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Creating von Laue patterns in crystal scattering with partially coherent sources
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When spatially coherent radiation is diffracted by a crystalline object, the field is scattered in specific directions,
giving rise to so-called von Laue patterns. We examine the role of spatial coherence in this process. Using the
first-order Born approximation, a general analytic expression for the far-zone spectral density of the scattered field
is obtained. This equation relates the coherence properties of the source to the angular distribution of the scattered
intensity. We apply this result to two types of sources. Quasihomogeneous Gaussian Schell-model sources are
found to produce von Laue spots whose size is governed by the effective source width. Delta-correlated ring
sources produce von Laue rings and ellipses instead of point-like spots. In forward scattering, polychromatic
ellipses are created, whereas in backscattering striking, overlapping ring patterns are formed. We show that
both the directionality and the wavelength-selectivity of the scattering process can be controlled by the state of
coherence of the illuminating source.
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I. INTRODUCTION

The diffraction of radiation by a three-dimensional, periodic
potential, i.e., from a crystalline object, is a subject whose
origins were developed a century ago by von Laue, Friedrich,
Knipping, and the Bragg father-son team [1]. Specifically,
in the von Laue method, broad spectrum radiation, which is
assumed to be spatially coherent, is diffracted by a monocrystal
with a fixed orientation [2, Ch. 6]. The resulting diffraction
peaks are separated both spatially and spectrally. The location
of these von Laue spots is determined by the crystal’s structure
[3, Sec. 13.1.3]. Here we report how the state of spatial
coherence of the incident field can drastically affect their size,
shape, and spectral composition.

The influence of the state of coherence of the incident
field on the scattering process has been investigated in several
publications; see, for example, Refs. [4–12]. These studies
were all concerned with either spherical particles, cylinders, or
planar scatterers. In contrast, scattering of partially coherent
fields by a medium with a periodic potential has remained
largely unexplored. Notable exceptions are a study by Dušek
[13], who described dispersion effects in crystal scattering
with completely incoherent radiation, and a paper by Hoenders
and Bertolotti [14], in which the van Cittert-Zernike theorem
was generalized to two-dimensional periodic media. Recently,
a more general approach to this problem was suggested in

Ref. [15], although there the analysis was limited to one-
dimensional scatterers.

In the present paper we study the scattering properties
of media with a periodic, three-dimensional scattering
potential. We begin by analyzing the scattering of an incident
field, generated by a source with an arbitrary state of spatial
coherence, by a general mono-crystalline structure of identical
point scatterers. We then examine the special case of large,
three-dimensional arrays of scatterers whose unit cells are
rectangular parallelepipeds. Such cells form orthorhombic
crystals [16]. The incident field is taken to be generated by a
planar, partially coherent source that is located far away from
the crystal. The use of the first-order Born approximation al-
lows us to derive an analytic expression for the spectral density
of the far-zone scattered field in terms of a correlation function
of the source, namely its cross-spectral density [17, Sec. 4.3.2].
We then apply this result to two types of sources. Gaussian
Schell-model (GSM) sources [17, Sec. 5.2.2] generate an
incident field that is Gaussian correlated. Such fields are found
to give rise to larger von Laue diffraction spots than those
produced by their spatially fully coherent counterparts. When
the GSM source is also quasihomogeneous [17, Sec. 5.2.2], the
spot size is directly related to the source width. For the case of a
δ-correlated annular source, the incident field is J0-correlated.
This can produce multicolored, elliptical von Laue patterns
in the forward direction and an overlapping, multiple ring
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pattern in the backward direction. Our results show that
both the directionality and the wavelength-selectivity of the
scattering process can be controlled by altering the state of
coherence of the illuminating source or the distance between
the annular source and the crystal.

