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Electromagnetic energy and negative asymmetry parameters in coated magneto-optical cylinders:
Applications to tunable light transport in disordered systems
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We investigate electromagnetic scattering of normally irradiated gyrotropic, magneto-optical core-shell
cylinders using Lorenz-Mie theory. A general expression for time-averaged electromagnetic energy inside a
coated gyroelectric and gyromagnetic scatterer is derived. Using realistic material parameters for a silica core
and InSb shell, we calculate the stored electromagnetic energy and the scattering anisotropy. We show that the
application of an external magnetic field along the cylinder axis induces a drastic decrease in electromagnetic
absorption in a frequency range in the terahertz, where absorption is maximal in the absence of the magnetic
field. We demonstrate not only that the scattering anisotropy can be externally tuned by applying a magnetic field,
but also that it reaches negative values in the terahertz range even in the dipolar regime. We also show that this
preferential backscattering response results in an anomalous regime of multiple light scattering from a collection
of magneto-optical core-shell cylinders, in which the extinction mean free path is longer than the transport mean
free path. By additionally calculating the energy-transport velocity and diffusion coefficient, we demonstrate an
unprecedented degree of external control of multiple light scattering, which can be achieved by either applying
an external magnetic field or varying the temperature.
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I. INTRODUCTION

Electromagnetic (EM) scattering by small particles with
sizes of the order of the wavelength has many applications
not only in different areas of physics, such as meteorology,
optical communications, sensing, and astrophysics [1], but
also in interdisciplinary fields, such as biophysics [2]. The
advent of plasmonics and metamaterials has allowed for the
discovery of novel scattering phenomena which do not exist in
naturally occurring materials such as plasmonic cloaking
[3–5], unconventional Fano resonances [6–9], artificial mag-
netism [10,11], superscattering [12], and the unprecedented
control of the scattering directionality [13,14].

In particular, controlling the scattering direction crucially
depends on the design optimization of the electric and
magnetic responses of small particles. Most approaches to
controlling the scattering direction rely on tailoring the electric
structures of nanoparticles, as typically the electric response
is dominant in natural media at optical frequencies [1,15].
However, efforts have been made to propose and design
metamaterials that support both electric and magnetic dipolar
resonances, such as spheres [13,16] and high-permittivity
cylinders [14]. These efforts have allowed the achievement
of zero-backward-scattering and near-zero-forward-scattering
conditions (known as Kerker conditions), first theoretically
predicted for hypothetical particles exhibiting both electric
and magnetic dipolar resonances [17] and highly directional
EM scattering [18–23]. The observation of Kerker conditions
relies on the interference of electric and magnetic dipoles in
nanostructures [24,25]. Alternative theoretical approaches for
Kerker conditions, involving electric dipoles and quadrupoles,
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also exist [26]. Recently, both broadband zero backward
and near-zero forward scattering have been obtained even
beyond the dipole limit, relaxing design constraints in practical
experiments [27]. Other mechanisms for achieving directional
light scattering have also been proposed using magneto-optical
materials [28,29].

In addition, achieving preferential backward scattering
remains a challenge and has many applications in multiple
light scattering. Preferential backscattering, which hardly
occurs in natural media, is characterized by negative values
of the asymmetry parameter, the average of the cosine of
the scattering angle 〈cos θ〉. Indeed, for small particles in the
Rayleigh regime, scattering is dipolar so that 〈cos θ〉 ≈ 0. In
contrast, Mie particles scatter strongly in the forward direction,
〈cos θ〉 ≈ 1. Negative 〈cos θ〉 has been reported in ferromag-
netic particles [30] and lossless dielectric nanospheres made of
moderate-permittivity materials, such as silicon or germanium
nanospheres in the infrared region [31]. In these cases, negative
asymmetry parameters have been show to lead to an unusual
regime in multiple light scattering, in which the scattering
mean free path is larger than the transport mean free path [31].
This peculiar transport regime has also been demonstrated
for multiple scattering systems with correlated disorder under
certain conditions [32].

In this paper we propose an alternative, versatile strategy not
only to achieve preferential backscattering (negative 〈cos θ〉)
but also to control the scattering direction with an external
parameter, which can be either an applied magnetic field or the
temperature. We demonstrate that these effects can be obtained
by investigating light scattering in dielectric cylinders coated
with a gyroelectric, magneto-optical shell. For concreteness,
we consider realistic material parameters: a silica (SiO2)
core and an indium antimonide (InSb) shell, which has a
strong magneto-optical and temperature dependence of the
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dielectric function on the response in the far infrared [33–35].
Specifically, in the framework of the Lorenz-Mie theory we
show that the asymmetry scattering factor for this system can
be tuned from negative to positive values by applying moderate
magnetic fields B at the Voigt configuration. We derive a closed
analytical expression for the time-averaged EM energy stored
inside the core-shell cylinder for both TE and TM polarizations
to show that the application of an external magnetic field
induces a gap in EM absorption in the terahertz (THz) regime.
We also consider multiple light scattering by an assembly of
coated cylinders and calculate the transport mean-free path,
energy-transport velocity, and light diffusion coefficient. This
analysis reveals that the unusual light transport regime where
the scattering mean free path is longer than the transport mean
free path can be reached by varying either the temperature or
the external magnetic field.

This paper is organized as follows. In Sec. II, we present the
system and fundamental quantities regarding the Lorenz-Mie
theory in consistent notation. Our expressions are general and
can be applied to arbitrary core-shell cylinders containing
gyroelectric and gyromagnetic materials normally irradiated
with plane waves in TE or TM polarizations. The main
analytical result is presented in Sec. III, in which we calculate
the time-averaged internal energy and its relation to the ab-
sorption cross section, generalizing previous results obtained
for isotropic cylinders. In Sec. IV, we study both single
scattering and diffusion of EM waves in two-dimensional
(2D) disordered media consisting of (SiO2) core-shell (InSb)
cylinders and discuss some applications. Finally, in Sec. V, we
summarize our results and conclude.

