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Anomalous diffraction in hyperbolic materials
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We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence
of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a
quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies
time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e.,
spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting
standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with
a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a
negative (positive) nonlinearity.
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I. INTRODUCTION

The linear propagation of electromagnetic waves in ho-
mogeneous media can be fully described by plane-wave
eigensolutions, resulting in a dispersion curve linking the wave
vector k to the frequency (pulsation) ω. Macroscopically, the
dispersion (or existence) curve ω(k) markedly depends on
the constitutive equations [1], which describe the material
response to electromagnetic fields. In the simplest case of
isotropic media (e.g., vacuum), the isofrequency surfaces
ω = ω(k) are spheres in the transformed k space. When
the medium is anisotropic, the isofrequency surfaces are
ellipsoids, i.e., they maintain the same topology as long as
all the eigenvalues of both the permittivity tensor ε and the
magnetic permeability μ are positive. The dispersion topology
drastically changes if the eigenvalues have opposite signs,
leading to a hyperbolic (that is, indefinite) dispersion with
isofrequency hyperboloids [2–4].

Hyperbolic materials (HMs) have attracted a great deal
of attention in optics owing to their unique properties.
Most notably, HMs can support propagating plane waves
regardless of the transverse wave vector, thus allowing for
subwavelength optical resolution via the so-called hyperlens
effect [5]. HMs can exhibit negative refraction, with much
smaller sensitivity to dispersion and losses than negative
refractive index materials (NRIMs) [6,7]. When inserted in
planar waveguides, they can even emulate the main features of
NRIMs [8]; hyperbolic cores also strongly affect the existence
region of guided and leaky modes [9]. In addition, HMs exhibit
a highly increased density of photonic states, with a consequent
enhancement of the Purcell factor [10–12]. HMs also allow
for the possibility of realizing exotic nanocavities [13],
improved slot waveguides [14], nanolithography [15], novel
phase-matching configurations in nonlinear optics [16], the
engineering of photon-mediated heat exchange [17], and
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ultrasensitive biosensors [18]. HMs have been suggested
as an ideal workbench for exploring optical analogues of
relativistic and cosmological phenomena [19,20]. While the
first HMs were metamaterials consisting of either a stack
of subwavelength (metal or dielectric) elements or a web of
metallic nanowires embedded in a dielectric [3], hyperbolic
dispersion was later discovered in nature [21–23], including,
e.g., magnetized plasma [24,25]. An exhaustive review of
natural hyperbolic materials is provided in Ref. [26].

In nonmagnetic materials (μ = μ0 I), HMs can be studied
as an extreme case of anisotropy [12,27,28], with metallic or
dielectric responses depending on the propagation direction
and/or the input polarization. Here, inspired by such con-
sideration, we investigate the propagation of electromagnetic
waves in hyperbolic media, generalizing the treatment previ-
ously introduced with reference to standard (i.e., elliptically
dispersive) media [29]. The approach we undertake allows us
to outline a direct analogy between light propagation and the
evolution of particles with a negative inertial mass. However, in
contrast to previous studies, an effective negative mass stems
from neither a periodic band structure [30] for excitations
close to the Bragg condition [31–33] nor nonlinear effects
associated with specific wave profiles in space [34]. Beyond a
simpler understanding of well-known effects such as negative
refraction and hyperlensing in hyperbolic media, we introduce
a spatial analog of dispersion compensation in fibers, allowing
for the perfect reconstruction of an electromagnetic signal
regardless of its shape. Finally, in the nonlinear limit, we
predict that self-focusing (self-defocusing) occurs when the
refractive index decreases (increases) with the field intensity.
Thus, bright (dark) spatial solitons are supported by a negative
(positive) nonlinearity.

The paper is structured as follows. In Sec. II, we will
write Maxwell’s equations in the special case of a generic
uniaxial medium. In Sec. III, we will explain how negative
diffraction takes place in hyperbolic materials, and the analogy
with a negative mass particle will be outlined. The plane-
wave expansion will be exploited to describe the propagation
of finite-size beams in a uniform hyperbolic material. In

2469-9926/2016/94(3)/033830(9) 033830-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.033830


ALBERUCCI, JISHA, BOARDMAN, AND ASSANTO PHYSICAL REVIEW A 94, 033830 (2016)

FIG. 1. Geometry of the wave-matter interaction detailed in the
text. (a) The optic axis n̂ lies in the plane yz at an angle ξ with axis z.
(b) The wave vector k forms an angle β with z, and an angle θ (positive
in the picture) with n̂. (c) Sketch of a beam impinging on an HM at
an angle βin < 0. In the hyperbolic material, the Poynting vector is
at an angle α with respect to z. In general, α �= β due to walk-off δ

between wave and Poynting vectors (δ > 0 in the example). All of
the angles are defined positive for clockwise rotations as seen by the
viewer.