II. SCATTERING FROM CRYSTALLINE STRUCTURES

The incident field at position r and at frequency
ω,U (in)(r,ω), is taken to be partially coherent. In the space-
frequency domain formulation of coherence theory, its correla-
tion properties are characterized by the cross-spectral density
function [18],

W (in)(r1,r2,ω) = 〈U (in)∗(r1,ω)U (in)(r2,ω)〉, (1)

where the angular brackets denote an average taken over
an ensemble of realizations of the field, and the asterisk
indicates complex conjugation. The normalized version of this
correlation function is the spectral degree of coherence,

μ(in)(r1,r2,ω) = 〈U (in)∗(r1,ω)U (in)(r2,ω)〉
[S(in)(r1,ω)S(in)(r2,ω)]1/2

, (2)

where the incident spectral density is defined as

S(in)(r,ω) ≡ W (in)(r,r,ω). (3)

We consider a general, three-dimensional crystalline array of
identical point scatterers. In that case the scattering potential
F (r,ω) can be written as

F (r,ω) = F0(ω)
∑

R

δ3(r − R), (4)

with F0(ω) ∈ R, δ3 denoting the three-dimensional Dirac δ

function, and with the position vectors of the scatterers given
by

R = N1a1 + N2a2 + N3a3. (5)

Here a1, a2, and a3 denote the direct lattice vectors that span
the crystal, with Ni any integer, and i = 1, 2, 3. The periodicity
of F (r,ω) allows us to express it as a Fourier series, i.e.,

F (r,ω) =
∑

G

f (G,ω) eiG·r, (6)

with f (G,ω) the structure factor and G a reciprocal lattice
vector [16]. The structure factor is given by the expression

f (G,ω) = V −1
∫

V

F (r,ω) e−iG·r d3r, (7)

where V denotes the volume of a unit cell, over which the
integration extends. From this it follows that in our case

f (G,ω) = F0(ω), (8)

for all vectors G.
Within the validity of the first-order Born approximation

[18], the scattered field in a direction indicated by the unit
vector s = (sx,sy,sz), is given by the formula

U (sca)(rs,ω) =
∫
R3

U (in)(r′,ω)G(rs,r′,ω)F (r′,ω) d3r ′, (9)

where r = rs is a point of observation, and G(rs,r′,ω) is
the outgoing free-space Green’s function pertaining to the
Helmholtz equation. Because the scattering potential is identi-
cally zero outside the domain of the scatterer, we have extended
the integration in Eq. (9) to the entire three-dimensional space,
i.e., to R3. Far away from the scatterer the Green’s function
takes on the asymptotic form

G(rs,r′,ω) = eik|r−r′ |

|r − r′| ∼ eikr

r
e−iks·r′

, (10)

where k denotes the wavenumber associated with frequency ω.
The spectral density of the scattered field is, in strict analogy
with Eq. (3), given by the expression

S(sca)(rs,ω) = 〈U (sca)∗(rs,ω)U (sca)(rs,ω)〉. (11)

On substituting from Eqs. (6), (8), (9), and (10) into Eq. (11),
and interchanging the order of ensemble averaging and
integration, we obtain

S(sca)(rs,ω) = F 2
0 (ω)

r2

∫
R6

W (in)(r′,r′′,ω)e−iks·(r′′−r′)

×
∑

G

e−iG·r′ ∑
H

eiH·r′′
d3r ′d3r ′′, (12)

with the cross-spectral density function W (in)(r′,r′′,ω) of the
incident field given by Eq. (1), and G and H denoting
a reciprocal lattice vector. Interchanging integration and
summation, and rearranging terms yields

S(sca)(rs,ω) = F 2
0 (ω)

r2

∑
G

∑
H

∫
R6

W (in)(r′,r′′,ω)

× eir′ ·(ks−G)eir′′ ·(H−ks) d3r ′d3r ′′. (13)

We note that this expression relates the scattered field to the
six-dimensional spatial Fourier transform of the cross-spectral
density of the incident field. To simplify the notation we omit
the ω-dependence from now on.

