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Wave instabilities and unidirectional light flow in a cavity with rotating walls
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We investigate the conditions for the emergence of wave instabilities in a vacuum cavity delimited by cylindrical
metallic walls under rotation. It is shown that for a small vacuum gap and for an angular velocity exceeding a
certain threshold, the interactions between the surface plasmon polaritons supported by each wall give rise to
unstable behavior of the electromagnetic field manifested in exponential growth with time. The instabilities occur
only for certain modes of oscillation and are due to the transformation of kinetic energy into electromagnetic
energy. We also study the possibility of having asymmetric light flows and optical isolation relying on the relative
motion of the cavity walls.
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I. INTRODUCTION

The interaction of quantum vacuum electromagnetic fields
and electrically neutral and polarizable macroscopic bodies
with rapidly changing geometry, often referred to as the
dynamical Casimir effect [1], has been extensively studied
in the literature [2–9]. In particular, for bodies in relative
translational motion this interaction is at the origin of the
“quantum friction” effect, which was predicted to occur when
two closely spaced perfectly smooth parallel surfaces are
sheared past one another [10–20]. The rigorous physical
description of this effect, in particular, its existence at
zero temperature, has been the subject of continued debate
[16,21–24].

Recently, an important advancement in the physical under-
standing of this effect was reported in Refs. [25] and [26],
where it was proven that the quantum friction force emerges
even at zero temperature and for lossless dielectric materials
in shear motion at a relative velocity exceeding twice the
Cherenkov threshold. Related ideas have been developed in
parallel using different approaches [27,28]. Furthermore, it
was highlighted that in some scenarios the quantum friction
effect has a classical analog and may be determined by
optomechanical interactions that create electromagnetic wave
instabilities [25,29,30]. The instabilities—i.e., the natural
modes of the system with amplitudes increasing with time—
are developed because of the coupling between the guided
modes supported by each surface and result from the conver-
sion of kinetic energy into electromagnetic energy, which is the
physical origin of the friction force. The conditions required
for the emergence of the instabilities in planar geometries were
studied in detail in Refs. [25], [26], and [29]. Remarkably, the
unstable time evolution of the electromagnetic field is anchored
in a spontaneous parity-time symmetry breaking of the system
and in a phase transition wherein the eigenmodes spectrum
becomes complex valued [31].

Interestingly, related instabilities—known as Kelvin-
Helmholtz instabilities—may arise when the relative velocity
of two fluids in contact (e.g., the wind blowing over water)
exceeds a certain threshold [32]. Moreover, Kelvin-Helmholtz-
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type instabilities are well known in plasma physics and develop
in relativistic shear flows of collisionless plasmas in contact
due to the coupling between electron plasma waves mediated
by the electromagnetic field [32–38]. Such instabilities are
believed to play an important role in astrophysical scenarios,
for example, at the interfaces between astrophysical jets and
the interstellar medium. Recently, it was shown that Kelvin-
Helmholtz-type instabilities can develop as well when there is
a vacuum gap between the sheared plasmas, and this finding
was numerically verified by multidimensional particle-in-cell
simulations [39].

Here, we extend the study of electromagnetic instabilities
to material bodies under rotation. The possibility of wave
amplification by a rotating body was first suggested in the
pioneering works of Zel’Dovich [40]. More recently, the
spontaneous emission of light by a single rotating object was
studied with the help of the fluctuation dissipation theorem in
the framework of quantum electrodynamics [41–43]. Similarly
to the results of Zel’Dovich, it was shown that light is emitted
only for certain specific modes of oscillation and is associated
with a friction-type torque. Interactions between a rotating
object and a flat metallic surface were investigated in Ref. [44],
and it was found that the quantum friction force can be strongly
enhanced due to excitation of surface plasmon polaritons
(SPPs).