Sec. IV, the negative mass model will be employed to describe
negative refraction at the interface between an isotropic and
a hyperbolic medium; both the cases of plane waves and of
finite beams will be discussed. In Sec. V, we will propose the
usage of hyperbolic layers to compensate diffractive spreading
of finite beams in isotropic materials. Section VI will deal with
the propagation of wave packets in inhomogeneous hyperbolic
materials. Section VII will focus on the nonlinear propagation
of light beams in the presence of Kerr nonlinearity. Finally,
in Sec. VIII, we will summarize all the obtained results and
illustrate possible applications in photonics.

II. MAXWELL’S EQUATIONS IN UNIAXIAL MEDIA

To begin with, consider the propagation of monochromatic
electromagnetic waves (fields ∝e−iωt ) in nonmagnetic di-
electrics with a uniaxial response. For an optic axis n̂ lying
in the plane yz, the relative permittivity tensor ε is

ε =
⎛
⎝εxx 0 0

0 εyy εyz

0 εzy εzz

⎞
⎠, (1)

where, in general, all the elements εij are pointwise functions.
In writing Eq. (1), we assumed the medium to be local, i.e.,
with ε independent of the wave vector k [35]. Naming ε⊥ and
ε‖ the eigenvalues of ε corresponding to electric fields normal
and parallel to the optic axis n̂, respectively, we get εij =
ε⊥δij + εaninj (i,j = x,y,z), with εa = ε‖ − ε⊥ the optical
anisotropy and ξ the angle between n̂ and ẑ, such that n̂ =
(0, sin ξ, cos ξ ) [see Fig. 1(a)]. The Maxwell’s equations in
the absence of sources read

∇ × E = iωμ0 H, (2)

∇ × H = −iωε0ε · E − iωPNL, (3)

with PNL the nonlinear contribution to the electric polar-
ization. For the sake of simplicity, we refer to a (1+1)-
dimensional [(1+1)D] geometry by considering an x-invariant
system and setting ∂x = 0. In this limit, ordinary and extraor-
dinary waves are decoupled even in the nonparaxial regime.

Hereby we deal with extraordinary waves, i.e., with electric
field oscillating in the plane yz. Equations (2) and (3) projected
on a Cartesian reference system yield [29]

Ez = − i

ωε0εzz

∂Hx

∂y
− εzy

εzz

Ey − 1

ε0εzz

PNL,z,

(4)

∂Hx

∂z
+ εyz

εzz

∂Hx

∂y
= −iωε0

(
εyy − εyzεzy

εzz

)
Ey

− iωε0

(
PNL,y − εyz

εzz

PNL,z

)
, (5)

∂Ey

∂z
+ εzy

εzz

∂Ey

∂y
= −iωμ0Hx − i

ωε0εzz

∂2Hx

∂y2

− 1

ε0εzz

∂PNL,z

∂y
, (6)

where we neglected the spatial derivatives of εij with respect
to y. Furthermore, it is assumed that electric fields oscillating
in the plane yz do not couple with nonlinear polarization
components along x. The system of Eqs. (4)–(6) rules
light propagation in both paraxial and nonparaxial regimes,
regardless of the nature of PNL, and is valid for both real
(positive and/or negative) and complex-valued tensor elements
εij . The first derivatives of the field with respect to y on
the left-hand side (LHS) of Eqs. (5) and (6) govern spatial
walk-off, i.e., in general, the nonparallelism of the wave vector
k to the Poynting vector S.

We examine the case of a lossless medium, i.e., with
Hermitian dielectric tensor such that εij = ε∗

ji . Additionally,
if ε is purely real, the Poynting vector S forms an angle
δ = arctan ( εyz

