂ω(ωε̄) + ∂ω(ωμ̄)ε̄

μ̄

]
Ē2. (10)

In addition, equivalent guiding of the waves means that ε̄μ̄ =
εTM, which can be written as a derivative

∂ω(ωμ̄)ε̄ = ∂ω(ω2εTM)

ω
− ∂ω(ωε̄)μ̄, (11)

further simplifying Eq. (10),

d

w
[∂ω(ωεd) + εd] = 1

μ̄

∂ω(ω2εTM)

ω
, (12)

where the confinement property E/Ē = d/w has been used.
Indeed, the potential difference inside one period has to be
equal between the original configuration and the effective one,
so Ēd = Ew. The effective permeability is eventually written
as

μ̄ = w

d

∂ω(ω2εTM)

ω[εd + ∂ω(ωεd)]
, (13)

with ε̄ being obtained from ε̄μ̄ = εTM. In addition, by assum-
ing negligible dispersion at the first order for the derivatives
of the permittivities εd and εTM, we retrieve the following
expression:

μ̄1 = w

d

εTM

εd
, ε̄1 = d

w
εd. (14)

The absence of an imaginary part in ε̄1 means that electric
losses are negligible, which is consistent with the fact that
the electric energy is strictly confined in the dielectric region

described by a Sellmeier model. The losses are essentially
magnetic as the induction field penetrates the metallic side-
walls of the slit.

B. Nondispersive approach

Further calculations show that the nondispersive approach
for the expression of the internal electromagnetic energy
suffices to retrieve expressions of Eq. (14). In this case, the
energy conservation between the gratings and the effective
layer gives

∫ z=h

z=0

∫ x=d

x=0
Ē · D̄ =

∫ z=h

z=0

∫ x=w

x=0
E · D, (15)

where D is the electric displacement field and Ē and D̄ stand for
the field values in the effective layer. The fundamental guided
mode is phase and amplitude invariant along the x direction,
so Eq. (15) is expressed as

d

∫ z=h

z=0
ε̄Ē2 = w

∫ z=h

z=0
εdE

2. (16)

In addition, this equation is valid for all h and is further
simplified to Ē2dε̄ = E2wεTM. The property E/Ē = d/w is
then used to obtain the effective permittivity

ε̄ = εd
d

w
. (17)

Eventually, the phase accumulated by a wave during its
propagation through the structure is the same in both cases,
kh = k̄h. It is written as ε̄μ̄ = εTM, where the effective layer
is chosen to be magnetic. Its effective permeability can then
be expressed due to Eq. (17):

μ̄ = εTM

εd

w

d
. (18)

In the reflection case [see Fig. 3(a)], the equivalent layer
has to be deposited on a mirror, which displays an effective
permittivity ε̄m. It is expressed by matching the reflection
coefficients at the bottom of the slit:

√
ε̄/μ̄ − √

ε̄m√
ε̄/μ̄ + √

ε̄m
=

√
εTM − √

εm√
εTM + √

εm
. (19)

The effective permittivity of the metallic substrate is given by
ε̄m = εm/μ̄2.

We now consider the calculation of the effective non-
linear susceptibility χ̄ (2), which can also be deduced from
energy conservation. The original susceptibility χ (2) is here
considered as nondispersive as we are far from the material
resonances, so the nonlinear part of the electric energy is
simply given by E · P(2). Its effective counterpart is therefore
also considered as nondispersive, allowing us to obtain the
expression

χ̄ (2) =
(

d

w

)2

χ (2). (20)

The nondispersive expression for the constitutive parameters
of the effective medium are used in the following to analyze
the linear and nonlinear behaviors of the structures.
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FIG. 4. (a) Reflectivity map as a function of the wavelength λ

and the thickness h for the reflection. (b) Reflectivity as a function of
the wavelength at a selected h = 500 nm. The dashed line represents
the result obtained with the effective-medium model and the solid
line shows the full computation with the original resonator. The
parameters are w = 200 nm and d = 1 μm. The dielectric is gallium
arsenide and the metal is gold.

C. Comparative results

In the following, the asymmetric resonator has a period
d = 1 μm, a width w = 0.2 μm, and a height h = 0.5 μm.
As previously stated, the metal is gold, described by a Drude
model [19], and the dielectric is gallium arsenide, described
by a Sellmeier model [18]. All the parameters are identical for
the transmission case apart from the height h = 1 μm. The
computations are performed with the B-spline modal method,
which makes a fast and exact resolution of Maxwell equations
and determines the nonlinear behavior under the undepleted
pump approximation [27,28].