Contrary to these previous works, the analysis in the present
article relies on simple classical electrodynamics. In particular,
it is highlighted that, similarly to the case of two bodies in
shear translational motion [29], the emergence of a friction-
type force for a rotational motion is deeply rooted in the
development of classical Kelvin-Helmholtz-type instabilities
that lead to the spontaneous conversion of kinetic energy into
electromagnetic energy. To illustrate the ideas, we consider a
simple canonical geometry that corresponds to a vacuum cavity
delimited by two cylindrical metallic walls under rotational
motion. Using nonrelativistic classical electrodynamics, we
determine the natural oscillation frequencies of the cavity
and find in which circumstances the moving walls start to
spontaneously emit light. It is shown that unstable behavior
is always accompanied by the emergence of friction-type
mechanical torque that acts to oppose the relative motion and to
stop the instability. Finally, we study how the relative motion of
the walls affects the light propagation in the cavity and show
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that under some conditions it is possible to have a strongly
unidirectional and nonreciprocal light flow.

II. NATURAL MODES OF THE SYSTEM

The system under study is a two-dimensional vacuum cavity
with thickness d surrounded by two metallic cylindrical walls
rotating at angular velocities �1 and �2 with respect to the
z axis, as depicted in Fig. 1(a). The system is invariant to
translations along the z direction. The metal’s response is
assumed to be determined by the Drude dispersion model.

The angular velocities of the cylinders are supposed to
be time independent. As discussed in the following, strictly
speaking this condition may require the application of an
external force to counterbalance a friction-type torque due to
possible optical instabilities. In practice, if the metallic walls
are sufficiently massive the effect of the friction torque is
expected to be negligible on the time scale determined by the
growth rate of the electromagnetic fields.

Next, we characterize the cavity’s natural modes with com-
plex oscillation frequencies ω = ω′ + iω′′. To do so, we use a
purely classical approach to expand the electromagnetic fields
in the different cavity regions in cylindrical harmonics and
derive the characteristic equation by matching the tangential
fields at the interfaces.

It is important to note that, differently from the case
of a body in uniform translational motion [25,26,29], a
body in uniform circular motion is subject to a centripetal
acceleration. Unfortunately there is no simple description of
the electromagnetic response of a macroscopic medium in
accelerated motion. It is well known that an isotropic uniform
(i.e., invariant to translations along the direction of motion)
dielectric medium moving at constant velocity v = vx̂ with
respect to some inertial frame (the laboratory frame) is seen
as a bianisotropic medium in this reference frame. Indeed,
using a relativistic transformation of the fields it is possible to
prove that in the laboratory frame the electromagnetic fields are

FIG. 1. (a) The system under study: a vacuum cavity is delimited
by two cylindrical metallic walls that rotate at angular velocities �1

and �2. (b) Schematic representing the invariance of the system under
PT symmetry. A generic “element” of the rotating body (delimited
by the framed box in the lower region) is transformed under the time
reversal operation as T v, under parity operation as Pv, and under
the parity-time operation as PT v. Here, the parity operator is taken
equal to P : (x,y,z) → (x, − y,z). From an electromagnetic point of
view, the parity-time transformation leads to a structure that has the
same response as the original one.
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, (1a)

μ = μt (I − x̂x̂) + μx̂x̂, μt = μ
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mβ2

, (1b)

ζ = −ϑ = −ax̂ × I, a = β
n2

m − 1

1 − n2
mβ2

, (1c)

where β = v/c, n2
m = εμ, and ε and μ are the material

parameters in the rest (comoving) frame. Equations (1a)–(1c)
are a direct consequence of formula (76.9) in Ref. [45]
and their detailed derivation can be found in Ref. [46].
When the medium is dispersive the parameters ε, μ, etc.,
must be evaluated at the Doppler-shifted frequency [29,31].
It is relevant to highlight that the material parameters
(1a)–(1c) ensure that the plane-wave natural modes seen
in the laboratory frame have a dispersion that differs from
that seen in the comoving frame simply by a relativistic
Doppler transformation. Unfortunately, formulas (1a)–(1c) are
difficult to generalize to the case of rotating bodies, mainly
because there is no inertial frame wherein a rotating body is
instantaneously at rest.