εzz
) with the average wave vector of the wave

packet. The average wave vector is chosen parallel to z.
The extraordinary refractive index of a plane wave with k

at an angle θ with n̂ is ne(θ ) =
√

εyy − ε2
yz

εzz
. Hereafter, we

consider configurations with negligible variations along y of
the walk-off δ, and an optic axis n̂ at an angle ξ with z, such that
θ = ξ − β and k · ẑ = |k| cos β [see Fig. 1(b)]. Calculating Ey

from (5) and substituting into (6), we find

∂2Hx

∂z′2 + Dy

∂2Hx

∂y ′2 + k2
0n

2
eHx

= −iω
∂
(
PNL,y − εyz

εzz
PNL,z

)
∂z′ + iωn2

e

εzz

∂PNL,z

∂y ′ , (7)

where we introduced the moving reference system x ′y ′z′,

x ′ = x, (8)

y ′ = y − εyz

εzz

z, (9)

z′ = z, (10)

and assumed ∂z′ne ≈ 0 (i.e., small longitudinal variations of
the index on the wavelength scale). Although Eq. (7) remains
valid in the nonparaxial regime (off-axis propagation and
wavelength-size beams), the quantities Dy , ne, and δ have a
simple physical meaning (diffraction coefficient, extraordinary
refractive index, and walk-off angle, respectively) only when k
is directed along z, that is, when ξ = θ , due to the anisotropic
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response on the plane yz. When the average k is not parallel
to z, the three quantities retrieve their physical interpretation
after a rotation of the original framework xyz around x.

III. NEGATIVE DIFFRACTION

The diffraction coefficient in Eq. (7),

Dy(θ ) = n2
e

εzz

= ε⊥ε‖
ε2
zz

= ε⊥ε‖
(ε⊥ + εa cos2 θ )2

, (11)

depends on the angle θ and governs (in the paraxial regime) the
propagation of finite beams according to the spatial spectrum
of H̃x [36], i.e.,

Hx(y,z) = eik0n0z

∫ ∞

−∞
H̃x(ky,z = 0)eikyy

× e
i

∂kz
∂ky

|ky=0kyze
i

∂2kz

∂k2
y

|ky=0k
2
yz

dky, (12)

with ∂2kz

∂k2
y
|
ky=0

= − Dy

k0n0
. Since we are interested in hyperbolic

(indefinite) media featuring

ε⊥ε‖ < 0, (13)

it is apparent from Eq. (11) that whenever ne(θ ) is real, the
diffraction coefficient is negative, i.e., diffraction is anomalous
even if the refractive index remains positive. It is noteworthy
that in hyperbolic materials satisfying (13), either purely
real (propagating waves) or purely imaginary (evanescent
waves) wave vectors are permitted according to the sign of
n2

e(θ ). We further need to distinguish type-I and type-II HMs
corresponding to ε‖ < 0 and ε‖ > 0, respectively. Propagating
waves exist when

type I: |θ | < arccos
√

ε⊥
|ε‖| + ε⊥

, (14)

type II: arccos

√
|ε⊥|

ε‖ + |ε⊥| < |θ | <
π

2
. (15)

Figure 2 compares walk-off δ and diffraction coefficient Dy

versus θ for elliptic and hyperbolic dispersions, respectively.

FIG. 2. Diffraction coefficient Dy (top) and walk-off angle δ

(bottom) vs the angle θ between wave vector k and optic axis n̂

in the presence of elliptic dispersion (left), hyperbolic dispersion of
type I (center) and type II (right). Here, |n⊥| = 1.5 and |n‖| = 1.7.

While diffraction is positive and finite in the elliptic case,
Dy is always negative in the hyperbolic case, consistent with
Eq. (11). Moreover, Dy monotonically decreases (increases) in
type-I (type-II) HMs, with a singularity when ne goes to infin-
ity at the edge of the existence region for homogeneous plane
waves. The walk-off angle monotonically increases when the
dispersion is hyperbolic, remaining positive (negative) for
type-I (-II) materials and reaching an absolute maximum at 90◦
when ne → ∞. The latter limit corresponds to the propagation
of volume plasmon polaritons, as investigated in Ref. [15].

In the laboratory framework xyz, the single scalar equa-
tion (7) in the paraxial regime becomes

i

(
∂ψ

∂z
+ tan δ

∂ψ

∂y

)
+ Dy

2k0n0

∂2ψ

∂y2
+ k0

2n0

(
n2

e − n2
0

)
ψ

+ k0c

2
(PNL,y − tan δ PNL,z) − i

cDy

2n0

∂PNL,z

∂y
= 0, (16)

where c is the speed of light in vacuum, ψ = Hxe
−ik0n0z is the

slowly varying envelope, and n0 = ne(ξ ).
In the linear regime (PNL = 0), Eq. (16) is a Schrödinger-

like equation for a massive particle of charge e in an
electromagnetic field:

i�
∂ψ

∂t
= [i�∇ − (e/c)A]2

2m
ψ + Uψ. (17)

The Hamiltonian corresponding to Eq. (17) is Ĥ =
[ p̂−(e/c) Â]

2

2m
+ Û , where A and U are the vector and scalar

electromagnetic potentials, respectively. To transform Eq. (17)
into (16), we need to carry out the transformations t → z,
p → kyŷ, � → 1, A → − k0n0 tan δ

Dy
ŷ, m → k0n0

Dy
= k0εzz

n0
, and

U → − k0(n2
e−n2

0)
2n0

− k0n0 tan2 δ

Dy
[37]. Thus, light propagation in

hyperbolic materials resembles the motion of a particle with
negative mass.