Next we make use of the fact that, far away from the source,
the cross-spectral density function itself is also a Fourier
transform, namely

W (in)(r′,r′′) =
(

k

2π�z

)2

eik(z′′−z′)
∫∫

z=0
W (0)(ρ1,ρ2)

× e−ik(ρ ′′ ·ρ2−ρ ′ ·ρ1)/�z d2ρ1d
2ρ2, (14)

where the superscript (0) indicates the source plane z = 0, and
with r′ = (ρ ′,z′) and r′′ = (ρ ′′,z′′). The distance �z between
the source and the scatterer is illustrated in Fig. 1. Equation (14)
is derived in the Appendix. On making use of this expression

crystal
s

O’
z,z’

O

source

θ
u

Δz

ρ α

FIG. 1. Illustrating the notation. The origin O of the first
coordinate system is taken in the source plane z = 0. The origin
O ′ of the primed coordinates is taken at (x,y,z) = (0,0,�z).
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in Eq. (13) we get the formula

S(sca)(rs) =
(

F0k

2πr�z

)2 ∑
G

∑
H

∫
R6

∫∫
z=0

eik(z′′−z′)W (0)(ρ1,ρ2)e−ik(ρ ′′ ·ρ2−ρ ′ ·ρ1)/�zeir′ ·(ks−G)eir′′ ·(H−ks) d2ρ1d
2ρ2d

3r ′d3r ′′. (15)

Writing this out in Cartesian components gives

S(sca)(rs) =
(

F0k

2πr�z

)2 ∑
G

∑
H

∫
R

e−ikz′
eiz′(ksz−Gz) dz′

∫
R

eikz′′
eiz′′(Hz−ksz) dz′′

∫
R8

W (0)(x1,y1,x2,y2)

× e−ik(x ′′x2+y ′′y2−x ′x1−y ′y1)/�zeix ′(ksx−Gx )eiy ′(ksy−Gy )eix ′′(Hx−ksx )eiy ′′(Hy−ksy ) dx1dy1dx2dy2dx ′dy ′dx ′′dy ′′. (16)

The integrals over z′ and z′′ are readily evaluated to give∫
R

eiz′(ksz−Gz−k) dz′ = 2πδ(ksz − Gz − k), (17)

and ∫
R

eiz′′(Hz−ksz+k) dz′′ = 2πδ(Hz − ksz + k), (18)

respectively. In order to have a scattered field that is nonzero,
Eqs. (17) and (18) have to be satisfied simultaneously. This
implies that

Gz = Hz = k(sz − 1). (19)

Similarly, the integrals over the remaining four primed
variables also yield δ-functions, for example,∫

R
eix ′(kx1/�z+ksx−Gx ) dx ′ = 2πδ(kx1/�z + ksx − Gx).

(20)

Thus, we find the four relations

x1 = �z(Gx/k − sx), (21)

y1 = �z(Gy/k − sy), (22)

x2 = �z(Hx/k − sx), (23)

y2 = �z(Hy/k − sy). (24)

Substitution in Eq. (16) gives the final result

S(sca)(rs) =
(

F04π2�z

kr

)2 ∑
G,H

W (0)(x1,y1,x2,y2), (25)

with the arguments (x1, y1, x2, y2) of the cross-spectral density
function W (0) given by Eqs. (21)–(24), and the double sum-
mation over the reciprocal lattice vectors such that Gz = Hz.
Equation (25) is a general expression for the far-zone scattered
field in terms of the cross-spectral density function of the
source and the reciprocal lattice of the crystal.

III. ORTHORHOMBIC CRYSTALS

From here on we assume the scattering structure to be an
orthorhombic crystal [16], consisting of unit cells with sides
a, b, c, as sketched in Fig. 2. We note that this choice of
coordinate axes means that we consider a field that is normally
incident along the z direction.

For an orthorhombic crystal the Cartesian compo-
nents of its reciprocal lattice vectors are given by the
formulas

Gx = 2π
n1

a
, (26)

Gy = 2π
n2

b
, (27)

Gz = 2π
n3

c
, (28)

and

Hx = 2π
m1

a
, (29)

Hy = 2π
m2

b
, (30)

Hz = 2π
m3

c
, (31)

with the indices ni and mi any integer, and

i = 1, 2, 3. Equation (19) yields the restriction
n3 = m3. The above expressions will be used in
Eqs. (21)–(24).