II. THE LORENZ-MIE THEORY FOR GYROTROPIC
COATED CYLINDERS

To investigate magneto-optical effects in 2D media, we
consider a center-symmetric, infinitely long, gyrotropic core-
shell cylinder, with inner radius a and outer radius b, normally
irradiated with monochromatic plane waves. This scatterer is
embedded in an isotropic lossless medium (ε0,μ0), where ε and
μ are the dielectric permittivity and magnetic permeability,
respectively. The material parameters of the coated cylinder
are (←→ε1 ,

←→
μ1 ) for the core (0 < r � a) and (←→ε2 ,

←→
μ2 ) for the

shell (a < r � b), where the gyroelectric and gyromagnetic
tensors are, respectively,

←→
εq =

⎛⎜⎝εxx εxy 0

εyx εyy 0

0 0 εzz

⎞⎟⎠ =

⎛⎜⎝ ε⊥
q ıγq 0

−ıγq ε⊥
q 0

0 0 ε
||
q

⎞⎟⎠, (1)

←→
μq =

⎛⎜⎝μxx μxy 0

μyx μyy 0

0 0 μzz

⎞⎟⎠ =

⎛⎜⎝ μ⊥
q ıηq 0

−ıηq μ⊥
q 0

0 0 μ
||
q

⎞⎟⎠. (2)

Considering the time harmonic dependence e−ıωt , where
ω is the angular frequency, one has the curl Maxwell
equations ∇ × (E,H) = ıω(←→μ · H, − ←→

ε · E). In cylindrical
coordinates (r,φ,z), there are two irradiation schemes with
analytical solutions, as depicted in Fig. 1: the TM polarization

FIG. 1. A center-symmetric-core-shell, infinitely long circular
cylinder normally irradiated with plane waves in the Voigt config-
uration (B ⊥ k). The core has optical properties (ε1,μ1) and radius a,
whereas the shell has (ε2,μ2) and radius b. The surrounding medium
is the vacuum (ε0,μ0). The incident EM fields (Ep

i ,H
p
i ) and (Es

i ,H
s
i ) are

on p or s polarizations, respectively. The applied external magnetic
field satisfies |B| 	 |μ0Hi|.

or p wave (H||ẑ), which provides the field components Er and
Eφ in terms of partial derivatives of Hz; and the TE polarization
or s wave (E||ẑ), which leads to Hr and Hφ in terms of partial
derivatives of Ez.

For both polarizations, we define the following quantities,
used throughout this text:

TM (p) ⇒

⎧⎪⎪⎨⎪⎪⎩
ε

p
q ≡ ε⊥

q

[
1 − (βp

q

)2]
,

μ
p
q ≡ μ

||
q,

β
p
q ≡ γq/ε

⊥
q ;

(3)

TE (s) ⇒

⎧⎪⎪⎨⎪⎪⎩
εs
q ≡ ε

||
q ,

μs
q ≡ μ⊥

q

[
1 − (βs

q

)2]
,

βs
q ≡ ηq/μ

⊥
q .

(4)

With this simplified notation, for both p and s waves, βq = 0
(also known as the Voigt parameter) describes an isotropic
2D medium with (εq,μq). In the following, we focus on
p-polarized waves and cylinders composed of gyroelectric
materials, Eq. (1). The discussion for s polarization is
analogous.

A. Electric and magnetic fields for p waves

The EM wave impinging on the cylinder is set as a
monochromatic wave propagating with wave vector k =
−kx̂ and time harmonic dependence e−ıωt . The scatterer
geometry is depicted in Fig. 1. For p-polarized waves in
cylindrical coordinate system (r,φ,z), we have the ansatz
[Ep

i (r,φ),Hp
i (r,φ)] = (−E0ŷ,H0ẑ)e−ıkr cos φ , where the electric

and magnetic amplitudes are related by E0 = H0
√

ε0/μ0.
Expanding the incident EM field in vector cylindri-

cal harmonics, we obtain for r > b the nonvanishing
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components

Ep
ir = −

∞∑
n=−∞

Enn
Jn(kr)

kr
eınφ, (5)

E
p
iφ = −ı

∞∑
n=−∞

EnJ
′
n(kr)eınφ, (6)

H p
iz = k

ωμ0

∞∑
n=−∞

EnJn(kr)eınφ, (7)

where En = E0(−ı)n, k2 = ω2ε0μ0, and Jn is the cylindrical
Bessel function. As a consequence, the nonvanishing compo-
nents of the EM field scattered by the cylinder are, for r > b

[1],

Ep
sr = −

∞∑
n=−∞

Ena
p
nn

H (1)
n (kr)

kr
eınφ, (8)

E
p
sφ = −ı

∞∑
n=−∞

Ena
p
nH

′(1)
n (kr)eınφ, (9)

H p
sz = k

ωμ0

∞∑
n=−∞

Ena
p
nH

(1)
n (kr)eınφ , (10)

where an is the scattering coefficient and H (1)
n is the cylindrical

Hankel function of the first kind. The form of the scattering
coefficient depends on the material properties of the scatterer.

From Maxwell’s equations, one can show that the magnetic
field Hq = Hqzẑ within the scatterer must satisfy the follow-
ing Helmholtz equation [28,36]: (∇2 + k

p
q)Hqz = 0, where

(kp
q)2 = ω2ε

p
qμ

p
q . The remaining EM-field components are

calculated from (kp
q)2Eqr = ıωμ

p
q[ıβp

q∂/∂r + (1/r)∂/∂φ]Hqz

and (kp
q)2Eqφ = −ıωμ

p
q [∂/∂r − (ıβp

q/r)∂/∂φ]Hqz. Explicitly,
we have for the core region, q = 1 (0 < r � a),

E
p
1r = −

∞∑
n=−∞

Enb
p
nJ̃n

(
k

p
1r,β

p
1

)
eınφ, (11)

E
p
1φ = −ı

∞∑
n=−∞

Enb
p
nJn

(
k

p
1r,β

p
1

)
eınφ, (12)

H
p
1z = k

p
1

ωμ
p
1

∞∑
n=−∞

Enb
p
nJn

(
k

p
1r
)
eınφ, (13)

where, for the sake of simplicity, we define Jn(ρ,β) ≡
J ′

n(ρ) + βnJn(ρ)/ρ and J̃n(ρ,β) ≡ βJ ′
n(ρ) + nJn(ρ)/ρ, and,

for the shell region, q = 2 (a � r � b),

E
p
2r = −

∞∑
n=−∞

En

[
cp
nJ̃n

(
k

p
2r,β

p
2

)+ dp
nỸn

(
k

p
2r,β

p
2

)]
eınφ, (14)

E
p
2φ = − ı

∞∑
n=−∞

En

[
cp
nJn

(
k

p
2r,β

p
2

)+ dp
nYn

(
k

p
2r,β

p
2

)]
eınφ,

(15)

H
p
2z = k

p
2

ωμ
p
2

∞∑
n=−∞

En

[
cp
nJn

(
k

p
2r
)+ dp

nYn

(
k

p
2r
)]

eınφ, (16)

where Yn(ρ,β) ≡ Y ′
n(ρ) + βnYn(ρ)/ρ and Ỹn(ρ,β) ≡

βY ′
n(ρ) + nYn(ρ)/ρ, with Yn being the cylindrical Neumann

function.
The Lorenz-Mie coefficients a

p
n, bp

n, cp
n, and d

p
n are obtained

by imposing the boundary conditions at r = a and r = b,
reading

ap
n = m̃

p
2J

′
n(y)