Reflection spectra for the reflection structure are shown
for wavelengths ranging from 2 μm to 10 μm in Fig. 4(a)
with varying thickness h. The Fabry-Pérot resonances are
visible on this reflectivity map at the harmonic wavelengths.
This behavior holds for growing values of thickness and no
assumption about the value of h compared to the wavelength
λ is needed to establish the effective-medium model. Shown
below the reflectivity map is a comparison between this model

(dashed lines) and the full numerical computation for the
structured resonator [see Fig. 4(b)], where the results are found
to be in very good agreement. The streamlines of the Poynting
vector are shown in the insets at resonance for better clarity. All
the energy is funneled into the groove, where it is absorbed for
this reflection resonator. The transmission case also displays a
very good comparison between the effective medium and the
original structure for both its reflectivity and transmissivity
(data not shown). The sole difference lies in the fact that
the light is funneled through the slit for this transmission
resonator and the streamlines below the structure only convey
the transmitted energy (nearly 30% of the incoming energy,
while the rest is either reflected or absorbed by the metallic
sidewalls).

This analytical model renders very well metal-dielectric
slits structures in TM illumination far from material resonances
where losses are negligible and in the spectral range where
the metal follows a Drude model. Moreover, in this spectral
range, the studied resonators bring geometrical dispersion to
the effective parameters, which makes frequency dispersion
appear negligible. Indeed, superimposition of Fabry-Pérot
resonances at the involved wavelengths of a given frequency
conversion scheme respect the Rayleigh criterion, suggesting
promising situations of mode matching. Following this idea,
it has been shown that a first-order nondispersive approach
correctly fits the solution that is obtained through the Landau
formula for the electromagnetic energy.

IV. NONLINEAR ENHANCEMENT
AND MODE MATCHING

We recall the expression for the effective nonlinear suscep-
tibility χ̄ (2)/χ

(2)
d = (d/w)2, illustrating the great enhancement

of the quantity of nonlinear sources inside the cavity of such
structures. However, the nonlinear susceptibility is not the only
parameter involved in the efficiency of frequency conversion
processes. Due to the high value of the effective permittivity,
for most of the wavelengths there is no impedance matching for
the Fabry-Pérot cavity, which might result in a poor efficiency
of the nonlinear processes. For a better understanding, the
efficiency of the second-harmonic generation is computed for
both structures in Fig. 5, using analytic expressions [29]. For
the sake of comparison, the plotted efficiency is normalized by
the intensity of a nonpatterned gallium arsenide layer, whose
thickness is chosen so as to display Fabry-Pérot resonances
at the same wavelengths. Following Eqs. (4) and (5), the
equivalent gallium arsenide layer is a bit thicker than the
patterned layer. The relative conversion efficiency is defined
in reflection as

ηR = IR
out

IR
out,ref

, (21)

where IR
out is the output reflected nonlinear intensity from the

metal-dielectric structure computed with the analytical model
and IR

out,ref is the reflected nonlinear intensity for a homo-
geneous layer of gallium arsenide exhibiting a fundamental
Fabry-Pérot resonance at the same wavelength as the effective-
medium layer [see Eq. (5)]. Due to Eq. (4), the gallium arsenide
layer is slightly thicker than the effective-medium layer.
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FIG. 5. The SHG relative conversion efficiencies of the structure
in (a) reflection ηR and (b) transmission ηT , as functions of the pump
wavelength. Solid lines represent the full computation and dashed
lines show the analytical model. The parameters are d = 1 μm,
w = 0,2 μm, and h = 0.5 μm for reflection case and h = 1 μm for
transmission case.

In Fig. 5, two noticeable behaviors corresponding to
resonant and nonresonant cases appear. First, at resonance,
the maximum of the second-harmonic efficiency is indeed one

order of magnitude greater, leading to interesting resonant
values of the enhancement. The efficiency peaks are visible at
the harmonic wavelengths. Second, the ratio can drop below
1, meaning that nonresonant behavior gives worse results for
the structured resonators. This stems from the absence of
impedance matching between the one of the cavity Z = √

μ̄/ε̄

and the one of the outer medium. The second-harmonic
light is hardly driven to the outer medium compared to the
homogeneous layer case, leading to poor values of efficiency
away from the resonance. Interestingly, the symmetric case
leads to a better conversion efficiency in both reflection (data
not shown) and transmission. This is a direct consequence of
the presence of harmonics resonance at wavelengths given by
Eq. (5), which may result in mode-matching situations where
both the pump wavelength and the second-harmonic signal
are at resonance. To fully understand these observations, the
various scenarios of resonant behaviors in both structures for
SHG (or DFG) are investigated in more detail below.