IV. GAUSSIAN SCHELL-MODEL SOURCES

For a planar source of the Gaussian Schell model
type [17], the cross-spectral density function in the source
plane reads

W (0)(ρ1,ρ2) =
√

S(0)(ρ1)S(0)(ρ2)μ(0)(ρ2 − ρ1), (32)

a

b

c

z

x

y

FIG. 2. A rectangular parallelepiped unit cell of eight identical
point scatterers. The direct lattice vectors are a1 = ax̂,a2 = bŷ and
a3 = cẑ. The orthorhombic scatterer is assumed to consist of many
of these unit cells.
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with the spectral density and the spectral degree of coherence
both having a Gaussian form, i.e.,

S(0)(ρ) = A2e−ρ2/2σ 2
S , (33)

μ(0)(ρ2 − ρ1) = e−(ρ2−ρ1)2/2σ 2
μ . (34)

Here A2 denotes the maximum spectral density, σS the effective
source width, and σμ the effective transverse coherence length.

Let us next make the additional assumption that the source
is quasihomogeneous. For such sources the spectral density
S(0)(ρ) changes much more slowly with ρ than the spectral
degree of coherence μ(0)(ρ2 − ρ1) changes with |ρ2 − ρ1|.
That implies that σ 2

μ 	 σ 2
S . The far-zone spectral degree of

coherence of the field that is generated by such a source

satisfies the reciprocity relation [17, Sec. 5.3.2],

μ(∞)(r1s1,r2s2) = S̃(0)[k(s2⊥ − s1⊥)]

S̃(0)(0)
eik(r2−r1), (35)

where the superscript (∞) indicates points in the far zone,
and si⊥ = (six,siy), with i = 1, 2, are the transverse parts of
the directional unit vector si . If we apply the spectral density
distribution Eq. (33) to this expression, we find for the spectral
degree of coherence of the field that is incident on the crystal
the equation

μ(in)(r1s1,r2s2) = e−k2σ 2
S (s2⊥−s1⊥)2/2eik(r2−r1). (36)

Equation (36) shows that we can change the state of coherence
of the incident field, or more precisely, its effective transverse
coherence length, by changing the width σS of the source.

If we substitute from Eq. (32) into Eq. (25) for the case
of an orthorhombic crystal, as was described in the previous
section, we obtain the formula

S(sca)(rs) = β
∑
ni ,mj

n3=m3

exp

{
− (�z)2

4σ 2
S

[(
2πn1

ka
− sx

)2

+
(

2πn2

kb
− sy

)2

+
(

2πm1

ka
− sx

)2

+
(

2πm2

kb
− sy

)2]}

× exp

(
− (�z)2

2σ 2
μ

{[
2π

ka
(m1 − n1)

]2

+
[

2π

kb
(m2 − n2)

]2})
, (37)

with i, j = 1, 2, 3, and where for brevity we have introduced
the parameter β, where

β =
(

AF04π2�z

kr

)2

. (38)

The maximum term in the summation occurs when the
arguments of both exponentials are zero, i.e., when m1 = n1

and m2 = n2, and for a scattering direction s such that

sx = λn1

a
, (39)

sy = λn2

b
, (40)

with the wavelength λ = 2π/k. For the longitudinal compo-
nent of s we have from Eqs. (19) and (28) that

sz = 1 + λn3

c
. (41)

These three formulas are the well-known von Laue equations
[3, Sec. 13.1.3]. They indicate the directions s of maximum
scattering for an incident field that is spatially fully coherent.