[
Jn

(
m

p
2y
)− Ap

nYn

(
m

p
2y
)]− Jn(y)αp

n

m̃
p
2H

′(1)
n (y)

[
Jn

(
m

p
2y
)− Ap

nYn

(
m

p
2y
)]− H

(1)
n (y)αp

n

,

(17)

bp
n = m̃

p
2c

p
n

[
Jn

(
m

p
2x
)− Ap

nYn

(
m

p
2x
)]

m̃
p
1Jn

(
m

p
1x
) , (18)

cp
n = 2ı/(πy)

m̃
p
2H

′(1)
n (y)

[
Jn

(
m

p
2y
)− Ap

nYn

(
m

p
2y
)]− H

(1)
n (y)αp

n

,

(19)

dp
n = −Ap

nc
p
n, (20)

where the auxiliary functions are

αp
n = Jn

(
m

p
2y,β

p
2

)− Ap
nYn

(
m

p
2y,β

p
2

)
,

Ap
n = m̃

p
1Jn

(
m

p
1x
)
Jn

(
m

p
2x,β

p
2

)− m̃
p
2Jn

(
m

p
1x,β

p
1

)
Jn

(
m

p
2x
)

m̃
p
1Jn

(
m

p
1x
)
Yn

(
m

p
2x,β

p
2

)− m̃
p
2Jn

(
m

p
1x,β

p
1

)
Yn

(
m

p
2x
) ,

with size parameters x = ka and y = kb. The relative refrac-

tive and impedance indices are m
p
q = k

p
q/k =

√
ε

p
qμ

p
q/(ε0μ0)

and m̃
p
q =

√
ε

p
qμ0/(ε0μ

p
q), respectively (mq = m̃q if μq = μ0

[30]). Note that parity symmetry a−n = an, b−n = bn, c−n =
cn, and d−n = dn only holds if β1 = β2 = 0, which retrieves
the isotropic result for the TM mode [37–39].

The corresponding expressions for s-polarized waves are
analogous to the ones above. For the sake of completeness,
the multipole expansions and the Lorenz-Mie coefficients
(as

n,b
s
n,c

s
n,d

s
n) are presented in Appendix A. These expressions

are necessary to study cylinders composed of gyromagnetic
materials, Eq. (2).

B. Lorenz-Mie efficiencies and multiple scattering

The extinction and scattering efficiencies for cylindrical
scatterers at normal incidence are directly calculated via
Qsca = (2/y)

∑∞
n=−∞ |an|2 and Qext = (2/y)

∑∞
n=−∞ Re(an),

respectively, where y = kb is the size parameter of the outer
cylinder. They are defined as the respective cross section
of a segment L 	 b of the infinite cylinder in units of the
geometrical cross section 2bL. Rewriting these efficiencies to
consider sums for n � 1, one has

Qsca = 2

y

[
|a0|2 +

∞∑
n=1

(|a−n|2 + |an|2
)]

, (21)

Qext = 2

y
Re

[
a0 +

∞∑
n=1

(a−n + an)

]
, (22)
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FIG. 2. A two-dimensional disordered medium composed of
identical parallel core-shell cylinders, embedded in the medium
(ε0,μ0), normally irradiated with plane waves in the Voigt configura-
tion (B ⊥ k). We consider the distance among the cylinders much
greater than their radius and k�sca 	 1 (�sca being the scattering
mean free path), so that the weak disorder approximation holds. The
incident polarization schemes, TM and TE modes, are indicated by
(Ep

i ,H
p
i ) and (Es

i ,H
s
i ), respectively.

with Qabs = Qext − Qsca being the absorption efficiency. The
differential scattering efficiency reads

∂Q(φ)

∂φ
= 2

πy

∣∣∣∣∣a0 +
∞∑

n=1

(
a−ne

ınθ + ane
−ınθ
)∣∣∣∣∣

2

, (23)

where θ = π − φ is the scattering angle, so that θ = 0o

corresponds to forward scattering and θ = 180o corresponds
to backscattering. Here we consider the same convention as in
Refs. [28–40], so that one obtains Qsca by integrating Eq. (23)
in the range [0,π ] instead of [0,2π ] [41]. The efficiencies for
p and s polarizations are obtained by considering a

p
n and as

n,
respectively, where one must define the quantities (εq,μq,βq)
according to relations (3) or (4).

Some quantities calculated in the single-scattering approach
can be used to study multiple-scattering properties in the
diffusive regime and for low concentrations of scatterers
[42,43]. In this regime, the scattering mean free path �sca is
comparable to the size of the system and suffices k�sca 	 1.
This situation is depicted in Fig. 2.

The asymmetry parameter 〈cos θ〉, which is related to the
transferred linear momentum in the forward direction [1], is
calculated from the relationship

Qsca〈cos θ〉 =
∫ π

0
dθ

∂Q(φ)

∂φ
cos θ, (24)

where Qsca and ∂Q(φ)/∂φ are defined in Eqs. (21) and (23),
respectively, for a single-scattering process.

The transport mean free path is �� = 1/(ρσ�), where ρ is
the density of particles in the host medium, and σ � = σext −
σsca〈cos θ〉 is the transport cross section [44], with σext and σsca

being the extinction and scattering cross sections, respectively.
Note that here we take into account unavoidable losses to
calculate ��, as in Refs. [44–46]. For lossless scatterers σext =
σsca, so that �� = �sca/(1 − 〈cos θ〉), where �sca = 1/(ρσsca)
is the scattering mean free path. For a disordered 2D medium
consisting of parallel cylindrical particles, as depicted in Fig. 2,

we obtain

��

b
= π/2

fpack(Qext − Qsca〈cos θ〉) , (25)

where fpack is the filling fraction. It is convenient to define
the extinction mean free path: �ext = πb/(2fpackQext). In this
2D case in the Voigt configuration, the effective diffusion
coefficient is D = vE��/2, where vE is the energy-transport
velocity. Note that D does not depend explicitly on B, which
does not apply to the Faraday configuration (B||k) [47].
From the weak disorder approximation of the Bethe-Salpeter
equation [42,43], it follows that

vE

c
≈ 1

fpack(W/W0 − 1) + 1
, (26)

where c = 1/
√

ε0μ0 is the velocity of light in the host medium
and W/W0 is the energy-enhancement factor in a single
scatterer, with W being the time-averaged internal EM energy
[37–39,48]. Equation (26), originally calculated for spheres,
is not restricted to low densities of scatterers [42] and can
successfully be applied to cylinders [49]. In the following, we
analytically calculate W/W0 for a gyrotropic coated cylinder
for both p and s waves.

