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Optical properties of topological-insulator Bragg gratings: Faraday-rotation enhancement
for TM-polarized light at large incidence angles
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Using the transfer matrix formalism, we study the transmission properties of a Bragg grating constructed from
a layered axionic material. Such a material can be realized by a topological insulator subject to a time-symmetry-
breaking perturbation, such as an external magnetic field or surface magnetic impurities. While the reflective
properties of the structure are only negligibly changed by the presence of the axionic material, the grating induces
a Faraday rotation and ellipticity in the transmitted light. We find that for transverse magnetic (TM)-polarized
light incident on a 16-layer structure at 76o to the normal the Faraday rotation can approach ∼232 mrad (∼13o),
while interference from the multilayered structure ensures high transmission. This is significantly higher than
Faraday rotations for the TM polarization at normal incidences or the transverse electric (TE) polarization at any
incident angle. Thus, Bragg gratings in this geometry show a strong optical signal of the magnetoelectric effect
and, hence, provide an ideal system in which to observe this effect by optical means.
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I. INTRODUCTION

Topological insulators are materials that display nontrivial
topological order. They are time-reversal symmetric and,
though insulating in the bulk, support protected conducting
edge states [1,2]. Such phenomenology can be found in
group-V and group-V/VI alloys that display strong enough
spin-orbit coupling to induce band inversion, for example,
Bi1−xSbx [3,4], Bi2Se3, Bi2Te3, and Sb2Te3 [5,6].

Initially studied for their unusual electronic proper-
ties, topological insulators also display some interesting
electromagnetic effects, the most significant of which is
the magnetoelectric effect which induces mixing between
the electric E and magnetic induction B fields at the surface
of the material [7,8]. This effect can be used to realize an
axionic material [9,10]. In order to do this one must introduce
a time-symmetry-breaking perturbation of sufficient size to
open a gap in the surface states, thereby converting the material
from a surface conductor to a full insulator [7,8]. This can
be achieved by introducing magnetic dopants to the surface
[7] (current experiments have achieved a ∼100 meV gap with
22% Cr dopants [11]) or by the application of an external static
magnetic field [12]. In such a situation, for wavelengths below
the band gap, the usual constitutive relations become [8,13]

D(r,ω) = ε(r,ω)E(r,ω) + α

π
�(r,ω)B(r,ω), (1)

H(r,ω) = 1

μ(r,ω)
B(r,ω) − α

π
�(r,ω)E(r,ω), (2)

where α is the fine structure constant, and ε(r,ω), μ(r,ω), and
�(r,ω) are the dielectric permittivity, magnetic permeability,
and axion coupling, respectively, the latter of which takes even
multiples of π in a conventional magnetodielectric and odd
multiples of π in an axionic material, with the magnitude
and sign of the multiple given by the strength and direction
of the time-symmetry-breaking perturbation. Here, and in
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the following, we use natural units with ε0 = μ0 = c = 1.
Physically, the axionic term is generated by a quantized Hall
effect on the surface of the insulator [7,8]. The lowest Hall
plateau results in �(r,ω) = ±π . The axion coupling will not
increase until the magnet perturbation is strong enough to
access the next Hall plateau. Thus, such axion couplings are
only achievable with magnetic perturbations on the order of
Tesla. Lower fields lead to higher plateaus. However, these
plateaus are narrower and very high plateaus can be difficult
to resolve.

Using Maxwell’s equations, which are unchanged in an
axionic material, with the constitutive relations in Eqs. (1)
and (2), one can show that the frequency components of the
electric field obey the inhomogeneous Helmholtz equation

∇ × 1

μ(r,ω)
∇ × E(r,ω) − ω2ε(r,ω)E(r,ω)

− iω
α

π
[∇�(r,ω) × E(r,ω)] = iωJ(r,ω), (3)

where J(r,ω) is the usual current source. If the axion coupling
is homogeneous, �(r,ω) = �(ω), then the last term on the
left-hand side vanishes and one finds that the propagation
of the electric field is the same as in a conventional magne-
todielectric. As a result, electromagnetic waves propagating
within a homogeneous axionic material retain their usual
properties—dispersion is linear, the phase and group velocities
are proportional to the usual refractive index, the fields are
transverse, and orthogonal polarizations do not mix. Thus, the
effects of the axion coupling are only felt when the axion
coupling varies in space. For layered, homogeneous media
this will only occur at the interfaces where the properties of
the medium change.