These features greatly complicate the exact physical char-
acterization of the wave phenomena in the cylindrical cavity.
Thus, for the sake of simplicity, we suppose that, to a
first approximation, the transformed constitutive parameters,
(1a)–(1c), are locally valid at each point in the moving medium.
Moreover, we restrict our attention to the quasielectrostatic
limit and to velocities v = �ρ (ρ is the radial distance to the
center of the cavity) low with respect to the light velocity c, so
that the bianisotropic nature of the transformed constitutive
parameters can be neglected. Note that in the quasistatic
limit the electric field dominates over the magnetic field and
this justifies the neglect of the crossed material parameters

(ζ ,ϑ). Within these assumptions, Eqs. (1a)–(1c) reduce to

ε ≈ ε, μ ≈ μ, ζ = −ϑ ≈ 0, and the influence of the rotational
motion dwells only in the Doppler-shifted frequency ω̃i :

εi = εi(ω̃i), μi = μi(ω̃i). (2)

Here, ω̃i represents the frequency in the frame instantaneously
comoving with the relevant point of the ith material at velocity
vi . In the case of a translational motion along the x direction,
it can be related to the frequency ω in the laboratory frame
as ω̃i = ω − kxvi , where kx = −ix̂ · ∇ is the wave number
along the x direction. For a rotational motion vi = �iρφ̂, and
thus it follows that ω̃i = ω + �i i∂φ , where ∂φ = ∂/∂φ is the
derivative with respect to the azimuthal angle. The dependence
of the constitutive parameters on a spatial derivative (∂φ) is
consistent with the fact that a frequency dispersive medium
in motion becomes spatially dispersive. For waves with an
azimuthal variation of the form einφ the Doppler-shifted
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frequency is given simply by:

ω̃i = ω − n�i, (3)

where n = 0, ± 1, . . . is the azimuthal quantum number. In
summary, in the quasistatic limit and under a nonrelativistic
approximation a dielectric under a rotational motion is charac-
terized in the laboratory frame by the same material parameters
εi and μi as in the rest frame, but εi and μi need to be evaluated
at the Doppler-shifted frequency ω̃i . In all the examples in this
article the materials do not have a magnetic response (μi = 1).
We numerically verified (not shown) that this theory applied
to the case of metal slabs in relative translational motion
gives results consistent with the exact relativistic solution.

Using the proposed formalism it is now a simple task
to find the cavity modes. It is clear that because of the
cylindrical symmetry the modes can be classified according
to the azimuthal variation einφ . Here, we are interested in
p-polarized modes with an electric field parallel to the xoy

plane and a magnetic field directed along the z-symmetry axis.
An ansatz for the magnetic field in the laboratory frame is
Hz = einφfn(kρ), with fn a cylindrical Bessel function of the
first kind (Jn) or of the second kind (Yn). Hence, taking into
account the specific asymptotic conditions to be satisfied in
each part of the cavity, the magnetic field in each region of
space in Fig. 1 is

Hz(ρ,φ) = einφ

⎧⎪⎨
⎪⎩

C11J|n|
(

ω
c

√
ε1ρ

)
, ρ < ρ1,

C31J|n|
(

ω
c

√
ε3ρ
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(

ω
c

√
ε3ρ

)
, ρ2 > ρ > ρ1,

C21H
(1)
|n|

(
ω
c

√
ε2ρ

)
, ρ > ρ2,

(4)

where H (1)
n = Jn + iYn is the Hankel function of the first kind, and Cij are constant coefficients. The permittivity in each region

εi is evaluated at the corresponding Doppler-shifted frequency ω̃i . The azimuthal component of the electric field in the ith region
is given by