III. THE EXACT ANALYTIC TIME-AVERAGED ENERGY
WITHIN GYROTROPIC COATED CYLINDERS

The time-averaged EM energy density within a gyroelectric
and gyromagnetic medium (←→εq ,

←→
μq ), given by Eqs. (1) and

(2), is

〈uq〉t = 1
4

[
ε

(eff)
q⊥ (|Eqr |2 + |Eqφ|2) + ε

(eff)
q|| |Eqz|2

+ μ
(eff)
q⊥ (|Hqr |2 + |Hqφ|2) + μ

(eff)
q|| |Hqz|2

+ 2Im
(
γ (eff)

q EqrE
∗
qφ + η(eff)

q HqrH
∗
qφ

)]
, (27)

where the effective energy coefficients, if the medium is
weakly absorbing [50], are ε

(eff)
q⊥ = ∂[ωRe(ε⊥

q )]/∂ω,ε
(eff)
q|| =

∂[ωRe(ε||
q )]/∂ω, γ (eff)

q = ∂[ωRe(γq)]/∂ω, and so forth.
Equation (27) is simplified whether we consider p waves
(Eqz = Hqr = Hqφ = 0) or s waves (Hqz = Eqr = Eqφ = 0).

From Eq. (27), the corresponding time-averaged EM energy
in a segment L of a cylindrical shell l1 � r � l2 is, therefore
[39],

Wq =
∫ L/2

−L/2
dz

∫ 2π

0
dφ

∫ l2

l1

dr r〈uq〉t . (28)

If the cylindrical shell l1 � r � l2 has the same optical
properties as the surrounding medium (ε0,μ0), it follows that

W0q = ε0

2
|E0|2π

(
l2
2 − l2

1

)
L, (29)

where E0 is the electric amplitude of the incident wave.
The technical details involved in the analytical deriva-

tion of Wq , with q = 1 for (l1,l2) = (0,a) and q = 2 for
(l1,l2) = (a,b), are given in Appendix B. Using the results in
Appendix B, let us consider the partial contributions to the
internal energy: W+

q⊥ = ∫ d3rε
(eff)
q⊥ (|Er |2 + |Eϕ|2)/4,Wq|| =∫

d3rε
(eff)
q|| |Ez|2/4,W−

q⊥ = ∫ d3rIm(γ (eff)
q ErE

∗
ϕ)/2, and so on.

For both p and s polarizations, the partial contributions to the
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EM energy in the cylinder have the same analytical expression,
but with the corresponding Lorenz-Mie coefficients and
material parameters in the equations.

From Eq. (28), we obtain for the core region (q = 1, l1 = 0,
and l2 = a)

W±
1⊥

W01
= ζ±

1⊥

∞∑
n=−∞

|bn|2F±(JJ )
1,n , (30)

W1||
W01

= ζ1||
∞∑

n=−∞
|bn|2I (JJ )

1,n , (31)

where we have considered (A,B) = (bn,0) in Eqs. (B1) and
(B2) in Appendix B to obtain W+

1⊥ and W−
1⊥, respectively.

The auxiliary functions I (JJ )
1,n and F±(JJ )

1,n are obtained from
Eqs. (B3) [or (B4)] and (B5), respectively, and depend on the
product of the Bessel functions. The EM energy within the
core (←→ε1 ,

←→
μ1 ) is, therefore,

W1 = W+
1⊥ + W−

1⊥ + W1||. (32)

For the cylindrical shell (q = 2, l1 = a, and l2 = b), we obtain

W±
2⊥

W02
= ζ±

2⊥

∞∑
n=−∞

{|cn|2F±(JJ )
2,n + 2Re

[
cnd

∗
nF

±(JY )
2,n

]
+ |dn|2F±(YY )

2,n

}
, (33)

W2||
W02

= ζ2||
∞∑

n=−∞

{|cn|2I (JJ )
2,n + 2Re

[
cnd

∗
nI

(JY )
2,n

]
+ |dn|2I (YY )

2,n

}
, (34)

where we have considered (A,B) = (cn,dn) in Eqs. (B1) and
(B2) in Appendix B to achieve W+

2⊥ and W−
2⊥, respectively.

The auxiliary functions F±(ZZ̄)
2,n and I (ZZ̄)

2,n are defined in
Appendix B, where Z and Z̄ are any Bessel (Jn) or Neumann
(Yn) function. The EM energy within the shell (←→ε2 ,

←→
μ2 ) is

W2 = W+
2⊥ + W−

2⊥ + W2||. (35)

To obtain the internal energy associated with p or s

polarization schemes one must consider Eqs. (3) and
(bp

n,c
p
n,d

p
n) or Eqs. (4) and (bs

n,c
s
n,d

s
n), respectively, and apply

the relations

TM (p) ⇒

⎧⎪⎪⎨⎪⎪⎩
ζ

p+
q⊥ ≡ ε

(eff)
q⊥
/
ε0,

ζ
p−
q⊥ ≡ γ (eff)

q

/
ε0,

ζ
p
q|| ≡ ∣∣m̃p

q

∣∣2μ(eff)
q||
/
μ0;

(36)

TE (s) ⇒

⎧⎪⎪⎨⎪⎪⎩
ζ s+
q⊥ ≡ ∣∣m̃s

q

∣∣2μ(eff)
q⊥
/
μ0,

ζ s−
q⊥ ≡ ∣∣m̃s

q

∣∣2η(eff)
q

/
μ0,

ζ s
q|| ≡ ε

(eff)
q||
/
ε0.

(37)

The energy-enhancement factor W1,2/W0 within the scat-
terer, where W1,2 = W1 + W2 is the total internal energy and
W0 = W01 + W02, is

W1,2

W0
= S2 W1

W01
+ (1 − S2)

W2

W02
, (38)

with S = a/b being the aspect ratio.

In addition, since the internal field intensities are propor-
tional to the power loss, we can write the absorption efficiency
Q

p
abs in terms of the partial energy contributions:

Q
p
abs

πy
= Im

{
S2

[
ε⊥

1

ε
(eff)
1⊥

W
p+
1⊥

W01
+ γ1

γ
(eff)
1

W
p−
1⊥

W01
+ μ

||
1

μ
(eff)
1||

W
p
1||

W01

]

+ (1 − S2)

[
ε⊥

2

ε
(eff)
2⊥

W
p+
2⊥

W02
+ γ2

γ
(eff)
2

W
p−
2⊥

W02
+ μ

||
2

μ
(eff)
2||

W
p
2||

W02

]}
.