On making use in Eq. (37) of the assumption that σ 2
μ 	 σ 2

S ,
it follows that we may safely neglect all terms for which m1 �=
n1 and m2 �= n2. This then gives

S(sca)(rs) = β
∑
ni

exp

{
− (�z)2

2σ 2
S

[(
2πn1

ka
− sx

)2

+
(

2πn2

kb
− sy

)2]}
. (42)

Equation (42) describes the scattered field as a sum of terms.
Each term is characterized by the integer triplet (n1, n2, n3).
The value of these integers determines a specific wavelength λ

and a direction s at which the scattering reaches a maximum,
a so-called von Laue spot. It is worth noting that Eq. (42)
does not depend on the coherence length σμ of the source,
however it does depend on the state of coherence of the
incident field. This is because for a distant quasihomoge-
neous Gaussian Schell-model source, the reciprocity relation
Eq. (36) implies that the coherence of the incident field is
governed by the effective source size σS , rather than σμ.
When this source size is decreased, the spectral degree of
coherence of the field that is incident on the crystal, is
increased.

We illustrate our results by considering the exam-
ple of an orthorhombic crystal with unit cells with
sides

a = 1.0 × 10−9m, (43)

b = 1.2 × 10−9m, (44)

c = 1.5 × 10−9m. (45)

We study a single scattering direction by choosing
a triplet (n1, n2, n3). The three von Laue equations,
together with the requirement that s is a unit vector,
i.e.,

s2
x + s2

y + s2
z = 1, (46)

form an over-determined system that will only be sat-
isfied for a specific wavelength. For example, for the
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FIG. 3. Distribution of the normalized scattered intensity around
the direction indicated by the von Laue equations for different
values of the effective source width, and hence a different transverse
coherence length of the incident field. (a) σS = 5.0 × 10−3 m; (b)
σS = 2.5 × 10−3 m; (c): σS = 1.0 × 10−3 m. In these examples
n1 = 1, n2 = 3, n3 = −2, and �z = 1 m.

choice

n1 = 1, (47)

n2 = 3, (48)

n3 = −2, (49)

it is found that λ = 2.95 × 10−10 m, and hence that sx =
0.29, sy = 0.73, and sz = 0.60.

We note that, apart from this particular value of the
wavelength, there exists, for every choice of (n1, n2, n3), the
trivial solution λ = 0, and hence sz = 1. This corresponds to
a forward-propagating field with an infinite frequency. Since
this is nonphysical, we exclude this solution. We will return to
the issue of spurious solutions in the next section.

The influence of the state of coherence of the incident field
on the distribution of the scattered field around the direction
specified by the von Laue equations is evaluated by calculating
a single term of the summation in Eq. (42):

S(sca)(n1,n2,n3) = β exp

{
− (�z)2

2σ 2
S

[(
2πn1

ka
− sx

)2

+
(

2πn2

kb
− sy

)2]}
, (50)

where we have changed the arguments of S(sca) from (rs) to
the triplet (n1, n2, n3).

Sx

Sy

FIG. 4. Distribution of the normalized scattered intensity around
two von Laue spots. The left-hand peak corresponds to (n1, n2, n3) =
(1, 3, − 2) and hence λ = 2.95 × 10−10 m. The right-hand peak is
for (n1, n2, n3) = (2, 3, − 2), and thus λ = 2.21 × 10−10 m. In these
two examples σS = 1.0 × 10−3 m and �z = 1 m.

An example is presented in Fig. 3. The source width σS

decreases in going from Fig. 3(a) to 3(c). This means that the
spectral degree of coherence of the incident field increases.
It is seen that the circular, Gaussian intensity distribution,
which is centered around the von Laue direction, gets narrower
when the spatial coherence of the incident field increases and
becomes more and more point-like.

Let us next choose a second scattering direction by setting

n1 = 2, (51)

n2 = 3, (52)

n3 = −2. (53)

We now find that λ = 2.21 × 10−10 m, and hence that sx =
0.44, sy = 0.55, and sz = 0.70. It is clear from Fig. 4 that these
two diffraction peaks are well separated, both directionally and
spectrally.