Eφ(ρ,φ) = 1

iωε0εi(ω̃i)

∂Hz

∂ρ
(ρ,φ). (5)

By imposing the continuity of Hz and Eφ at the two material-vacuum interfaces, one obtains the 4 × 4 homogeneous matricial
system (here a prime represents the derivative with respect to the argument)⎛
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⎞
⎟⎟⎟⎠ = 0, (6)

whose nontrivial solutions determine the cavity modes. The
natural frequencies of oscillation ω = ω′ + iω′′ can be found
by setting the determinant of the matrix equal to 0. Because
the Bessel functions lead to a transcendental characteristic
equation, calculation of the natural frequencies can only be
done with numerical methods. Consistent with the assumptions
that led to Eq. (2), we are interested in subwavelength metallic
cavities for which kρ � 1. As shown next, in this case it
is possible to greatly simplify the problem and obtain an
approximate algebraic characteristic equation.

Indeed when kρ � 1 the asymptotic form of the cylindrical
Bessel functions can be used,

J|n|(kρ) −→
kρ�1

α1(kρ)|n|, (7a)

Y|n|(kρ) −→
kρ�1

α2(kρ)−|n|, (7b)

where αi are constant coefficients and it is assumed that n �= 0.
The case n = 0 is not interesting to us because waves with a
zero azimuthal quantum number do not experience a Doppler
shift [ω̃i = ω see Eq. (3)], and hence it is evident that for n = 0
there are no instabilities. In this context, the homogeneous

matricial system can be rewritten as⎛
⎜⎜⎜⎜⎝

−1 1 1 0

− 1
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0
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0 1
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(8)

where Aij are some constant coefficients. The corresponding
characteristic equation is[

1 −
(

ρ2

ρ1

)2|n|]
[

1 +
(

ρ2

ρ1

)2|n|] = ε1(ω̃1)ε3(ω̃3) + ε2(ω̃2)ε3(ω̃3)

ε1(ω̃1)ε2(ω̃2) + ε2
3(ω̃3)

. (9)

Clearly, in this quasistatic approximation [Eq. (9)] the natural
oscillation frequencies ω = ω′ + iω′′ depend only on the ratio
between the radii, and not on the specific values of the
individual radii. The impact of a finite cavity radius can be
investigated by directly solving Eq. (6). It is important to
highlight that Eq. (9) is nothing more than—apart from the
Doppler-shifted frequencies in the material parameters—the
dispersion of the cavity modes in the quasistatic limit. This
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FIG. 2. Free oscillation complex frequencies of the cavity ω = ω′ + iω′′ for �1 = −�2 = �/2, n = 1, ρ2/ρ1 = 2, and � = 0. (a) ω′/ωp

as a function of �/ωp . (b) ω′′/ωp as a function of �/ωp .

observation makes clear that our analysis can be extended in a
straightforward manner to other geometries. In the rest of the
article, it is assumed that the middle layer is a vacuum (ε3 = 1)
and that the other two materials are modeled by a Drude
dispersion model εi(ω̃i) = 1 − ω2

p/[ω̃i(ω̃i + i�)], where ωp

is the plasma frequency and � the collision frequency.

A. Instabilities in the quasistatic limit

In the following, we use the algebraic characteristic
equation (9) to characterize the cavity natural frequencies.
Figure 2 represents the calculated ω as a function of the relative
angular velocity �, for �1 = −�2 = �/2, n = 1, ρ2/ρ1 = 2,
and no material loss (� = 0). As seen, for angular velocities
higher than a threshold velocity approximately coincident with
the plasma frequency of the metal ωp, two of the eigenwaves
have complex oscillation frequencies. In particular, one of the
modes has ω′′ with a positive imaginary part corresponding to
waves growing with time as eω′′t , i.e., to an unstable system.