(39)

For s waves, Qs
abs is obtained from Eq. (39) by replacing

the symbols (ε,γ,μ) with (μ,η,ε) and the label p with s. It is
worth mentioning that Eq. (39) provides an explicit connection
between the internal energy and a measurable quantity, Qabs

[39,48].

IV. DIELECTRIC MICROCYLINDERS WITH
MAGNETO-OPTICAL COATINGS

So far our results are general and can be applied, e.g., to
the study of coated gyromagnetic materials and nanowires.
Here we focus on a particular case: infinite coated gyroelectric
cylinders irradiated with THz p waves. Finite-size effects
are known to weakly affect the scattering properties of
cylinders provided their length is much larger than both their
diameter and the incident wavelength [1,41,51]. Provided these
conditions are met, light is mostly scattered in the plane
perpendicular to the cylinder axis [1]. Some technical details
regarding the calculations are provided in Appendix C.

The cylinder is embedded in vacuum (ε0,μ0) and consists
of a dielectric core made of silica (SiO2) (ε1 = 2.25ε0 and
μ1 = μ0 in the far infrared) coated with a cylindrical shell of
indium antimonide (InSb), whose dielectric tensor [Eq. (1) for
q = 2] reads [52,53]

ε⊥
2 (ω,B,T )

ε0
= ε∞ − ω2

p(ω + �ı)

ω
[
(ω + �ı)2 − ω2

c

] , (40)

ε
||
2 (ω,B,T )

ε0
= ε∞ − ω2

p

ω(ω + �ı)
, (41)

γ2(ω,B,T )

ε0
= ω2

pωc

ω
[
(ω + �ı)2 − ω2

c

] , (42)

where ε∞ = 15.7 is the high-frequency permittivity. The
cyclotron frequency is ωc = eB/m�, where e is the electron
charge, B is the external dc magnetic field, and m� = 0.015me

is the effective mass of free carriers, with me being the bare
mass of the electron. The plasma frequency and the collision
frequency of carriers are, respectively, ωp =

√
N e2/(ε0m�)

and � = e/(μem
�), where N is the intrinsic carrier density

and μe is the electron mobility. The intrinsic carrier density
(in cm−3) in undoped InSb is strongly dependent on the
temperature and reads [54]

N (T ) ≈ 5.76 × 1014T 3/2 exp [−0.129/(kBT )], (43)

where kB is the Boltzmann constant (in eV K−1). This
expression, derived from the temperature variation of the
Hall coefficient, agrees well with experimental data for
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150 K � T � 300 K [33–35]; for this reason we restrict our
analysis to this temperature range. In addition, we employ a
realistic empirical expression for the electron Hall mobility (in
cm2 V−1 s−1) [33]

μe(T ) ≈ 7.7 × 104(T/300)−5/3, (44)

which has been experimentally validated in the temperature
range 150 K � T � 300 K [35], which we consider here.

For the corresponding energy coefficients in Eq. (27), we
consider the Loudon approach [55] to deal with lossy Drude-
Lorentz models [56]:

ε
(eff)
2⊥ (ω) = Re[ε⊥

2 (ω)] + 2ω

�
Im[ε⊥

2 (ω)], (45)

γ
(eff)
2 (ω) = Re[γ2(ω)] + 2ω

�
Im[γ2(ω)]. (46)

We recall that ε
||
2 (ω) does not contribute to the scattering by

p waves. The remaining energy coefficients are calculated by
the usual Landau’s formula for lossless or weakly absorbing
media [50]. For nondispersive media, it is simply the real part.

From Eqs. (40) and (41), note that ε
||
2 (ω,T ,B) =

ε⊥
2 (ω,T ,0). Using relations (4), i.e., εs

2 = ε
||
2 and μs

2 = μ0

(with βs
2 = 0), one can readily verify that scattering for s waves

is insensitive to B. Indeed in the Rayleigh limit (kb � 1) for
s waves one has |as

0| 	 |as
±1| for nonmagnetic scatterers [1],

and hence the overall scattering response depends on the bulk
resonances of the InSb associated with ε

||
2 . For this reason,

we do not consider s waves in our discussion. In addition,
it is worth mentioning that oblique incidence would lead to
cross-polarization coupling for higher-order modes, i.e., s or
p waves would be scattered in a combination of both s and
p polarization states [51]. Since the magneto-optical response
is maximal for p waves and vanishes for s waves, oblique
incidence would weaken the net magneto-optical effect due
to radiation polarization conversion. For this reason, together
with the fact that for normal incidence an analytical solution
exists, we prefer to focus on the normal incidence case [39,51].

In Figs. 3(a)–3(c), we show the asymmetry parameter
〈cos θ〉, the energy-enhancement factor W1,2/W0, and the
transport mean free path ��, respectively, in a (SiO2) core-shell
(InSb) cylinder for p waves as a function of the frequency
and external magnetic field. We set b = 2.5 μm (with aspect
ratio S = a/b = 0.35), and room temperature (T = 295 K).
The range of size parameters in Figs. 3(a)–3(c) is 0.089 <

kb < 0.17, so that dipole contributions to the scattering
(n = 0 and n = ±1) are dominant; in particular, the magnetic
dipole contribution (n = 0) is negligible since μ1 = μ2 = μ0.
Figure 3(a) shows that the application of an external magnetic
field B strongly affects the scattering directionality. Indeed, the
presence of B breaks the scattering isotropy of dipolar scatter-
ing, in contrast to what occurs for non-Faraday-active materials
in the Rayleigh regime (kb � 1). In these materials 〈cos θ〉 ≈
0 [1] as a consequence of the typical isotropic dipolar scattering
pattern, for which Q

p
sca ∝ |ap

1 |2. For magneto-optical materials
a

p
1 �= a

p
−1 for B �= 0 [see the inset in Fig. 3(a)], leading to

a strongly asymmetric, magnetic-field-dependent scattering
pattern, as shown in Fig. 3(a). In particular, the two peaks
related to the dipole resonance for B = 0.0 T are essentially
due to the presence of the dielectric core SiO2. We have verified

that as a → 0, only one peak remains for a
p
1 = a

p
−1 around

f = 2.4 THz. Here, the dielectric core broadens the dipole
resonance for B = 0.0 T.