V. UNCORRELATED, INFINITELY THIN
ANNULAR SOURCES

We next consider the idealized case of a completely
incoherent, infinitely thin “δ-ring” source. If this ring has
a uniform spectral density A2, and is of radius R, then the
cross-spectral density of the field in the source plane is given
by the expression

W (0)(ρ1,ρ2) = A2δ(ρ1 − R)δ2(ρ2 − ρ1), (54)

where δ and δ2 represent the one- and two-dimensional Dirac
δ function, respectively. Such a source produces a J0 Bessel-
correlated field in its far zone. The approximate experimental
realization of such a field was reported in Ref. [19].

If we substitute from Eq. (54) into Eq. (25) for the case of
an orthorhombic crystal as described in Sec. III, we get the
expression

S(sca)(rs) = β
∑
ni ,mj

n3=m3

δ

{
�z

[(
2πn1

ka
− sx

)2

+
(

2πn2

kb
− sy

)2]1/2

− R

}
δ

[
2π

ka
(n1 − m1)

]
δ

[
2π

kb
(n2 − m2)

]
, (55)

= β
∑
ni

δ

{
�z

[(
2πn1

ka
−sx

)2

+
(

2πn2

kb
−sy

)2]1/2

− R

}
. (56)
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Sx

Sy

(a) (b)

(c)

Sx

u

−0.54

−0.73

Sx

U

Sy

FIG. 5. (a) An oblique, elliptic cylinder and a unit sphere in
(sx, sy, u)-space. The sphere is centered on (0, 0, − 1), and the
cylinder has a radius R/�z in the horizontal plane. The intersections
of the cylinder and the sphere are indicated by the two blue curves.
(b) The projection of the lower intersection onto the sx, sy plane.
(c) The projection of the lower intersection onto the sx, u plane. In
these examples a = 1 × 10−9 m, b = 1.2 × 10−9 m, c = 1.5 × 10−9

m, n1 = −1, n2 = −2, n3 = −2, R = 0.1 m, and �z = 1 m.

In order to determine the components of the directional
vector s and the wavelength λ, we recall Eq. (41),

sz = 1 + u, (57)

where we defined the scaled wavelength u as

u ≡ λn3

c
. (58)

The first requirement, that |s| = 1, defines a unit sphere in
(sx, sy, u)-space that is centered around the point (0, 0,−1),
as is shown in Fig. 5. The second condition, which is derived
from Eqs. (56) and (58), reads(

u
cn1

n3a
− sx

)2

+
(

u
cn2

n3b
− sy

)2

= R2

(�z)2
. (59)

This defines an oblique, elliptic cylinder, whose intersection
with any horizontal plane u = constant, is a circle with center
(sx,sy) = (ucn1/n3a,ucn2/n3b), and with radius R/�z. From
this expression it follows readily that the central axis of the
cylinder is the line given by the formula

(sx, sy, u) = (ucn1/n3a, ucn2/n3b, u). (60)

For any choice of the triplet (n1, n2, n3), the directions of
nonzero scattering and the wavelength are given by the
intersections of the cylinder and the unit sphere. These will
be two closed curves, as indicated in blue in the example
shown in Fig. 5(a). The upper curve, near u = 0, is the partially

coherent analog of the spurious solution that we discussed
below Eq. (49), and we will therefore not consider it.

The assumption that the scatterer is in the far zone of the
source means that R is much smaller than �z. This implies
that the cylinder is quite narrow. According to Eq. (57), an
intersection of the cylinder in the upper half of the sphere
(u > −1), corresponds to forward scattering (sz > 0), whereas
an intersection in the lower portion of the sphere represents
backscattering (sz < 0). Instead of a single von Laue direction,
we now have a range of scattering directions, each represented
by a point on the intersectional curve. Since these points
each have a distinct u coordinate, Eq. (58) implies that they
all represent scattering at a distinct wavelength, i.e., the von
Laue curves show dispersion. It is worth remarking that this
spread in u values, and hence the dispersion, will be more
pronounced for oblique scattering than for scattering in the
forward direction.

