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Analytical study of coherence in seeded modulation instability
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We derive analytical expressions for the coherence in the onset of modulation instability, in excellent agreement
with thorough numerical simulations. As usual, we start by a linear perturbation analysis, where broadband noise
is added to a cw pump; then, we investigate the effect of adding a deterministic seed to the cw pump, a case of
singular interest as it is commonly encountered in parametric amplification schemes. Results for the dependence
of coherence on parameters such as fiber type, pump power, propagated distance, and seed signal-to-noise ratio
are presented. Finally, we show the importance of including higher-order linear and nonlinear dispersion when
looking at longer-wavelength regions (mid IR).
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I. INTRODUCTION

In this work, we study analytically the problem of modula-
tion instability in optical fibers with noisy inputs. In particular,
we focus on the phase coherence of the resulting spectrum.
One metric of phase coherence is given by [1,2]

g12(z,�) = 〈ã∗
k (z,�)ãl(z,�)〉k �=l√

〈|ãk(z,�)|2〉〈|ãl(z,�)|2〉
, (1)

where ã(z,�) is the Fourier transform of the pulse envelope
at position z along the fiber, � is the frequency, the subscripts
k and l correspond to different realizations, and the angle
brackets denote ensemble averages. This metric is widely used
in the area of supercontinuum (SC) generation (see, e.g., [3,4]
and references therein). The relation between modulation
instability (MI) and SC has been a matter of profound analysis
(see, for example, [5,6]). Moreover, modulation instability,
being seeded by the noise at the input, is one of the sources of
fluctuations in cw-generated supercontinuum spectra. We must
note that the relation of the pump noise to supercontinuum
generation has been widely studied (see, e.g., [7–14] and
references therein).

There also have been other attempts at dealing analytically
with MI and noisy inputs. For example, Aslam et al. [15]
study the problem, but they do not include either higher-order
dispersion or Raman scattering. Our development, in contrast,
follows the same path as the usual modulation instability
analysis, i.e., we investigate a perturbation to a continuous
wave, including all relevant terms of the generalized nonlinear
Schrödinger equation that models propagation in optical fibers.

In Sec. II, we develop analytical expressions for g12 when
the input is a noisy perturbation to a continuous wave.
Specifically, the input perturbation spectrum is given by
ã(0,�) = s̃(�) + Ñ (�), where s̃(�) is the Fourier transform
of the deterministic seed and Ñ (�) corresponds to additive
white Gaussian noise. Such noise may be considered as an

approximation to the shot noise typical of a laser output. Since
expressions are somewhat complex, we provide examples of
their use for some particular inputs and limiting cases. In
Sec. II A, we specialize the equations to the case in which
s̃(�) = 0 for � < 0. This situation corresponds to the very
important case of a seed wavelength alongside with the pump.
Section II B presents results corresponding to the case of a
symmetrical power spectrum, i.e., |s̃(�)| = |s̃(−�)|. Finally,
Sec. II C deals with the case where there is only noise at the
input of the optical fiber, that is, s̃(�) = 0. Since coherence, as
defined in Eq. (1), is not particularly enlightening in this case,
we study other metrics that provide some information on the
MI spectrum.

A comparison of the analytical results with simulations
is presented in Sec. III. Final conclusions are presented in
Sec. IV.

II. BROADBAND NOISE AS A PERTURBATION
TO A CW PUMP

Wave propagation in lossless optical fibers can be described
by the generalized nonlinear Schrödinger equation [16]:

∂A

∂z
− iβ̂A = iγ̂ A(z,T )

∫ +∞

−∞
R(T ′)|A(z,T − T ′)|2dT ′,

(2)

where A(z,T ) is the slowly varying envelope, z is the spatial
coordinate, and T is the time coordinate in a comoving frame at
the group velocity (= β−1

1 ). β̂ and γ̂ are operators related to the
dispersion and nonlinearity, respectively, and are defined by

β̂ =
∑
m�2

im

m!
βm

∂m

∂T m
, γ̂ =

∑
n�0

in

n!
γn

∂n

∂T n
.