The change in the axion coupling at a topological-insulator–
magnetodielectric interface is predicted to cause a Faraday
(transmission) rotation of ∼1–10 mrad in the polarization
of transmitted light and giant Kerr (reflection) rotations of
∼π/2 rad in the polarization of very-low-frequency reflected
light incident on a single slab [14–16]. Furthermore, when
the wavelength of the incident light is tuned to a reflection
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minimum (i.e., kd = Nπ where N is an integer) the Faraday
rotation is universally quantized in units of the fine structure
constant [14,15]. This quantization highlights the difference
between topological insulators and other magnetoelectric
materials such as chiral, Tellegen, or gyrotropic media. In
chiral media the wave equation includes a term that is
proportional to the chirality, and hence even in a homogeneous
chiral material Faraday rotations will occur in the bulk,
rather then just at the surface as in a topological insulator.
Furthermore, chiral media are reciprocal, whereas topological
insulators are nonreciprocal. Tellegen media are nonreciprocal
and the wave equation also has a term proportional to the
gradient of the magnetoelectric parameter, but this parameter
also contributes to a change in the bulk propagation, a
change that is absent in topological insulators. Gyrotropic
media are also nonreciprocal but are necessarily anisotropic
as well. The displacement field is related to the electric field
via the constitutive equation D = εE + iE × g, where g is
the gyration vector, which, in turn, is related to an applied
quasistatic magnetic field. Thus, there is no direct coupling
between the electric and magnetic fields of a propagating
electromagnetic wave. This leads to the presence of Faraday
rotation in the bulk rather then just on the surface. In addition,
Faraday rotations in gyrotropic media are strongly dependent
on frequency and hence do not show the universality that
appears in topological insulators. Lastly, none of the media
types listed above show the quantization in units of the
fine-structure constant that topological insulators exhibit.

Until now experimental demonstration of this effect has
been absent, in part owing to the small nature of the effect.
However, recent work in THz spectroscopy of thin films
subject to low temperatures and high magnetic fields have
observed polarization rotations of ∼7 mrad, consistent with
the expected universally quantized value of α [17–19]. For
example, experiments in strained HgTe [17] observed Faraday
rotation of α for magnetic fields of 4 T and effective carrier
temperature of 25 K. The experiment also resolved the next
highest plateau, indicated by a Faraday rotation of ∼3α at a
magnetic field of 3 T. Similar results have also been obtain for
Bi2Se3 thin films [18] and Cr-doped (BiSb)2Te3 [19].

Following the first demonstrations of this effect, there will
be an interest to study this effect in detail and enhancement
of the small signal will make this task easier. Furthermore,
this effect could prove to be useful in polarization control
of THz radiation. However, a ∼7 mrad rotation is too small
for practical applications. Thus, it is worth looking for systems
that enhance this effect. As this effect only occurs at interfaces,
planar multilayered structures (Bragg gratings) are a natural
choice of systems to explore.

II. TRANSFER MATRIX

Consider a Bragg grating, periodic in the x direction, with
layer thicknesses d1 and d2 (d = d1 + d2) and corresponding
permittivities ε1 and ε2, permeabilities μ1 and μ2, and axion
coupling �1 and �2, respectively (see Fig. 1). Light is incident
from the left from an input medium with permittivity εi ,
permeability μi , and axion coupling �i and exits to the right
first into a substrate layer with permittivity ε1, permeability
μ1, and axion coupling �1 (this ensures that the grating is

FIG. 1. A Bragg grating constructed from a layered axionic
material and coupled to an input and output medium. The mij

matrices compute the right-moving, ai , and left-moving, bi , field
amplitudes at the left-hand interface in a layer with medium i given
the right-moving, aj , and left-moving, bj , field amplitudes at the
left-hand interface in the previous layer with medium j .

symmetric), and then to an output medium with permittivity
εo, permeability μo, and axion coupling �o. The electric field
ansatz reads

Em,ν(r,ω) =
⎛
⎝Em,ν,x(x,ω)

Em,ν,y(x,ω)
Em,ν,z(x,ω)

⎞
⎠eikpz, (4)

where m labels the unit cell and ν ∈ 1,2 indicates the medium
layer. Here, kp is the wave vector parallel to the interfaces.
Substituting the expression in Eq. (4) into Eq. (3) and noting
that within each homogeneous region ∇� = 0, one finds that
the y and z components of the electric field components obey
the usual 1D wave equation