Figure 6 shows the three resonant situations that happen in
the case of SHG with the respective conversion efficiency
spectra. The relative conversion efficiency in transmission
ηT is defined in a way similar to the reflection case. On
the one hand, the incoming pump wave at wavelength λpump

can be resonant to increase the quantity of created nonlinear
polarization [Fig. 6(a)]. On the other hand, the outgoing signal
wave at λSHG can be resonant to enhance the coupling from
the slit to the outer medium [Fig. 6(b)]. When both conditions
are fulfilled, it is a mode-matching situation [Fig. 6(c)] where
the nonlinear intensity ratio reaches its highest value for a
selected period. In the asymmetric resonator, only the cases
of Figs. 6(a) and 6(b) can happen, thus limiting the value
of η to the one obtained when the pump is solely resonant.
Using a resonance at the second-harmonic wavelength is
typically one order of magnitude less efficient, since the energy
generated at the second harmonic depends only linearly on the

FIG. 6. Three scenarios of resonant behaviors for SHG in the metal-dielectric layer: (a) resonant pump (h = 0.5 μm and hGaAs = 0.55 μm)
or (b) resonant signal (h = 0.73 μm and hGaAs = 0.82 μm) in a reflection resonator and (c) both resonant pump and signal (h = 1 μm and
hGaAs = 1.15 μm) in a transmission resonator creating a mode-matching configuration. Shown on the bottom are the corresponding SHG
relative conversion efficiencies in (a) and (b) reflection ηR and (c) transmission ηT as functions of the pump wavelength. In the three cases,
d = 1 μm and w = 0,2 μm.
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FIG. 7. Two scenarios of modes matching for DFG: (a) two
modes matching with one resonant pump and a resonance at the DFG
signal in a reflection resonator (h = 0.5 μm and hGaAs = 0.55 μm)
and (b) three modes matching (both resonant pumps and resonant
DFG signal) in a transmission resonator (h = 1 μm and hGaAs =
1.15 μm). Shown on the bottom are the corresponding DFG relative
conversion efficiencies in (a) reflection ηR and (b) transmission ηT as
functions of the DFG wavelength. The other parameters are the same
in both structures (d = 1 μm and w = 0.2 μm).

second-harmonic electric field. In the case of the symmetric
resonator, there is always a mode-matching situation for SHG
between the fundamental resonance at λ and the first order of
resonance at λ/2. The low-quality factors of both resonances
can compensate for the natural dispersion of the material.

There are various configurations of mode matching in
both structures for DFG. Two of them are illustrated in the
case of the asymmetric (symmetric) resonator in Fig. 7(a)
[Fig. 7(b)]. In both resonators, there is a degree of freedom to
choose the wavelengths in order to be in a two-mode-matching
situation. For instance, the signal wavelength λDFG determines
the geometry of the resonator and one pump wavelength
is chosen so as to match one of the harmonics of the
resonator while the last one is determined by the energy-
conservation condition. The conversion efficiency shown in
Fig. 7(a) is comparable to the one obtained for SHG in
Fig. 6(a), because the pump is degenerate so it could be
considered as a degenerate two-mode-matching configuration.
Three modes matching can be straightforwardly obtained in
the symmetric resonator. Indeed, Eq. (5) quantifies the energy
of each harmonic wavelength as a multiple of the fundamental

wavelength energy. So, if two of the wavelengths involved in
the DFG process have been chosen at resonance wavelengths,
the third one is also at another resonance wavelength due
to the energy-conservation condition (and neglecting the
dispersivity). In Fig. 7(b), the fundamental wavelength and the
two first-harmonic wavelengths are used (λ1

pump = λDFG/3 and
λ2

pump = λDFG/2). As expected, it leads to a higher efficiency
conversion ratio than in the two-mode-matching situation for
both transmission and reflection (data not shown). However,
this enhancement is lower than for the SHG, since the natural
dispersion of the material must be managed for three different
wavelengths.

In the optimal mode-matching situation for SHG, the metal-
dielectric structure acts, at one particular pump wavelength, as
a metasurface, which is described by the effective-medium
model. Such a configuration is obtained here with the
parameters λpump = 7.8 μm, w = 200 nm, h = 500 nm, and
d = 1 μm as shown in Fig. 5(a). To compare our structure
with a previously reported metasurface from the literature, we
compute the absolute value of our SHG conversion efficiency
for an impinging pump plane wave carrying an intensity
of 10 kW cm2, with the nonlinear susceptibility of gallium
arsenide χ (2) = (2/

√
3)150 pm/V according to Ref. [30]. The

absolute SHG conversion efficiency is then found to be equal
to 5 × 10−4 with an effective nonlinear susceptibility of χ̄ (2) =
4.3 nm/V, which is of the same order as the reported value
2 × 10−4 under a Gaussian focused beam [7]. Such a metal-
dielectric component is thus able to greatly enhance nonlinear
generation through lateral field confinement within a volume
of semiconductor displaying a second-order susceptibility.

V. CONCLUSION

To conclude, nonlinear phenomena in subwavelength
metallic slits or grooves filled with a nonlinear material
can be fairly described by this homogenization model. This
metasurface exhibits an unusually high nonlinear effective
susceptibility that leads to higher efficiency of the frequency
conversion processes and is further enhanced by exploiting
mode matching between resonances. The effective-medium
properties can be spatially tuned, by simply changing the in-
plane geometrical parameters, making it possible, for instance,
to address various wavelength ranges. These results can be
directly applied to various metals and nonlinear dielectric
materials. In the midinfrared range, the efficiency for a thick
layer of the effective medium is plagued by the Ohmic metallic
losses, but it is no longer the case for higher-wavelength ranges.
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