The βm’s are the coefficients of the Taylor expansion of the
propagation constant β(ω) about a central frequency ω0. In
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the convolution integral in the right-hand side of Eq. (2),
R(T ) is the nonlinear-response function including both the
instantaneous (electronic) and delayed Raman response.

Modulation instability is customarily analyzed by studying
the evolution of a small perturbation a to the stationary solution
of Eq. (2):

A(z,T ) = (
√

P0 + a(z,T ))eiγ0P0z. (3)

By only keeping terms linear in the perturbation, after some
straightforward algebra, substitution of Eq. (3) into Eq. (2)
leads to the following second-order ordinary differential
equation in the frequency domain:

∂2ã(z,�)

∂z2
+ 2iB̃(�)

∂ã(z,�)

∂z
− C̃(�)ã(z,�) = 0, (4)

where � = ω − ω0, and ã and R̃ are the Fourier transforms of
a and R, respectively, where, for the sake of clarity, we have
introduced the variables

B̃(�) = − [β̃o(�) + P0γ̃o(�)(1 + R̃(�))],

C̃(�) = β̃2
o (�) − β̃2

e (�) + P 2
0

(
γ̃ 2

o (�) − γ̃ 2
e (�)

)
(1 + 2R̃(�))

− P 2
0 γ 2

0 + 2P0γ0β̃e(�) + 2P 2
0 γ0γ̃e(�)(1 + R̃(�))

+ 2P0(β̃oγ̃o − β̃eγ̃e)(1 + R̃(�)),

β̃e(�) =
∑
n�1

β2n

(2n)!
�2n, β̂o(�) =

∑
n�1

β2n+1

(2n + 1)!
�2n+1,

γ̃e(�) =
∑
n�0

γ2n

(2n)!
�2n, γ̂o(�) =

∑
n�0

γ2n+1

(2n + 1)!
�2n+1.

Substitution of the ansatz a(z,�) = D exp[iK(�)z] in Eq. (4)
leads to

K2(�) + 2K(�)B̃(�) + C̃(�) = 0.

Finally, the dispersion relation obtained as a solution to this
equation is

K(�) = −B̃(�) ±
√

B̃2(�) − C̃(�). (5)

This expression agrees with those found in the literature (see,
e.g., [17]). As usual, MI gain can be found as the imaginary
part of K(�).

Some further calculations show that the spectral evolution
of the perturbation can be written as

ã(z,�) =e−iB̃(�)z

KD(�)
[Dz(�)ã∗(0, −�) + Fz(�)ã(0,�)], (6)

where KD(�) =
√

B̃2(�) − C̃(�) and

Dz(�) = iP0γ̃ (�)R̃(�) sin(KD(�)z),

Fz(�) = i(β̃e + P0γ̃e(1 + R̃) − P0γ0) sin(KDz)

+ KD cos(KDz).

Let us assume that a(0,�) = s̃(�) + Ñ (�), where s̃(�) is
the Fourier transform of a deterministic seed and Ñ (�) are
independent and identically distributed circularly symmetric
normal variables with variance σ 2 for each �, i.e., Ñ (�) ∼

CN (0,σ 2). If ak(z,�), k ∈ N, are independent realizations,
then, by Eq. (6)

〈ã∗
k (z,�)ãl(z,�)〉

=
∣∣∣∣e−iB̃(�)z

KD(�)

∣∣∣∣
2

{|Dz(�)|2|s̃(−�)|2 + |Fz(�)|2|s̃(�)|2

+ 2Re{Dz(�)F ∗
z (�)s̃(�)s̃(−�)}}, (7)

for k �= l. In the case k = l,〈∣∣ã2
k (z,�)

∣∣2〉
=

∣∣∣∣e−iB̃(�)z

KD(�)

∣∣∣∣
2

{|Dz(�)|2(|s̃(−�)|2 + σ 2) + |Fz(�)|2

× (|s̃(�)|2 + σ 2) + 2Re{Dz(�)F ∗
z (�)s̃(�)s̃(−�)}}. (8)

Using Eqs. (7) and (8), the coherence of the perturbation
becomes

1

g12(z,�)
= 1 + (|Dz(�)|2 + |Fz(�)|2)σ 2

×{|Dz(�)|2|s̃(−�)|2 + |Fz(�)|2|s̃(�)|2
+ 2Re{Dz(�)F ∗

z (�)s̃(�)s̃(−�)}}−1. (9)

Finally, by a straightforward calculation g12 is found to depend
only on the even terms β2k of the expansion of the propagation
constant.