Such an effective mass in HMs of type I is plotted
in Fig. 3(a): it is always negative (like Dy) and increases
monotonically with θ , vanishing at the edge of the existence
region despite Dy → ∞. Hence, the beam diffraction is

FIG. 3. Effective mass and transverse beam profile in a type-I
hyperbolic material. (a) The effective mass scaled over the wave
number (thus corresponding to n0/Dy) vs angle θ , for ε⊥ = 2.25 and
ε‖ = −2.89. (b) Diffracting beam profile computed in z = 20 μm
for θ = 20◦ (red line), θ = 40◦ (blue), θ = 45◦ (black), and θ =
47◦ (green), from left to right, respectively. Solid and dashed lines
correspond to the exact field and to the paraxial prediction (12),
respectively. Here the input is a Gaussian of waist 2 μm at wavelength
1064 nm, impinging normally on the material (βin = 0) with a planar
phase front.
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expected to increase with θ , as we verified by computing
the solutions of Eq. (16) in the linear regime and in the
homogeneous case using a plane-wave expansion [36]. As
illustrated in Fig. 3(b), the beam spreading markedly increases
as θ gets larger, with walk-off corresponding to a plane wave
as in Fig. 2, even though the beam is a few wavelengths in size.

IV. NEGATIVE REFRACTION

A. Particlelike model

The analogy drafted above between light propagation in
HMs and the motion of a charged particle of negative mass
provides a simple explanation for negative refraction at the
interface between an isotropic material and an HM [6,7]. We
consider Eq. (16) in a framework with axis z normal to the
interface [Fig. 1(c)]. Thus, the paraxial approximation will be
rigorously valid only at normal incidence, as the quantities ne,
Dy , and δ were computed for phase fronts normal to ẑ, that is,
θ = ξ .

The effective (transverse) velocity is v = dy/dz, corre-
sponding to the tangent of the angle α formed by the ray with
ẑ. For a system invariant across y, the canonical momentum
p (the transverse component of the wave vector) is conserved
when light waves cross the interface, providing for the velocity
(i.e., the direction of the energy flux vector)

d〈y〉
dz

∣∣∣∣
hyperbolic

= Dy

niso

n0

d〈y〉
dz

∣∣∣∣
isotropic

+ tan δ, (18)

with niso the refractive index of the isotropic material and
〈y〉 = ∫

y|ψ |2dy/
∫ |ψ |2dy. The first term on the right-hand

side (RHS) of Eq. (18) accounts for the role of dispersion in
determining the longitudinal component of the wave vector,
as ky is dictated by the boundary condition [6]. It results in a
refracted beam which is flipped with respect to the axis z, that
is, it undergoes negative refraction. The second term on the
RHS of Eq. (18) is the walk-off contribution and quantifies
the angular deviation of the reference system x ′y ′z′ from
xyz in the plane yz. Naming αin = arctan ( d〈y〉

dz
|
isotropic

) the
incidence angle of the impinging beam, with αin = βin owing
to isotropy of the first medium, negative refraction always
occurs when βinδ < 0, but it requires | tan δ| < − nisoDy

n0
| tan βin|

when βinδ > 0.

B. Comparison between particle model and exact solutions

It is worthwhile to validate Eq. (18), in the paraxial
approximation, against the exact solutions. In the plane-wave
limit, from Eqs. (5) and (6) we can derive the dispersion
relation

(kz + tan δ ky)2 + Dyk
2
y = k2

0n
2
0. (19)

Clearly, in the plane-wave limit, the two coefficients δ and Dy

account for the spatial dispersion stemming from anisotropy.
To find the angle of refraction, we need to know the

relation kz = kz(ky), where ky = k0niso sin βin is the trans-
verse component of the incident wave vector. Here we
deal with forward waves only, with −π/2 < β < π/2 [38].
From Eq. (19), the angle β of the wave vector after

FIG. 4. Negative refraction in a type-I HM for four different
orientations ξ of the optic axis (as marked). Wave-vector refraction
angle β (dotted blue lines) and angle α (black dashed lines) vs
incidence angle βin as computed from Eq. (20) and Eq. (21), re-
spectively. Red solid lines graph Poynting vector refraction resulting
from the particlelike model given by Eq. (18). Here, ε⊥ = 2.2614 and
ε‖ = −2.8744.