Interestingly, the plot of ω′′ versus the angular frequency
is symmetric with respect to the horizontal axis, such that
the complex frequencies occur in pairs ω′ ± iω′′. This feature
is characteristic of systems with a broken parity-time (PT )
symmetry [31,47,48]. Indeed, in the case of lossless materials
the system in Fig. 1(a) is invariant under the PT operation,
the parity operation being understood as the transformation
(x,y,z) → (x, − y,z) [one could also choose the transforma-
tion (x,y,z) → (−x,y,z)]. Note that as illustrated in Fig. 1(b),
the time-reversal operator flips the velocity of the medium
[31], while the parity operator flips the y component of the
velocity, and hence the combined PT operation only flips
the x component of the velocity, as it should so that the
medium stays invariant under a coordinate transformation of
the form (x,y,z) → (x, − y,z). Thus, for a lossless system the
emergence of system instabilities is a manifestation of a broken
PT symmetry similar to the planar case studied in Ref. [31]
and implies that the time evolution of electromagnetic waves
is described by a non-Hermitian PT -symmetric operator.
Unstable natural modes are not invariant under the PT
operation, even though the physical system has that symmetry.

In Fig. 1 the instabilities have a vanishing real part ω′ and
correspond to a static field, predominantly electric, growing
exponentially with time. This feature is specific to the scenario
where both cylinders rotate in opposite directions at the same
angular velocity.

When the angular velocities of the two materials are
asymmetric (�1 + �2 �= 0) the ratio between the amplitudes
of the magnetic and the electric fields increases with �1 + �2,
and the frequency ω′ is transformed as

ω′ → ω′(�) + n
�1 + �2

2
, (10)

where � ≡ �1 − �2 and ω′′ remains invariant. The peak
value of ω′′ occurs roughly for � = 1.4ωp ≈ 2ωsp, with
ωsp = ωp/

√
2 the surface plasmon resonance. In particular,

when one of the material regions is at rest (say �2 = 0) one gets
ω′ 	 ω′′, and the peak instability is associated with ω′ ≈ ωsp

for the n = 1 mode. Independent of the value of �1 + �2, the
amplification occurs only in a finite range of frequencies ω′,
in agreement with the conclusions in Refs. [40]–[43].

A density plot of the magnetic field associated with the
strongest instability is depicted in Fig. 3(a). The field has a
dipolar symmetry (n = 1) and the regions of strongest field
intensity are concentrated close to the surface of each cylinder,
facing each other. This observation together with the fact that
the instabilities are developed for � ≈ 2ωsp demonstrates that
the field exponential growth with time is due to the interaction
of SPPs in each cylinder, similar to what happens in the
planar case [25,26,29,31]. The field exponential growth can be
pictured as being due to the interaction of positive-frequency
harmonic oscillators and negative-frequency harmonic oscil-
lators, such that ω̃1 and ω̃2 have opposite signs [26,29]. This
interaction is made possible by the relative rotation of the
two cylinders. Oscillators associated with negative frequencies

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIG. 3. Time snapshot of the real part of the magnetic field Hz

associated with the instability for �1 = −�2 = �/2 and ρ2/ρ1 = 2.
(a) n = 1 and �/ωp = 1.37. (b) n = 5 and �/ωp = 0.28.
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FIG. 4. Influence of the metal damping (collision) frequency �

on ω′′ for the mode associated with the unstable behavior for �1 =
−�2 = �/2, n = 1, and ρ2/ρ1 = 2.