A. Single sideband

As a relevant example of the use of this equation, consider
the case in which, for a given �, s̃(−�) = 0 and s̃(�) �= 0
(e.g., s̃(�) = 0 for � < 0). This case is of particular interest
because besides the pump there is a smaller seed signal at
a given wavelength, a situation commonly found in various
parametric amplification schemes. Then,

1

g12(z,�)
= 1 +

[
1 +

( |Dz(�)|2
|Fz(�)|2

)sgn(�)
]

σ 2

|s̃(|�|)|2 , (10)

where sgn(·) denotes the sign function. When |s̃(|�|)|2 
 σ 2,

g12(z,�) ≈ 1 −
[

1 +
( |Dz(�)|2

|Fz(�)|2
)sgn(�)

]
σ 2

|s̃(|�|)|2 .

It may be easier to understand these expressions in the
particular case where γn = 0 for n � 1 (e.g., neglecting the
effect of self-steepening) and considering only the electronic
instantaneous response [R(T ) = δ(T )]. If we further assume
that there exists MI gain,

1

g12(z,�)

= 1 +
[

1 +
(

γ 2
0 P 2

0 sinh2(g(�)z/2)

γ 2
0 P 2

0 sinh2(g(�)z/2) + 1
4g2(�)

)sgn(�)
]

× σ 2

|s̃(|�|)|2 ,

where g(�) = 2KD(�)/i is the modulation gain. Interesting
expressions are obtained in two limiting cases, when either
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g(�)z � 1 (propagated distance much shorter than the MI
length) or g(�)z 
 1 (propagated distance much longer than
the MI length). In the former case,

γ 2
0 P 2

0 sinh2(g(�)z/2) ≈ γ 2
0 P 2

0 (g(�)z/2)2

≈ g2(�)

4

(
z

LNL

)2

,

whereas LNL = (γ0P0)−1 is the usual nonlinear length. Thus,

g12(z,�) ≈ 1 −
{

1 +
[

1 +
(

LNL

z

)2]−sgn(�)
}

σ 2

|s̃(|�|)|2 .

Note that coherence does not depend on the actual MI gain. If
we further assume that z � LNL,

g12(z,�) ≈
⎧⎨
⎩

1 − [
1 + (

z
LNL

)2] σ 2

|s̃(|�|)|2 � > 0,

1 − [
2 + (

LNL
z

)2] σ 2

|s̃(|�|)|2 � < 0.

It is clear from this equation that, while coherence decreases
as z increases for � > 0, it increases with z for � < 0.

In the case where g(�)z 
 1, coherence depends neither
on the particular MI gain nor on the sign of �, and

g12(z,�) ≈ 1 − 2
σ 2

|s̃(|�|)|2 . (11)

In this respect, as z increases, coherences of Stokes and anti-
Stokes components approach the same value.

B. Equal power spectrum sidebands

Another particular case is when |s̃(−�)| = |s̃(�)|. This
case corresponds to that where the pump is modulated by two
smaller signals of the same amplitude, located symmetrical to
the pump (in the frequency space.) In this case,

1

g12(z,�)
= 1 + 1

1 + 2Re{Dz(�)F ∗
z (�)ei(φs (�)+φs (−�))}

|Dz(�)|2+|Fz(�)|2

σ 2

|s̃(�)|2 ,

where φs(�) = arg{s̃(�)}. It is interesting to note that co-
herence depends on the phase relation: φs(�) + φs(−�). In
particular, coherence is maximized when

Re{Dz(�)F ∗
z (�)ei(φs (�)+φs (−�))} = |Dz(�)||Fz(�)|.

So, we can write that

1

g12(z,�)
� 1 + 1

1 + 2|Dz(�)||Fz(�)|
|Dz(�)|2+|Fz(�)|2

σ 2

|s̃(�)|2 .