refraction is

β(βin,ξ ) = arctan

⎛
⎝ 1

− tan δ ±
√

n2
0

n2
iso sin2 βin

− Dy

⎞
⎠. (20)

According to Eq. (20), if n0 is real (the latter implies that beams
impinging normally to the interface do not excite evanescent
waves), a real angle β exists for any incidence angle βin, as
Dy < 0 [see Eq. (11)]. The angle β is plotted versus βin in
Fig. 4 (blue dotted line) for various ξ . The sign in front of
the square root in Eq. (20) must be chosen in order to get
positive refraction for the wave vector via the conservation of
ky at the interface, i.e., ββin > 0 [6]. For arbitrary orientations
ξ of the optic axis, at normal incidence (βin = 0) it is β =
0, as required by momentum conservation. For ξ = 0, light
propagation obeys mirror symmetry with respect to z; however,
for ξ �= 0, refraction becomes nonspecular with respect to left
or right inversion, with β getting larger when the incident beam
is tilted on the same side of the optic axis, i.e., βinξ > 0.

The direction of the refracted Poynting vector is obtained
by adding the walk-off angle to β:

α(βin,ξ ) = β + arctan

{
εa sin[2(ξ − β)]

εa + 2ε⊥ + εa cos[2(ξ − β)]

}
,

(21)

as plotted by dashed black lines in Fig. 4.
When ξ = 0, the walk-off has opposite sign with respect to

β (see Fig. 2) and is about twice larger in modulus: hence, the
energy flow is negatively refracted for any incidence angle.
When ξ �= 0, refraction is always negative when ξβin < 0,
whereas for ξβin > 0, negative refraction occurs only for small
ξ (not shown), and for incidence angles βin below a threshold
depending on niso and the eigenvalues of ε. For ξ exceeding
the existence cone defined by Eq. (14), the RHS of Eq. (20) is
no longer real, and homogeneous (i.e., nonevanescent) waves
exist only in some narrow intervals of βin. Here we are not
interested in such solutions.
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Having described “exactly” refraction at the interface
between an isotropic medium and a type-I HM, we can now
address the accuracy of the particlelike (paraxial) model.
Figure 4 graphs the refraction of the Poynting vector (red solid
lines) given by Eq. (18) in the framework of the particle model.
The results from particlelike and exact models are in very
good agreement for |βin| < 30◦, consistent with the paraxial
approximation. For ξ �= 0◦, owing to anisotropy the discrep-
ancy between them depends on the sign of the incidence angle,
with bigger differences for larger incidence angles (absolute
values). Based on Eq. (18), negative refraction always occurs
for |βin| → 90◦, despite the orientation of the optic axis (i.e.,
the value of ξ ). In fact, tan δ is the dominant term on the
RHS of Eq. (18) for large |βin|; hence, negative refraction
is expected for both positive and negative incidence angles,
with the refracted beam eventually propagating at grazing
angles according to Fig. 2. The transition between positive
and negative α becomes very steep as the HM approaches
the limit (14), corresponding to a singularity in the coefficient
Dy(θ ).

C. Numerical simulations

The validity of the plane-wave results is investigated in
Fig. 4 in the case of finite beams by using a beam propagation
method (BPM) code and a finite-difference time-domain
(FDTD) open-source simulator, MEEP [39]. The BPM provides
accurate results only when the paraxial approximation is
applicable; the FDTD code does not have such limitation.
The BPM results are plotted in Fig. 5, where we carried
out our simulations below a maximum incidence |βin| =
30◦, compatible with the paraxial approximation. At normal
incidence βin = 0◦, the beam at the interface undergoes a
deflection corresponding to the walk-off angle graphed in
Fig. 2 with θ = ξ . Beam refocusing is observed inside the
hyperbolic medium owing to negative diffraction [6]. When
the input beam is tilted to the other side of the optic axis (i.e.,
ξβin < 0), negative refraction always occurs; the larger ξ , the
larger the angle α of the Poynting vector. Conversely, when

FIG. 5. Negative refraction in a type-I HM with niso = 1, ε⊥ =
2.2614, ε‖ = −2.8744, and λ = 1064 nm. Evolution in the plane yz

for an input Gaussian beam of waist 5 μm for various incidence
angles βin (columns) and optic axis orientations ξ (rows), as labeled.
The white solid lines represent the boundary between the isotropic
medium (lower region) and the HM (upper region).

the input beam and optic axis are directed on the same side, the
magnitude of negative refraction decreases with ξ and its range
of occurrence βin reduces, consistent with the nonparaxial
model [see Eq. (21) and Fig. 4]. The paraxial model (18),
conversely, unphysically predicts negative refraction for large
positive incidence angles (assuming ξβin > 0, with the same
behavior in the opposite case after a specular reflection about
ẑ) (see Fig. 4). When the input wave vector approaches the
boundaries of the existence cone given by Eq. (14), the validity
range of the paraxial model narrows towards the right edge (for
positive ξ ): for example, for ξ = 35◦ and βin = 30◦ (last panel
in Fig. 5), beam refraction appears borderline between negative
and positive (α ≈ 0), but refraction should be positive based
on the exact solution (see Fig. 4).