Figure 3(a) reveals not only that the presence of B leads
to anisotropic scattering (〈cos θ〉 �= 0), but also that B induces
preferential backscattering (〈cos θ〉 < 0), which hardly occurs
in light scattering [1]. In particular, the conditions 〈cos θ〉 =
±1/2 are known as the first (+) and second (−) Kerker
conditions, respectively [17,31]. Figure 3(a) shows that both
Kerker conditions are almost met for certain frequencies and
magnetic fields due to the fact that a

p
1 �= a

p
−1. The appearance

of 〈cos θ〉 < 0 in the dipole approximation is explained, for p

waves, by the far-field interference between the coefficients a
p
1

and a
p
−1. This breaking of the degeneracy results in a rotation

of the dipolar scattering pattern [see the inset in Fig. 3(a)],
whose rotation angle in our notation is [28]

θrot ≈ 1

2
arctan

[
Im
(
a

p
1a

p∗
−1

)
Re
(
a

p
1a

p∗
−1

)]. (47)

Conversely, for the stored EM energy, we have nonvanishing
interference between the electric-field components (E2rE

∗
2φ)

in the xy plane, as can be seen from the EM energy density ex-
pression [see Eq. (27)]. It is worth emphasizing that, in contrast
to previous studies on directional scattering [13,14,31], our
approach does not rely on magnetic resonances since a

p
0 = 0.

Rather, it is based on the magnetic-field dependence of electric
dipolar resonances a

p
1 and a

p
−1.

The breaking of the degeneracy in the scattering coefficients
a

p
1 �= a

p
−1 in a magnetic field also shows up in the internal EM

energy stored in the cylinder, W1,2, as shown in Fig. 3(b). In
fact, by increasing B the internal resonances at a

p
1 and a

p
−1

become farther apart in frequency, leading to an increasing
spectral gap in W1,2. As the internal energy is proportional
to the absorption cross section, Q

p
abs, for kb � 1 and weak

absorption [37,48], Fig. 3(b) demonstrates a novel way to ex-
ternally tune EM absorption by applying an external magnetic
field. It is worth mentioning that this effect can be achieved for
moderate magnetic fields (B ≈ 0.5 T) and that B > 0 shifts
a

p
−1 and a

p
1 to low and high frequencies, respectively; B < 0

does the opposite. In Fig. 3(c), the ratio ��/�ext is shown to
demonstrate that a frequency band exists below approximately
2.4 THz in which the anomalous transport regime �� < �ext

occurs. This band can be shifted to lower frequencies by
varying B and results from the negative asymmetry parameters
in the same frequency range, as shown in Fig. 3(a).

Figures 3(d)–3(f) demonstrate that it is possible to achieve
directional scattering, which can be tuned by applying an
external magnetic field, beyond the Rayleigh limit. Indeed,
in Figs. 3(d)–3(f) 〈cos θ〉, W1,2, and �� are calculated, re-
spectively, for the same system but now with b = 25 μm
(S = a/b = 0.5), and T = 250 K. For the frequency range
0.6 to 2.6 THz, size parameters are 0.31 < kb < 1.4, i.e.,
beyond the Rayleigh limit. In addition, by decreasing the
temperature from 295 to 250 K, absorption of the InSb coating
also decreases significantly [see Eqs. (43) and (44)]. The
overall result is that for this new set of parameters absorption is
small beyond the Rayleigh limit, so that Qsca is comparable to
Qext for B = 0.0 T. In Fig. 3(d), we demonstrate that 〈cos θ〉
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FIG. 3. Single scattering by a dielectric SiO2 microcylinder (ε1 = 2.25ε0) coated with undoped InSb [ε2 = ε2(ω,B,T ); Eqs. (40)–(44)].
(a–c) At room temperature (T = 295 K), with the scatterer radius being b = 2.5 μm (kb � 1) and the aspect ratio S = a/b = 0.35. (d–f) At
T = 250 K, with the scatterer radius being b = 25 μm (kb ≈ 1) and the aspect ratio S = a/b = 0.5. The system is normally irradiated with p

waves and is subjected to an external magnetic field B = B ẑ. (a) The asymmetry parameter 〈cos θ〉 as a function of the frequency f = ω/2π ,
for various magnetic-field amplitudes B. Insets: The extinction efficiency Qext for B = 0.0 T (ap

1 = a
p
−1) and B = 0.5 T (ap

1 �= a
p
−1) and the

corresponding scattering pattern for B = 0.5 T and f = 2.0 THz. (b) The energy-enhancement factor W1,2/W0 within the core-shell cylinder.
(c) Ratio between the transport and the extinction mean free paths ��/�ext, Eq. (25). Inset: Ratio between the scattering and the extinction
efficiencies Q

p
sca/Q

p
ext. For the other configuration (kb ≈ 1), one has (d) 〈cos θ〉, (e) W1,2/W0, and (f) ��/�ext as a function of f and B.

becomes negative by applying B even for kb ≈ 1. Figure 3(e)
shows that the presence of B increases the magnetic dipole
contribution a

p
0 for low frequencies (1.2 THz) at the same

time that it increases the electric dipole contribution a
p
±1 for

high frequencies (2.4 THz). The interference between electric
and magnetic dipole contributions leads to a minimum in the
internal energy around f ≈ 1.6 THz as B increases. As shown
in Fig. 3(f), this interference induces a band (1.3 to 2.0 THz)
of anomalous scattering in which �� < �ext. Moreover, for
B = 1.3 T, �� ≈ �sca/(1 − 〈cos θ〉) since absorption becomes
very small in this frequency range, as can be verified by the
inset in Fig. 3(f). This implies that there exists a transport
regime in which �� < �sca, with �� ≈ 0.8�sca. It is worth
mentioning that the application of the external magnetic field
can suppress absorption in this frequency range, resulting in
Qsca/Qext ≈ 1, as shown in the inset in Fig. 3(f). It is worth
emphasizing that this anomalous scattering regime, induced by
the external magnetic field, occurs even with the inclusion of
unavoidable losses and without consideration of any positional

correlation among scatterers, in contrast to Refs. [31–32],
respectively. In addition, for fixed frequency and material
parameters, Fig. 4 shows that we can effectively tune the
directional scattering pattern by applying B.