From this expression, it is simple to prove that

g12(z,�) � 1

1 + 1
2

σ 2

|s̃(�)|2
≈ 1 − 1

2

σ 2

|s̃(�)|2 , (12)

where the approximation is valid for large input signal-to-noise
ratio.

It is interesting to compare Eqs. (11) and (12). It might be
argued that the double-sideband case may lead to a higher
spectral coherence than the single-sideband one. However,
it must be noted that the higher coherence can be achieved
by tuning the phase of the input seed. In the particular case
of two input pulses at frequencies symmetrical with respect

to the pump, only a particular phase relationship maximizes
coherence.

C. Noise as input

We now turn our attention to the case where a(0,�) =
Ñ (�), with i.i.d. Ñ (�) ∼ CN (0,σ 2). Equation (9) implies
that coherence is zero in this case. However, there are other
characteristics of the MI spectrum that can be analytically
calculated.

From Eq. (6), it follows that ã(z,�) is also a circularly
symmetric normal random variable. Moreover, its variance is
given by

σ 2
ã = σ 2

∣∣∣∣e−iB̃(�)z

KD(�)

∣∣∣∣
2

{|M̃(�) sin(KD(�)z)|2

+ |KD(�) cos(KD(�)z) − (Ñ(�)

− iB̃(�)) sin(KD(�)z)|2}. (13)

Higher moments of the power spectrum are sometimes of
interest [18]. Since ã(z,�) is circularly symmetric, |ã(z,�)|
has a Rayleigh distribution with scale parameter σã [i.e., with
a probability density function f (x; σã) = x

σ 2
ã

e−x2/(2σ 2
ã ), x � 0]

and |ã(z,�)|2/σ 2
ã has a χ2 distribution with two degrees of

freedom. By straight calculation we obtain

skewness (|ã(z,�)|2) = 2, (14)

excess kurtosis (|ã(z,�)|2) = 6. (15)

It is also interesting to note that the χ2 distribution has a long
right tail (as evidenced, for example, by the excess kurtosis.)
This fact implies a non-negligible probability of high power
spectral densities.

Another interesting metric is the signal-to-noise ratio. The
definition given by Sørensen et al. [18,19] in the context of a

FIG. 1. g12(�) vs distance. Analytical (full line) and numerical
(dashed line) results. Seed frequencies are � = ±�1,2 for �1 = 31
GHz and �2 = 46 GHz. Fiber type is SSMF.
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FIG. 2. g12(�) vs frequency at distances LNL and 2LNL, and for
a SSMF fiber (P0 = 1 W).

supercontinuum is

SNR(�) = 〈|ã(z,�)|2〉√
Var(|ã(z,�)|2)

, (16)

where Var(X) = 〈|X − 〈X〉|2〉. It is easy to see that, in our
case, SNR(�) = 1 for all �.

III. RESULTS

In order to test the validity of our analytical results, in Fig. 1
we compare the value of g12 by seeding with 1 mW power at
frequencies 31 and 46 GHz, and show its evolution along a
standard single-mode fiber [SSMF, β2 = −21 ps2/km, β3 =
0.184 ps3/km, and γ0 = 1.2 (W km)−1] over a distance of
2LNL for both the Stokes and anti-Stokes sidebands, and for a
pump power of 1 W at 1550 nm (corresponding to 193.4 THz).
The nonlinear response R(T ) is that of silica fibers and the

FIG. 3. g12(�) vs frequency at distances LNL and 2LNL, and for
a NZ DSF fiber (P0 = 1 W).

FIG. 4. g12(�) at distance 2LNL for a simplified fiber (βn�3 = 0,
no self-steepening, and no Raman) vs complete fiber model.

self-steepening term γ1 is calculated as γ0/ω0 [16]. It can be
seen that the analytically evaluated g12 [Eq. (10)] is in excellent
agreement with the one calculated from 300 noise realizations
(a total of 150 × 299 averaged correlations), where the seed
signal-to-noise ratio is 10 dB. Also, the “same limit” property
stated in Eq. (11) is verified.