Figure 6 illustrates FDTD simulations of light behavior
at the air-HM interface for various incidence angles βin

and ξ = 5◦. The angle of refraction from FDTD closely
follows the predictions of (21), with the latter rigorously
valid for plane waves. It is noteworthy that the FDTD match
more closely Eq. (21) than the paraxial model Eq. (18),
with small discrepancies between the FDTD and plane-wave
model mainly due to the presence of losses [neglected in
Eq. (21)]. Losses, even if small, affect light propagation
in a non-negligible way [36,40]. For instance, at normal
incidence (βin = 0◦ and thus α = δ), a change of about 10◦
on the trajectory slope is visible [Fig. 6(a)], such variation
being exclusively due to a difference in the walk-off angle.
Generally, losses decrease the absolute value of α (see Fig. 6).

FIG. 6. Light refraction at the isotropic-hyperbolic interface
when the optic axis is at ξ = 5◦. (a) Refraction angle α vs incidence
angle βin according to FDTD (points), exact values for plane waves
[dashed black line, Eq. (21)], and paraxial approximation [red solid
line, Eq. (18)]. The yellow shaded rectangle marks the region with
positive refraction. (b) Snapshots of the y-polarized electric-field
distribution in the propagation plane yz for (b) βin = −30◦, (c) βin =
5◦, and (d) βin = 30◦, respectively. In (b)–(d), the dashed lines plot
the beam trajectory, computed as the intensity peak in each section
normal to z. In the FDTD simulations, we considered ε⊥ = 1.755,
ε‖ = −0.3805 − 0.0299i [the imaginary part is neglected both in
Eqs. (21) and (18)]. Here the wavelength is 0.83 μm.
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In agreement with the theoretical predictions, for small positive
rotations of the optic axis ξ , light undergoes negative refraction
at the interface, except for a narrow interval limited by βin = 0◦
and an upper extremum depending on ξ (yellow shaded region
in Fig. 6).

V. DIFFRACTION COMPENSATION

The possibility of beam anomalous diffraction entails the
realization of spatial equivalents of dispersion compensators
with temporal pulses in optical fibers, where opposite signs of
chromatic dispersion are alternated [41]. Beam diffraction in
an isotropic slab of length Liso and refractive index niso can be
canceled out by subsequent propagation in an HM of extent

Lhyp = n0

niso|Dy |Liso. (22)

If ψ0 is the input beam profile in z = 0 and Eq. (22) is
satisfied, at the output of the second slab (HM), after a
propagation length Liso + Lhyp, we expect to find a replica of
ψ0. Figure 7 demonstrates this concept via BPM simulations,
launching three distinct beam profiles ψ0 in such a two-layer
structure. It can be seen that the output profiles coincide
with the input, even though our model relies on the paraxial
approximation, without resorting to superlens effects based
on the recovery of evanescent waves [5,42]. For type-I HM
and θ = 0, the sideshift due to walk-off vanishes (Fig. 2)
and the replica retrieves its transverse position at the input.
Conversely, in the presence of walk-off, the output field is
laterally shifted by Lhyp tan δ. It needs to be emphasized that
anomalous diffraction can also occur in photonic crystals [43]
and waveguide arrays [44], but in both these systems the field
is an envelope of Bloch waves, and thus in general a faithful
reconstruction of the input profile is inhibited. On the contrary,
in hyperbolic media such limitation is not present, as long as

FIG. 7. Diffraction compensation in a two-layer stack with an
isotropic medium (bottom, Liso = 200 μm, niso = 1) and a type-I HM
(top, ξ = 0, ε⊥ = 2.2614, ε‖ = −2.8744) for a beam of wavelength
λ = 1.064 μm. The white line indicates the interface between the two
media. (a) Evolution of an input Gaussian beam with waist 2 μm and
planar phase front; (b) same as in (a), but with phase front tilted by
20◦; (c) evolution of an Airy beam modulated by a Gaussian beam,
input profile ψ0 = Ai(y/wA) exp (−2y2/w2