In Fig. 5, we investigate the impact of tunable scattering
anisotropy in light transport in planes composed of identi-
cal, infinitely long magneto-optical core-shell cylinders, as
depicted in Fig. 2. The parameters are the same as in Figs.
3(a)–3(c): b = 2.5 μm, S = a/b = 0.35, and T = 295 K. For
a fixed packing fraction fpack = 35% we calculate the energy-
transport velocity vE and the diffusion coefficientD = vE��/2.
For fixed (room) temperature, Figs. 5(a) and 5(b) show that one
can effectively tune light transport with an external magnetic
field. Indeed, Figs. 5(a) and 5(b) reveal that the application of
an external magnetic field up to B ≈ 1.0 T leads to an increase
in vE and D, increasing diffusion in the plane. In particular,
as the magnetic field is increased the diffusion coefficient D
becomes maximal at a frequency band where a minimum at ��

and vE (≈0.15c), and hence D, exists for B = 0.0 T. Indeed, at
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FIG. 4. Normalized differential scattering efficiency ∂Q(φ)/∂φ,
Eq. (23), for a (SiO2) core-shell (InSb) cylinder with outer radius b =
25 μm and aspect ratio S = a/b = 0.5, for a fixed frequency f =
1.6 THz (kb ≈ 0.84). The system is normally irradiated with p waves
and is subjected to an external magnetic field B = B ẑ and temperature
T = 250 K. (a) B = 0.0 T, showing preferential forward scattering
(〈cos θ〉 ≈ 0.63). (b) B = 1.3 T, showing preferential backscattering
(〈cos θ〉 ≈ −0.32).

B = 1.1 T, the diffusion coefficient is two orders of magnitude
greater than at B = 0.0 T.

In Figs. 5(c) and 5(d), we calculate vE and D as a function
of the frequency fixing all the aforementioned parameters,
for B = 0.0 T and for different temperatures. The analysis of
these figures reveals that tuning the light scattering and light
propagation in-plane with the temperature is also possible. In
fact, note that by increasing the temperature from T = 270 to
300 K, one broadens and shifts the band of minimum vE to high
frequencies, and hence the diffusion coefficient D. Also, as
the temperature decreases (typically for T > 220 K), smaller
magnetic fields are required to achieve a strong magneto-
optical response in InSb at high frequencies, in the THz range
[53]. This implies that, for T < 295 K, smaller magnetic fields
(e.g., B ≈ 0.5 T instead of 1.0 T) could be applied to obtain
the same energy-transport velocity enhancement exhibited in
Figs. 5(a) and 5(b). This strong dependence on the temperature
facilitates the modulation of the EM energy transport, which
can be enhanced or attenuated by B and shifted in frequency
by varying temperature.

Although we have focused on InSb magneto-optical coat-
ings, there are other materials that could possibly be used
to achieve similar results. As alternatives to InSb, one could
use, e.g.. materials that are known to exhibit a low electron
effective mass m�, and hence a high cyclotron frequency
ωc, such as InAs, HgTe, Hg1−xCdxTe, PbTe, PbSe, PbS, and
GaAs [57,58]. In cylindrical geometry, all these materials are
expected to exhibit a strong magneto-optical effect under a
normal incidence of p waves at high frequencies.

V. CONCLUSIONS

Using the Lorenz-Mie theory, we have calculated a set
of analytical expressions to completely describe the EM
scattering by gyrotropic core-shell magneto-optical cylinders.
A closed analytic expression has been derived for the EM
energy stored inside the cylinder. For concreteness, using
realistic material parameters for the silica core and InSb shell,
we have calculated the stored EM energy and the scattering
anisotropy. We have shown that the application of an external
magnetic field induces a drastic decrease in EM absorption in
a frequency window in the THz, where absorption is maximal
in the absence of the magnetic field. We have demonstrated
not only that the scattering anisotropy can be externally tuned
by applying a magnetic field, but also that it can reach negative
values in the THz even in the dipolar regime. This is due to the
fact that the external magnetic field breaks the degeneracy
between the first two electric Mie scattering coefficients,
which, without the magnetic field, lead to isotropic scattering.
We have shown that this also leads to an anomalous regime
of multiple light scattering in a collection of magneto-optical
core-shell cylinders, in which the scattering mean free path is
longer than the transport mean free path in specific ranges in the
THz. In our approach, we have demonstrated an unprecedented
degree of external control of multiple light scattering, which
can be tuned by either applying an external magnetic field or
varying the temperature.
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APPENDIX A: ELECTRIC AND MAGNETIC FIELDS
FOR s WAVES

Let us briefly discuss the multipole expansions for TE-
mode or s polarization. According to Fig. 1, we have
[Es

i (r,φ),Hs
i (r,φ)] = (E0ẑ,H0ŷ)e−ıkr cos φ , with k = −kx̂. By

duality relations between electric and magnetic quantities, the
EM fields for TE polarization (Hs

i ⊥ ẑ) are readily obtained
from Eqs. (5)–(16). First, we must redefine the material
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FIG. 5. Multiple scattering by parallel identical SiO2 microcylinders (ε1 = 2.25ε0) coated with undoped InSb [ε2 = ε2(ω,B,T ); Eqs.
(40)–(44)], with packing fraction fpack = 35%. The radius of each scatterer is b = 2.5 μm, with corresponding aspect ratio S = a/b = 0.35. The
system is normally irradiated with p waves and is subjected to an external magnetic field B = B ẑ and temperature T . (a) The energy-transport
velocity vE (in units of c), Eq. (26), through the disorder medium as a function of the frequency f = ω/2π , for various magnetic-field
amplitudes B. (b) The corresponding diffusion coefficient D = vE��/2 (in units of bc). (c) vE and (d) D for B = 0.0 T as a function of f and
temperature T .

parameters according to Eq. (4), substituting (εp
q,μ

p
q,β

p
q )

with (εs
q,μ

s
q,β

s
q ). The field components are then obtained

by replacing (Ep
r ,E

p
φ,H

p
z ) with (−pH s

r ,−pH s
φ,p−1Es

z) and
(ap

n,b
p
n,c

p
n,d

p
n) with (as

n,b
s
n,c

s
n,d

s
n), where p = ωμ0/k for the

incident and scattered EM fields [Eqs. (5)–(10)] and p =
ωμs

q/ks
q for the internal fields [q = 1 for Eqs. (11)–(13) and

q = 2 for Eqs. (14)–(16)]. The TE coefficients are

as
n = J ′

n(y)
[
Jn

(
ms

2y
)− As

nYn

(
ms

2y
)]− m̃s

2Jn(y)αs
n

H
′(1)
n (y)

[
Jn

(
ms

2y
)− As

nYn

(
ms

2y
)]− m̃s

2H
(1)
n (y)αs

n

,

(A1)

bs
n = cs

n

[
Jn

(
ms

2x
)− As

nYn

(
ms

2x
)]

Jn

(
ms

1x
) , (A2)

cs
n = 2ı/(πy)

H
′(1)
n (y)

[
Jn

(
ms

2y
)− As

nYn

(
ms

2y
)]− m̃s

2H
(1)
n (y)αs

n

,

(A3)

ds
n = −As

nc
s
n, (A4)

where the new auxiliary functions are

αs
n = Jn

(
ms

2y,βs
2

)− As
nYn

(
ms

2y,βs
2

)
,

As
n = m̃s

2Jn

(
ms

1x
)
Jn

(
ms

2x,βs
2

)− m̃s
1Jn

(
ms

1x,βs
1

)
Jn

(
ms

2x
)

m̃s
2Jn

(
ms

1x
)
Yn

(
ms

2x,βs
2

)− m̃s
1Jn

(
ms

1x,βs
1

)
Yn

(
ms

2x
) ,

and ms
q = √εs

qμ
s
q/(ε0μ0) and m̃s

q = √εs
qμ0/(ε0μs

q).