∂2

∂x2
El,m,ν(x,ω) + k2

ν,xEl,m,ν(x,ω) = 0, (5)

where l ∈ y,z and kν,x =
√

k2
ν − k2

p = kν cos φν , with k2
ν =

ω2μνεν and φν the incidence angle of the light with the inter-
face. These equations admit the usual plane-wave solutions

Ey,m,ν(x,ω) = ay,m,νe
ikν,xx + by,m,νe

−ikν,xx, (6)

Ez,m,ν(x,ω) = az,m,νe
ikν,xx + bz,m,νe

−ikν,xx, (7)

with the associated magnetic fields given by Eq. (2),

Hy,m,ν(x,ω) = − k2
ν

ωμνkν,x

[az,m,νe
ikν,xx − bz,m,νe

−ikν,xx]

− α

π
�ν[ay,m,νe

ikν,xx + by,m,νe
−ikν,xx], (8)

Hz,m,ν(x,ω) = kν,x

ωμν

[ay,m,νe
ikν,xx − by,m,νe

−ikν,xx]

− α

π
�ν[az,m,νe

ikν,xx + bz,m,νe
−ikν,xx]. (9)

Here, ai,m,ν and bi,m,ν are the amplitudes of the right and left
traveling waves, respectively.

Considering the fundamental electromagnetic boundary
conditions at the interfaces at x = (m−1)d+d1 and x =
(m−1)d + d1 + d2 = md, the amplitudes of the field at the left
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interface of each layer, given the amplitude of the field at the left interface of the previous layer, are found to be (see Fig. 1)

⎛
⎜⎝

ay,m,2

az,m,2

by,m,2

bz,m,2

⎞
⎟⎠ = m21

⎛
⎜⎝

ay,m,1

az,m,1

by,m,1

bz,m,1

⎞
⎟⎠, (10)

⎛
⎜⎝

ay,m+1,1

az,m+1,1

by,m+1,1

bz,m+1,1

⎞
⎟⎠ = m12

⎛
⎜⎝

ay,m,2

az,m,2

by,m,2

bz,m,2

⎞
⎟⎠, (11)

where the transfer matrices mij read

mij = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

(
1 + γ T E

ji

)
eikj,xdj

��ij

ki,x
eikj,xdj

(
1 − γ T E

ji

)
e−ikj,xdj

��ij

ki,x
e−ikj,xdj

−��ij

ki,x

(
k2
i,x

k2
i

)
eikj,xdj

(
1 + γ T M

ij

)
eikj,xdj −��ij

ki,x

(
k2
i,x

k2
i

)
e−ikj,xdj

(
1 − γ T M

ij

)
e−ikj,xdj(

1 − γ T E
ji

)
eikj,xdj −��ij

ki,x
eikj,xdj

(
1 + γ T E

ji

)
e−ikj,xdj −��ij

ki,x
e−ikj,xdj

��ij

ki,x

(
k2
i,x

k2
i

)
eikj,xdj

(
1 − γ T M

ij

)
eikj,xdj

��ij

ki,x

(
k2
i,x

k2
i

)
e−ikj,xdj

(
1 + γ T M

ij

)
e−ikj,xdj

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

with γ T E
ij = ki,x/kj,x , γ T M

ij = εj ki,x/εikj,x , and ��ij =
ωμjα(�i − �j )/π . In addition to these matrices we have the
transfer matrices at the input m1i and output mo1 faces of the
grating. The latter can be found directly from Eq. (12), whereas
the former requires one to set dj → 0. By concatenating these
matrices, one can find the field in any layer of the multilayered
system. Thus for an N unit cell system with a substrate layer,
field amplitudes on the input side of the grating are related to
those on the output side via

⎛
⎜⎝

ay,o

az,o

by,o

bz,o

⎞
⎟⎠ = mT

⎛
⎜⎝

ay,i

az,i

by,i

bz,i

⎞
⎟⎠, (13)

with mT = mo1 · (m12 · m21)N · m1i .
Given input field amplitudes ay,i and az,i , the reflected

and transmitted fields can be found found by setting by,o

= bz,o = 0 (as there is no incident flux from the right) in
Eq. (13) and solving for the remaining amplitudes. The

FIG. 2. The rotation angle θ and ellipticity χ of elliptically
polarized light.

reflected power is given by

R = |bin,i |2 + |bperp,i |2
|ain,i |2 , (14)