G) with wA = 2 μm and
wG = 20 μm. Top and bottom graphs show input and output profiles,
respectively.

the effective medium theory remains valid [45]. In the case
of hyperbolic metamaterials, the subwavelength unit cell fixes
the minimum achievable resolution. Before reaching this limit,
spatial nonlocal effects have to be accounted for [35,46,47].
The field reconstruction in the present structure can be
interpreted as a time inversion occurring in the hyperbolic slab
while conserving the sign of the effective mass, i.e., a shift of
the minus sign from the RHS to the LHS of Eq. (17) [20]. Since
in real media the propagation losses have to be accounted for,
as they can strongly affect diffraction [36], in the following
section we address this issue using FDTD simulations.

FDTD analysis

When considering an actual hyperbolic material, losses
can strongly affect light propagation [36,48]. For instance,
when modeling the medium polarizability with the Lorentz
oscillator, a negative permittivity is expected in the proximity
of an absorption line. Stated otherwise, the Kramers-Kronig
relations do not allow one to set independently the real and
imaginary parts of the dielectric permittivity [35]. We used
the MEEP FDTD program [39] and considered the case ξ = 0◦,
corresponding to vanishing walk-off, in order to emphasize the
role of negative diffraction. Figure 8 shows light propagation
for three different input profiles and moderate propagation
losses. The single-hump beam undergoes refocusing when
entering the hyperbolic material, in agreement with our
analytical predictions and BPM simulations [see Fig. 7(a)].
When the input is tilted with respect to the interface normal
ẑ, the beam undergoes negative refraction and eventually

FIG. 8. FDTD results demonstrating diffraction compensation for
ξ = 0◦. Snapshot of the electric field after reaching the stationary
regime, showing diffraction compensation (top) for (a) a bell-shaped
input, (b) a three-hump input, and (c) a bell-shaped input impinging
on the interface at an angle of 10◦. Bottom: corresponding transverse
profiles of the input intensity (blue solid lines), and of the output with-
out (orange dash-dotted lines) and with (dashed black lines) the HM
slab; the output section is in z = 60 μm (at the end of the grid). The
dashed red lines in (a)–(c) represent the analytically calculated length
Lhyp. Here, λ = 0.83 μm, Liso = 40 μm, niso = 1, Lhyp = 11.5 μm
(dashed vertical lines), ε⊥ = 1.755, ε‖ = −0.3805 − 0.0299i.
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FIG. 9. Interaction of a λ = 1.064 μm, 2-μm-wide Gaussian
beam and flat phase fronts with a GRIN distribution in a type-I
HM characterized by ξ = 0, ε⊥ = 2.2614, ε‖ = −2.8744. (a), (b)
Beam evolution in the plane yz for input in y = −5 μm and
normal incidence, in the presence of a Gaussian y-graded waveguide
segment located along z between z = 10 and z = 50 μm, of width
wGRIN = 5 μm and (a) (
n)0 = 0.1 and (b) (
n)0 = −0.1. (c), (d)
As in (a), (b), but with the input beam in y = 0 μm and a z-extended
waveguide. The white rectangles mark the location of the GRIN
regions.

retrieves its original transverse position, nearly recovering its
input profile through anomalous diffraction [see Fig. 8(c)].
When a three-hump beam is launched, the propagation in the
HM allows formation of a mirror image of the input [see
Fig. 8(b)]. These FDTD numerical experiments demonstrate
that the main features of the phenomenon survive moderate
losses. Nonetheless, besides the inevitable reduction in power,
the mirror plane (image) gets shifted more than predicted
inside the lossy HM slab. If we define Lreal

hyp, the distance of
the image plane from the interface air-HM in the presence of
losses, we get a relative difference of (Lreal

hyp − Lhyp)/Lreal
hyp ≈

33% in the case plotted in Fig. 8.

VI. PROPAGATION IN A GRADED INDEX

An effective negative mass can yield exotic interactions
of light with graded distributions of refractive index (GRIN).
As stated by the Fermat’s principle, in media with elliptic
dispersion light is “attracted” towards regions with a higher
refractive index. This property can be reformulated in the
framework of the Schrödinger equation, where the optical ana-
log of the Ehrenfest’s theorem states that beams are subject to
a transverse force proportional to the sign-inverted transverse
gradient of the refractive index n, −∇tn. Since the effective
mass of light beams is negative in hyperbolic media, despite the
fact that the equivalent force is always antiparallel to the index
gradient, the beam gets “pulled” towards lower refractive index
regions. Examples of beam interactions with y-dependent
Gaussian GRIN distributions ne(y) − n0 = (
n)0e

−y2/w2
GRIN

are presented in Figs. 9(a) and 9(b). The effective negative mass
causes the beam deviation to flip as compared with standard
materials encompassing elliptic dispersion. Similarly, GRIN
waveguides in HMs require a lower refractive index in the
core than in the cladding, in contrast to standard waveguides
[see Figs. 9(c) and 9(d)].