The projection of the sphere-cylinder intersection onto the
the sx, sy plane is obtained by substituting u = −1 ± (1 −
s2
x − s2

y )1/2 into Eq. (59), with the plus (minus) sign taken for
intersections in the upper (lower) half of the sphere. This gives
the formula

R2

(�z)2
=

[(−1 ±
√

1 − s2
x − s2

y

) cn1

n3a
− sx

]2

+
[(−1 ±

√
1 − s2

x − s2
y

) cn2

n3b
− sy

]2

. (61)

The projection of the lower curve of Fig. 5(a) is plotted in
Fig. 5(b). This curve represents scattering along a range of
directions s, each with a specific value of u, and hence with a
different wavelength. The variation of the wavelength with the
direction s can be studied by projecting the intersection onto
the sx, u plane. This is done by substituting sy = ±[1 − s2

x −
(1 + u)2]1/2 into Eq. (59), with the plus (minus) sign taken
when sy is positive (negative). The result is

R2

(�z)2
=

[
u

cn1

n3a
− sx

]2

+
[
u

cn2

n3b
∓

√
1 − s2

x − (1 + u)2

]2

.

(62)

The projection of the lower curve is shown in Fig. 5(c). It
is seen that the value of u varies between −0.54 and −0.73.
According to Eq. (58), this corresponds to a wavelength range
of 4.05 × 10−10 m � λ � 5.47 × 10−10 m.

The distinction between forward and backward scattering
can be made by considering the angle, γ say, between the axis
of the cylinder and the positive u axis. It follows from Eq. (60)
that

tan γ =
√(

cn1

n3a

)2

+
(

cn2

n3b

)2

. (63)

Ignoring the finite radius of the cylinder for simplicity, the
lowest intersection of the cylinder with the sphere will be above
the equator (u = −1) when this angle exceeds 45◦. Hence, we
conclude that forward scattering occurs when(

cn1

n3a

)2

+
(

cn2

n3b

)2

> 1. (64)
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FIG. 6. (a) Three different von Laue patterns scattered in the
forward direction (sz > 0) for, from left to right, n1 = −1, 0, 1, and
n2 = n3 = −2. (b) The projection of these curves onto the sx, u plane,
showing their colors in the visible spectrum. In this example, a =
1 × 10−6 m, b = 1.2 × 10−6 m, c = 1.5 × 10−6 m, R = 0.1 m, and
z = 1 m.

When this quantity is less than unity, the scattering is in the
backward direction.

Colorful von Laue patterns in the visible spectrum can
be produced by crystals with sides on the order of microns.
Examples of three symmetrically located, forward-scattered
patterns (sz > 0), are plotted in Fig. 6(a). Their projection
onto the sx, u plane is shown in Fig. 6(b). Using Eq. (58), it
is found that the wavelengths for these three ellipses range
from 405 to 660 nm, as is indicated in the color rendering.
By increasing the distance �z between the source and the
crystal (see Fig. 1), one gradually approaches the case of
spatially coherent illumination. This should lead to a decrease
in dispersion. Indeed it found for example, that when �z is
increased from 1 to 5 m, the wavelength range is reduced to
465 to 600 nm.

Examples of scattering in the backward direction (sz < 0)
are presented in Fig. 7. Near-circular, overlapping intensity
patterns are produced with a wavelength interval from 444
to 480 nm. The directional radius of these patterns, i.e., their
spread in the sx,sy plane, can easily be tailored by changing
either the source radius R or the source-crystal distance �z.
Decreasing the ratio R/�z decreases the directional radius.

−1.0 −0.5 0.0 0.5 1.0

−0.4

−0.2

0.0

0.2

0.4

Sx

S y

FIG. 7. Showing five different backscattered von Laue rings for,
from left to right, n1 = −2, − 1, 0, 1, 2, and n2 = 1 and n3 = −25.
In this example a = 4 × 10−6 m, b = 4.8 × 10−6 m, c = 6.0 ×
10−6 m, R = 0.1 m, and �z = 1 m.