FIG. 3. The orientation of the rotation of the light polarization on
reflection and transmission at an interface. The red arrow indicates
a clockwise rotation and the blue arrow a counterclockwise rotation
with respect to the propagation direction of the light. (a) The optical
path for transmitted light at normal and oblique incidence angles in
the parallel configuration. In this case the Faraday rotations are in the
same direction. (b) The optical path for transmitted light at normal
and oblique incidence angles in the antiparallel configuration. In this
case the Faraday rotations are in opposite direction. (c) The optical
path for reflected light at normal and oblique incidence angles in the
parallel configuration. In this case the Faraday rotations are in the
same direction. (d) The optical path for reflected light at normal and
oblique incidence angles in the antiparallel configuration. In this case
the Faraday rotations are in opposite directions.
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and the Faraday angles and associated ellipticity can be found
from

θF = 1

2
arctan

(
2|ain,o|2

|ain,o|2 − |aperp,o|2 Re

[
aperp,o

ain,o

])
, (15)

and

χF = 1

2
arcsin

(
2|ain,o|2

|ain,o|2 + |aperp,o|2 Im

[
aperp,o

ain,o

])
, (16)

respectively, where in ∈ y,z refers to the polarization of the in-
put light and perp ∈ y,z refers the polarization perpendicular
to it (see Fig. 2).

As an example, we consider an eight-unit cell (16 layer)
Bragg grating consisting of alternating layers of Si and
Bi2Se3 with varying values of d1 and d2 (d = d1 + d2 = 1).
Furthermore, we assume the light is incident from the vacuum
and exits to a Si substrate layer and then to the vacuum. Thus,
εi = εo = 1, ε1 = 12, and ε2 = 16. (The static permittivity of
Bi2Se3 is large, but for wavelengths on the order of a few
microns this lower value is appropriate [20].) In the following
we will assume that magnetic effects are small and hence
μ1 = μ2 = μi = μo = 1.

There are two situations to consider. The first is the parallel
configuration where the magnetic perturbation is in the same
direction at each interface. This leads to an increase in the
axion coupling in each successive layer. Hence, �i = 0, �1 =
(2m − 2)π , �o = 2Nπ , and �2 = (2m − 1)π [see Figs. 3(a)
and 3(c)]. The second is the antiparallel configuration where
the magnetic perturbation is in the opposite direction at
each consecutive interface. This leads to the axion coupling
alternating between values in each successive layer. Hence,
�i = �1 = �o = 0 and �2 = π [see Figs. 3(b) and 3(d)].

III. RESULTS

A. Normal incidences

Before discussing high incidence angles, it is worth
briefly reviewing the Faraday rotation results for normal
incidences. At normal incidences the TE and TM polar-
izations are indistinguishable. As the axion coupling is on
the order of the fine structure constant, and hence ∼10−2,
the change in reflectivity compared to a nonaxionic Bragg
grating is negligible. In the parallel configuration the change
in the axion coupling at each interface is always π and,
hence, the Faraday rotation is always in the same direction

FIG. 4. (a) The Faraday rotation as a function of frequency and grating structure at normal incidence angle for the parallel configuration.
The arrow marks the maximum Faraday rotation of ∼8α. (b) The Faraday rotation as a function of frequency at normal incidence angle
for the parallel (blue) and antiparallel (red) configuration for d1 = √

ε2/(
√

ε1 + √
ε2), marked by the black dashed line in (a). The gray

dashed line indicates the reflectivity of the grating. (c) The ellipticity as a function of frequency and grating structure at normal incidence
angle for the parallel configuration. The arrow marks the point of vanishing ellipticity coincident with the location of the maximum Faraday
rotation. (d) The ellipticity as a function of frequency at normal incidence angle for the parallel (blue) and antiparallel (red) configuration for
d1 = √

ε2/(
√

ε1 + √
ε2), marked by a black dashed line in (c).
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[see Fig. 3(a)]. Furthermore, reflected waves will undergo the
same rotation as a transmitted wave [see Fig. 3(c)]. Hence,
both reflected left and right propagating waves will be rotated
in the same direction as the transmitted right propagating wave.
Thus the rotations at each interface, whether in reflection or
transmission, sum and one should observe a nonzero Faraday
rotation. In the antiparallel configuration the change in the
axion coupling at each interface alternates between π and −π .
Transmission at the alternate interface causes a finite rotation in
opposite directions [see Fig. 3(b)]. As before, reflected waves
are rotated in the same direction as the transmitted waves [see
Fig. 3(d)]. Thus the rotations at each interface, whether in
reflection or transmission, cancel and one should not observe
Faraday rotation for normal incidence angles.