In Figs. 2 and 3, we depict g12(�) when seeding with 1 mW
power at frequencies � > 0, 10 dB input signal-to-noise ratio,
and for distances LNL and 2LNL. While in Fig. 2 we show re-
sults for a SSMF fiber, in Fig. 3, for comparison, results shown
correspond to a nonzero dispersion-shifted fiber (NZ-DSF,
same β2 as SSMF, β3 = 0.108 ps3/km, γ0 = 1.6 (W km)−1).
By looking at the lower frequency side of the spectrum, we see
that coherence (i.e., the value of g12) increases with distance
up to the limit given by Eq. (11), as expected. A “coherence
bandwidth,” defined as the frequency range from the pump
frequency to the first coherence minimum, is observed to
diminish with increasing distance for both fiber types, limiting
the region where high coherence components are generated.

FIG. 5. Same as Fig. 4 in the mid-IR spectral region.
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FIG. 6. g12 vs analytic averaged spectra. Zeroes in the coherence
function follow ripples in the spectrum.

The width of this region is strongly dependent on the MI
gain profile (overlayed for comparison), and clearly the higher
nonlinearity of the NZ-DSF yields a larger coherent bandwidth
as compared to SSMF.

In both Figs. 2 and 3 a complete model that includes Raman
and self-steepening is used, whereas in Fig. 4 we compare the
complete model for SSMF of Figs. 1 and 2 at distance 2LNL, to
the simplified case where neither Raman nor self-steepening
nor higher-order linear dispersion are present. The difference
is nearly negligible. To show that this is not always the case,
in Fig. 5 we consider the same comparison as in Fig. 4,
but for a typical chalcogenide fiber (see, e.g., [20,21]) in the
mid-IR spectral region, where the influence of self-steepening
is greatly augmented for two reasons: chalcogenide fibers
typically possess nonlinear coefficients γ0 100 to 1000 times
larger than those of silica fibers; plus, the larger wavelengths in
the mid-IR range render the self-steepening term γ1 (≈ γ0/ω0)
many times larger than that in the telecommunication band.

FIG. 7. g12 for different pump powers at 2LNL (NZ-DSF fiber).

FIG. 8. g12 Stokes-side “coherence bandwidth” for different
signal-to-noise ratios at 2LNL (NZ-DSF fiber).

Consequently, in this case, not considering the complete model
leads to wrong results.

It is interesting to point out that, although higher coherence
is tightly connected to the region where there is MI gain,
the presence of decreasing lobes of considerable coherence
beyond the MI cutoff frequency becomes apparent. In Fig. 6
we show g12(�) against a scaled plot of the averaged spectra of
2000 noise realizations. A strong correlation between g12 side
lobes and spectral ripples is evident. Also, the MI gain cutoff
frequency grows with increasing power. As such, Fig. 7 shows
the enlargement of the coherence bandwidth when increasing
the pump power from 500 mW to 1 W.

Finally, when fixing both pump power (1 W) and distance
(2LNL), varying the seed signal-to-noise power ratio has little
effect on the the coherence bandwidth; however, the 3-dB point
(as measured from � = 0 to the point where the maximum g12

has decreased to g12/2) grows monotonically, as it can be seen
in Fig. 8.

IV. CONCLUSIONS

In this paper we derived analytical expressions for the
coherence in the onset of modulation instability in excellent
agreement with numerical simulations. We focused on the case
where broadband noise is added to a continuous wave pump
(with wavelength lying in the telecommunication near the IR
band) and investigated the effect of adding a deterministic seed
to the cw pump, a case of singular interest as it is commonly
encountered in parametric amplification schemes. We obtained
results for the dependence of coherence on parameters such as
fiber type, pump power, propagated distance, and the signal-
to-noise ratio of the seed wavelength. We also investigated the
coherence bandwidth, finding that nonzero dispersion shifted
fibers yield a greater bandwidth than standard single-mode
fibers. Interestingly, in both cases, the coherence bandwidth
extends beyond the MI gain cutoff frequency.

We found that inclusion of higher-order linear and nonlinear
dispersion leads to very similar results to those obtained from
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a simplified model in the near-IR range, but is of critical
importance when looking at higher wavelengths (mid-IR
range), where the influence of the self-steepening effect is
greatly augmented.

Finally, we believe these results might be of significance
when analyzing the onset of supercontinuum generation from
cw pumps, as they shed light into the coherence of the initial
evolution stage.
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