VI. CONCLUSIONS

We have analyzed the role of spatial coherence in scattering
from a periodic potential. This was done within the context of
the so-called von Laue method, in which a polychromatic field
is diffracted by a crystal with a fixed orientation. A general
expression, Eq. (25), that relates the scattered field to the
cross-spectral density of the source, was derived. This result
was applied to two different types of partially coherent sources.
Quasihomogeneous Gaussian Schell model sources (GSM)
and δ-correlated, thin annular sources. The sphere-cylinder
construction that we used for the latter type can, at least in
principle, also be applied to the GSM source. However, we
chose, for that case at least, to stay closer to the traditional
treatment. The GSM sources were seen to produce von Laue
spots whose size is directly related to the size of the source.
The annular sources were found to generate elliptical von Laue
patterns rather than spots. Both the dispersion and the angular
spread of these patterns can be tuned by changing the source
radius or the distance between the source and the crystal.
In summary, we have shown how spatial coherence can be
used to tailor scattering by an object with a periodic potential.
Our work may be extended to sources with different shapes
and correlation functions, other crystals, and crystals with a
different orientation.
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APPENDIX: DERIVATION OF EQUATION (14)

Consider a secondary, partially coherent, planar source that
is situated in the plane z = 0, as sketched in Fig. 1. The
symbol ρ = (x, y) denotes a transverse vector. The coherence
properties of the source field at two points ρ1 and ρ2 are
characterized by the cross-spectral density function,

W (0)(ρ1,ρ2) = 〈U (0)∗ (ρ1)U (0)(ρ2)〉, (A1)

where the superscript (0) indicates the source plane. If the
scatterer is located far away from the source, then the
incident cross-spectral density of the incident field equals [17,
Eq. 5.3-4]

W (in)(r1u1,r2u2)

=
(

k

2π

)2 exp[ik(r2 − r1)]

r1r2
cos α1 cos α2

×
∫∫

z=0
W (0)(ρ1,ρ2)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d2ρ1d
2ρ2,

(A2)

033812-7



WANG, KUEBEL, VISSER, AND WOLF PHYSICAL REVIEW A 94, 033812 (2016)

where u1⊥ and u2⊥ are the transverse parts of the directional unit vectors u1 and u2. These two vectors are under an angle α1

and α2, respectively, with the positive z axis. The scatterer is a distance �z from the source. Because the linear dimensions of
the scatterer may be assumed to be much smaller than �z, the angles α1 and α2 are both small and hence cos α1 ≈ cos α2 ≈ 1.
Furthermore, the factor k(r2 − r1) where ri = |(ρi ,zi)|, with i = 1 or 2, can then be expressed as

k(r2 − r1) ≈ k
[
z2

(
1 + ρ2

2/2z2
2

) − z1
(
1 + ρ2

1/2z2
1

)]
, (A3)

≈ k(z2 − z1), (A4)

where we have used the fact that ρ1 and ρ2 are both bounded by the transverse size of the scatterer. In addition, the finite size of
the scatterer implies that the factor 1/r1r2 does not vary appreciably over its domain, i.e.,

1

r1r2
≈ 1

(�z)2
. (A5)

On making use of these approximations in Eq. (A2) we obtain the expression

W (in)(r1u1,r2u2) =
(

k

2π�z

)2

exp[ik(z2 − z1)]
∫∫

z=0
W (0)(ρ1,ρ2) exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d2ρ1d

2ρ2. (A6)

Finally, Eq. (A6) must be expressed in terms of the primed variables defined in Fig. 1. This is done by noting that

z2 − z1 = z′′ − z′, (A7)

u1⊥ ≈ ρ ′/�z, (A8)

u2⊥ ≈ ρ ′′/�z, (A9)

and hence we obtain

W (in)(r′,r′′) =
(

k

2π�z

)2

exp[ik(z′′ − z′)]
∫∫

z=0
W (0)(ρ1,ρ2) exp[−ik(ρ ′′ · ρ2 − ρ ′ · ρ1)/�z] d2ρ1d

2ρ2, (A10)

which is Eq. (14).
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