Figure 4(a) shows the Faraday rotation for the parallel
configuration as a function of frequency and grating structure.
The maximum rotation of 58 mrad, or equivalently, ∼8α, oc-
curs when the grating layers are d1 = √

ε2/(
√

ε1 + √
ε2) and

d2 = √
ε1/(

√
ε1 + √

ε2) and frequency 2π/(d1
√

ε1 + d1
√

ε1).
For this grating structure and frequency, the amplitude of
the wave at the interfaces of the grating is maximized and,
hence, the rotation is maximized. Furthermore, we see that,
for these parameters, the grating leads to a Faraday rotation
of α per unit cell and, hence, we are in the quantized regime.
This shows that this regime not only leads to a universally
quantized rotation, but also that this rotation is maximal.
Figure 4(b) shows the Faraday rotation for the parallel and
antiparallel configurations. For the parallel configuration one
sees a nonzero Faraday rotation at all frequencies, whereas
the Faraday rotation for the antiparallel configuration vanishes
at all frequencies. The suppression of the Faraday rotation
in the region of high reflectivity is due to the destructive
interference reducing the amplitude of the wave in the region
of the interfaces, i.e., the location at which the rotation
occurs. Figure 4(c) shows the ellipticity for the parallel
configuration as a function of frequency and grating structure.
The arrow marks the ellipticity at the point of maximum
Faraday rotation. One can see that at this point the ellipticity
vanishes. Figure 4(d) shows the ellipticity for the parallel
and antiparallel configurations. A similar phenomenology to
the Faraday rotation is observed, with a nonzero ellipticity
for the parallel configuration and a vanishing ellipticity for
the antiparallel configuration. The increased ellipticity in the
region of high reflectivity is due to the multiple scattering
inside the grating causing a greater phase shift compared to
regions of low reflectivity.

B. Oblique incidences

We now consider high incidence angles. At non-normal
incidence angles the TE and TM polarizations are distinguish-
able. The first aspect to note is that, owing to Snell’s law,
the incidence angle and the angle of transmission are not
equal. As the axionic interaction is a function of the in-plane
fields [cf. Eq. (3)], Faraday rotation will have a different
magnitude at alternate interfaces. Thus, in the antiparallel
configuration, there will not be perfect cancellation and, hence,
one should see a nonvanishing Faraday rotation. The second
aspect to note is that the axion interaction increases if the
in-plane magnetic field is increased with respect to the in-plane

FIG. 5. (a) The reflectivity of the grating as a function of
frequency and incidence angle for the TM polarization in the
parallel configuration. The horizontal dashed line marks 76o in the
high-transmission window near the Brewster angle. The vertical
dashed line marks the frequency 1.754 c/d which corresponds to
the maximum Faraday rotation for this incidence angle. This point
is marked by the arrow. (b) The Faraday rotation as a function of
frequency and incidence angle for the TM polarization in the parallel
configuration. The horizontal dashed line marks 76o and the vertical
dashed line marks the frequency 1.754 c/d . The maximum Faraday
rotation is marked by the arrow. In this case d1 = √

ε2/(
√

ε1 + √
ε2)

and d2 = √
ε1/(

√
ε1 + √

ε2).

electric field [21]. As the incidence angle is increased, the
in-plane magnetic field of the TE mode is reduced while the
in-plane electric field remains constant, whereas for the TM
mode, the in-plane electric field is reduced while the in-plane
magnetic field remains constant. Thus, the TM mode should
show strong enhancement of the Faraday rotation, whereas the
TE mode should display suppression.

Figure 5(a) shows the reflectivity for the grating as a
function of incidence angle and frequency. As before, d1 =√

ε2/(
√

ε1 + √
ε2) and d2 = √

ε1/(
√

ε1 + √
ε2). One can see

a marked decrease in the reflectivity as one approaches
the Brewster angle. In this region one can expect high
transmission. Figure 5(b) shows the Faraday rotation as a
function of incidence angle and frequency. Within the region
of high transmission one can see a maximum in the Faraday
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FIG. 6. (a) The Faraday rotation (blue) and ellipticity (red) as a function of frequency for the TM polarization in the parallel configuration
for a 76o incidence angle. The gray dashed line indicates the reflectivity of the grating. The arrow marks the frequency 1.754 c/d . (b) The
Faraday rotation (blue) and ellipticity (red) as a function of incidence angle for the TM polarization in the parallel configuration with frequency
1.754 c/d . The arrow indicates the local maximum in the Faraday rotation at 76o. (inset) The reflectivity of the grating as a function of incidence
angle. The arrow marks the transmission window at 76o incidence angle. (c, d, e) The Faraday rotation (blue) and ellipticity (red) as a function
of frequency for the TM polarization antiparallel and TE polarization parallel and antiparallel configurations, respectively, for a 76o incidence
angle. The gray dashed lines indicate the reflectivity of the grating. In all cases d1 = √