FIG. 10. Nonlinear evolution of a Gaussian beam of waist 2 μm,
power P , λ = 1.064 μm, and planar phase front at the input z = 0
in a type-I HM with ξ = 0, ε⊥ = 2.2614, ε‖ = −2.8744. Beam cross
sections vs z for (a) n2EP = −5 × 10−12 m2 V−2 W, (b) n2EP =
−1 × 10−11 m2 V−2 W, (c) n2EP = 5 × 10−12 m2 V−2 W, and (d)
n2EP = 1 × 10−11 m2 V−2 W. (e) Comparison of the normalized
intensity distributions in z = 500 μm vs y: from the widest to the
narrowest, the excitations correspond to the cases (d) red line, (c)
blue line, linear (yellow line), (a) magenta line, and (b) green line,
respectively.

VII. NONLINEAR CASE

Here we address the role of a third-order nonlinear response
such as an intensity-dependent refractive index. For the sake of
simplicity, we refer to a standard Kerr material by setting ne −
n0 = n2H |Hx |2, i.e., an index change proportional to the local
electromagnetic intensity. In terms of the standard Kerr coeffi-
cient n2E scaled to the square of the electric field, it is n2EZ2 =
n2H , with Z the medium impedance. The inverted profile
of a confining waveguide in HMs suggests that, at variance
with elliptic dispersion, bright or dark solitons are supported
by negative (n2H < 0) or positive (n2H > 0) nonlinearities,
respectively, in analogy to temporal solitons in fibers [49,50].

Figure 10 shows the BPM-computed evolution of a Gaus-
sian beam input in either a focusing (n2H < 0) [Figs. 10(a)
and 10(b)] or a defocusing (n2H > 0) [Figs. 10(c) and 10(d)]
HM. As expected, when n2H < 0, the Gaussian beam evolves
into a fundamental single-humped soliton featuring a hy-
perbolic secant profile, emitting radiation while adjusting to
the stationary state, in agreement with the inverse scattering
theory [51]. When n2H > 0, the beam retains its bell shape, but
spreads more than in the linear case n2H = 0 [see Fig. 10(e)].
While this counterintuitive behavior was partially discussed
in Refs. [52,53] (plasmonic waveguide arrays with nanowires)
and [54] (analogy with gravitational forces between photons),
our model provides a markedly simpler and physically intuitive
explanation in terms of anomalous diffraction, retaining its
validity in a variety of systems and materials, including, e.g.,
natural HMs [21,22].

VIII. SUMMARY AND OUTLOOK

We modeled light propagation in materials with hyperbolic
dispersion as the motion of a quantum particle possessing a
negative mass [34]. A negative effective mass corresponds
to anomalous diffraction and provides a straightforward
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explanation of negative refraction at the interface between
hyperbolic and isotropic media. We compared our results in
the paraxial approximation with exact solutions in order to
address their range of applicability. We found an explicit
closed form for the angle of refraction [Eq. (20)], generally
applicable to refraction from an isotropic material to a uniaxial
in the case of coplanar optic axis and input wave vector.
Through time inversion of light propagation in a homoge-
neous HM, our model allows designing novel structures for
the perfect reconstruction of arbitrary paraxial input fields.
Compared with classical configurations based on lenses (e.g.,
the 4f correlator), HM-based reconstructions are invariant
with respect to transverse shifts of the beam, representing an
ideal design for short-distance optical communications based
upon spatial multiplexing [55]. Our results demonstrate that
complex waveforms can be faithfully retrieved, even in the
presence of moderate losses—unavoidable due to Kramers-
Kronig relations [48]—and with spatial resolution determined
by the material nonlocality [3,46,47]. The negative effective

mass of light implies attraction towards (repulsion from)
regions with a lower (higher) refractive index, opposite to
the standard behavior when dispersion is elliptic; hence, in the
Kerr (cubic) regime, spatial bright (dark) solitons are supported
by a negative (positive) intensity-dependent refractive index.
Finally, through reciprocity between magnetic and electric
properties, our results are also valid in magnetic hyperbolic
metamaterials [56] as well as in the presence of more complex
bianisotropic responses [2].
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