APPENDIX B: INTEGRALS OF BESSEL AND
NEUMANN FUNCTIONS

To calculate the stored EM energy Wq defined in Eq. (28),
we perform volume integrations involving the product of
Bessel and/or Neumann functions. By the recurrence rela-
tions nZn(ρ) = ρZn−1(ρ) − ρZ′

n(ρ) and ρZ′
n(ρ) = nZn(ρ) −

ρZn+1(ρ), for any cylindrical Bessel or Neumann functions Zn

[59], we obtain

2[|AJn(ρ,β) + BYn(ρ,β)|2 + |AJ̃n(ρ,β) + BỸn(ρ,β)|2]

= |1 + β|2|AJn−1(ρ) + BYn−1(ρ)|2

+ |1 − β|2|AJn+1(ρ) + BYn+1(ρ)|2, (B1)

4Re{[AJn(ρ,β) + BYn(ρ,β)]∗[AJ̃n(ρ,β) + BỸn(ρ,β)]}
= |1 + β|2|AJn−1(ρ) + BYn−1(ρ)|2

− |1 − β|2|AJn+1(ρ) + BYn+1(ρ)|2. (B2)

Equations (B1) and (B2) are suitable for simplifying the
radial integrals of the field components. Indeed, according to
Refs. [39], we define, for mq �= m∗

q (q = {1,2}), the auxiliary
function

I (ZZ̄)
q,n = 1(

l2
2 − l2

1

) ∫ l2

l1

dr rZn(ρq)Z̄n(ρ∗
q )

= r2
[ρ∗

qZn(ρq)Z̄′
n(ρ∗

q ) − ρqZ
′
n(ρq)Z̄n(ρ∗

q )](
l2
2 − l2

1

)(
ρ2

q − ρ∗2
q

) ∣∣∣∣r=l2,

r=l1,

(B3)
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where Zn and Z̄n are any cylindrical Bessel or Neumann functions, and l1,l2 ∈ R are the integration limits. Using the L’Hospital
rule, if mq = m∗

q [i.e., Im(mq) = 0], Eq. (B3) can be rewritten as

I (ZZ̄)
q,n = r2

4
(
l2
2 − l2

1

) [2Zn(ρq)Z̄n(ρq) − Zn−1(ρq)Z̄n+1(ρq) − Zn+1(ρq)Z̄n−1(ρq)]

∣∣∣∣r=l2.

r=l1.

(B4)

The case mq = −m∗
q [i.e., Re(mq) = 0] is discussed in Ref. [39] and plays no role in our analysis. For the sake of simplicity, we

define

F±(ZZ̄)
q,n = ± 1

2

[|1 + βq |2I (ZZ̄)
q,n−1 ± |1 − βq |2I (ZZ̄)

q,n+1

]
. (B5)

APPENDIX C: NUMERICAL CALCULATION OF THE INTERNAL ENERGY

Our numerical results are based on a computer code written for Scilab 5.5.2. For calculations, the infinite sums are truncated
in nmax = max(NMie,|m1|y,|m2|y) + (101 + y)1/2, where NMie = y + 4.05y1/3 + 2 [60]. This value guarantees the convergence
of the scattering quantities [1]. In particular, it is convenient to define the internal energy for n � 1 to perform numerical
calculations. To this end, we define the functions

S±
1⊥ = 1

2

∞∑
n=1

[
(|b−n|2|1 + β1|2 ± |bn|2|1 − β1|2)I (JJ )

1,n+1 + (|bn|2|1 + β1|2 ± |b−n|2|1 − β1|2)I (JJ )
1,n−1

]
,

S1|| =
∞∑

n=1

(|b−n|2 + |bn|2)I (JJ )
1,n ,

S±
2⊥ = 1

2

∞∑
n=1

{
(|c−n|2|1 + β2|2 ± |cn|2|1 − β2|2)I (JJ )

2,n+1 + (|cn|2|1 + β2|2 ± |c−n|2|1 − β2|2)I (JJ )
2,n−1

+ (|d−n|2|1 + β2|2 ± |dn|2|1 − β2|2)I (YY )
2,n+1 + (|dn|2|1 + β2|2 ± |d−n|2|1 − β2|2)I (YY )

2,n−1

+ 2Re
[
(c−nd

∗
−n|1 + β2|2 ± cnd

∗
n |1 − β2|2)I (JY )

2,n+1 + (cnd
∗
n |1 + β2|2 ± c−nd

∗
−n|1 − β2|2)I (JY )

2,n−1

]}
,

S2|| =
∞∑

n=1

{
(|c−n|2 + |cn|2)I (JJ )

2,n + (|d−n|2 + |dn|2)I (YY )
2,n + 2Re

[
(c−nd

∗
−n + cnd

∗
n )I (JY )

2,n

]}
.

With this set of expressions, Eqs. (30)–(35) can be rewritten for both p and s waves, reading

W+
1⊥

W01
= ζ+

1⊥[|b0|2(1 + |β1|2)I (JJ )
1,1 + S+

1⊥], (C1)

W−
1⊥

W01
= −ζ−

1⊥
[
2|b0|2Re(β1)I (JJ )

1,1 + S−
1⊥
]
, (C2)

W1||
W01

= ζ1||
[|b0|2I (JJ )

1,0 + S1||
]
, (C3)

W+
2⊥

W02
= ζ+

2⊥
{|c0|2(1 + |β2|2)I (JJ )

2,1 + 2Re
[
c0d

∗
0 (1 + |β2|2)I (JY )

2,1

]+ |d0|2(1 + |β2|2)I (YY )
2,1 + S+

2⊥
}
, (C4)

W−
2⊥

W02
= −ζ−

2⊥
{
2|c0|2Re(β2)I (JJ )

2,1 + 4Re
[
c0d

∗
0 Re(β2)I (JY )

2,1

]+ 2|d0|2Re(β2)I (YY )
2,1 + S−

2⊥
}
, (C5)

W2||
W02

= ζ2||
{|c0|2I (JJ )

2,0 + 2Re
[
c0d

∗
0I

(JY )
2,0

]+ |d0|2I (YY )
2,0 + S2||

}
. (C6)
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