ε2/(
√

ε1 + √
ε2) and d2 = √

ε1/(
√

ε1 + √
ε2).

rotation. This occurs at a frequency of 1.754 c/d and an
incidence angle of 76o. The Faraday rotation at this point is
found to be ∼232 mrad (∼13o) and the reflectivity is 5.7%.
Such a rotation is larger than has been seen in gyrotropic
gratings (e.g., [22]) and comparable to the rotation in chiral
gratings (e.g., [23]).

Figures 6(a) and 6(c)–6(e) show the Faraday rotation and
ellipticity for the TM and TE polarizations in the parallel and
antiparallel configurations, respectively, for a 76o incidence
angle and d1 = √

ε2/(
√

ε1 + √
ε2) and d2 = √

ε1/(
√

ε1 +√
ε2). One sees the large Faraday rotation of ∼232 mrad and a

small ellipticity of ∼32 mrad for the TM polarization for light
of a frequency 1.754 c/d, while the Faraday rotation of the TE
polarization is ∼1–10 mrad. This is an enhancement of a factor
of 4 in the Faraday rotation compared to the TM polarization
normal incidences and orders of magnitude higher than the
TE polarization at any incidence angle. Note that, for normal
incidences, as one is in the quantized regime, adding additional
unit cells would increase the Faraday rotation by a factor of
α ≈ 7 mrad per cell. Hence, the increase obtained from the
higher incidence angle is much larger than could be obtained by
just adding more layers. Comparison of Fig. 6(a) with Fig. 4(b)
shows that the enhancement is uniform across all frequencies
and, thus, any effects that are present in the spectrum at normal
incidence angles will be present at oblique angles. Hence,
the universal quantization of the Faraday rotation will still be

present, though the quanta of rotation would now be larger than
α. However, one would still be able to observe plateaus in the
Faraday rotation (which correspond to different Hall plateaus
or, equivalently, different axion couplings) as one varies the
applied magnetic field or magnetic surface impurity density.

Figure 6(b) shows that the 76o incidence angle is a local
maximum in the Faraday rotation. The enhancement of the
parallel configuration over the antiparallel configuration is,
again, due to the additive nature of the rotations in the former
structure as compared to the partial cancellation of the rotations
in the latter. With such a large rotation, these structures offer
an ideal system in which to observe the magnetoelectric effect
by optical means. The inset in Fig. 6(b) shows that the local
maximum in Faraday rotation at frequency 1.754 c/d lies in
a region of high transmission, with a reflectivity at the 76o

incidence angle of 5.7%. At even larger incidence angles the
Faraday rotation and ellipticity are even higher; however, the
increasing reflectivity at such high incidence angles means that
the signal from these large rotations will become increasingly
hard to detect. Despite this, Bragg gratings offer a sizable
enhancement of the Faraday rotation and provide a structure
where the magnetoelectric effect can be more easily detected.

Finally, it is worth noting that this enhancement in the
Faraday rotation in the TM polarization in the parallel
configuration over the TE polarization and antiparallel con-
figurations is independent of frequency and hence is not a
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spectral separation process, such as has been studied in chiral
slabs where birefringent mirrors lead to a Fano resonance
that separates positive and negative spin modes of photons
[24]. Furthermore, as the effect is related to the ratio of the
in-plane magnetic field electric field ratio [21], the opposite
effect, enhancement of the TE mode over the TM mode, is
not possible. Hence, within topological insulators there is a
fundamental asymmetry between the TM and TE modes. This
in itself could prove to be a useful effect for polarization control
in future electromagnetic devices.

IV. SUMMARY

Here we have shown, using a transfer matrix approach,
that the magnetoelectric-effect–induced Faraday rotation of
plane-polarized light incident on a time-symmetry-broken

topological insulator can be enhanced by a factor of 4 by
using a TM-polarized light at high incidence angles. The
enhancement is uniform across all frequencies, and hence any
features of the spectrum at normal incidences will still be
observable at oblique incidences. Thus, features such as the
quantized Hall plateaus will be not only observable but, in
fact, enhanced. The inherent asymmetry in the enhancement,
TM polarizations over TE polarizations, could prove useful in
novel electromagnetic devices where distinguishability of the
two modes is important.
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