behave as energy reservoirs that may serve to pump the
oscillations of the system and generate the unstable behavior
[3,26,29,49,50]. For example, when �2 = 0 it can be checked
that ω̃1 < 0 and ω̃2 > 0 in the entire instability region, and thus
the moving region may be regarded as the energy reservoir. In
addition, the plasmonic nature of the interaction can be seen
by noting that the peak instability occurs for ω̃1 ≈ −ωsp and
ω̃2 ≈ ωsp. It is instructive to note that for a translational motion
the unstable behavior requires the coupling of two oscillators
(interaction of two bodies in relative motion) because with a
single moving body it is always possible to switch to a frame
where the body is at rest and where, evidently, it is impossible
for instabilities to occur [26]. In principle, for a rotational
motion the instabilities may occur even with a single body
because a rotating body is in motion in any inertial frame.
However, if the velocity of rotation is sufficiently low, as
implicit in our theory, the interaction between different parts
of the same body is ineffective, and similarly to the case of
a translational motion, two interacting bodies (two different
oscillators) are required to trigger the instability. Indeed, for
a single rotating cylinder surrounded by a vacuum (the limit
ρ2 → ∞ and ε3 = 1) Eq. (9) reduces to ε1(ω̃1) + 1 = 0, which
evidently does not lead to any instability.

It is interesting to see how material loss affects the natural
oscillation frequencies, in particular, whether the instabilities
withstand realistic plasmonic loss. This study is reported in
Fig. 4, which depicts the imaginary part of the free oscillation
frequency (for the mode with positive ω′′) as a function of the
normalized angular velocity. The effect of damping is roughly
equivalent to adding a negative constant imaginary part to
the value of ω′′, which reduces the strength of the growth
rate. It is relevant to mention that in the presence of material
loss the system is no longer PT symmetric, and hence the
frequency spectrum does not have the complex conjugation
symmetry as in Fig. 2. The range of angular velocities � for
which ω′′ > 0 becomes narrower with increasing �, up to a
point where all the oscillations are damped (ω′′ < 0) and the
instability ceases. Importantly, the unstable behavior is quite
robust to the effect of material loss and is observed even for
collision frequencies much higher than those characteristic of
realistic metals (0.01 < �/ωp < 0.2). Furthermore, since the
instabilities result from the hybridization of evanescent waves

FIG. 5. Evolution of ω′′ with the azimuthal quantum number n

for the mode associated with the unstable behavior and �1 = −�2 =
�/2, ρ2/ρ1 = 2, and � = 0.

attached to individual cylinders, they are strongly dependent
on the value of ρ2/ρ1 and the material loss may be partially
compensated by narrowing the vacuum gap.

The influence of the quantum azimuthal number n on
the strength of the instabilities is investigated in Fig. 5 for
the case �1 = −�2 = �/2. It is shown that the strength of the
instabilities progressively decreases with n and is negligible
for high n. This can be understood by noting that modes with a
large n result from the hybridization of tightly confined surface
plasmons that overlap weakly in the vacuum gap as illustrated
in Fig. 3(b) for n = 5. Stronger instabilities are obtained for
a smaller gap. Remarkably, the threshold angular velocity
for the unstable behavior scales roughly as 1/n and hence
decreases with the azimuthal quantum number. In particular,
the angular velocity for which the unstable behavior is stronger
is � ≈ 2ωsp/n. In the case where one of the bodies is at rest
(e.g., �2 = 0) the peak instability is always associated with
the frequency ω′ ≈ ωsp, independent of the value of n.

Due to the reality of the electromagnetic field, the spectrum
associated with negative values of n is linked to the spectrum
associated with positive values of n as ω → −ω∗, such that the
real part of the frequency is flipped, while the imaginary part
is unchanged. In the case where �2 = 0, unstable modes with
ω′ > 0 occur for azimuthal quantum numbers n with the same
sign as �1. An intuitive explanation is that the spontaneous
light emission by a rotating body favors physical channels
associated with angular variations in the direction determined
by the moving body.

B. Effect of time retardation

It is important to have some idea of the impact of time
retardation effects. Figure 6 shows a comparison between
the quasistatic theory and the results obtained by setting
the determinant of the matrix in Eq. (6) equal to 0. In this
plot, the structural parameters are as in the previous section,
namely, ρ2/ρ1 = 2, and only the mode n = 1 with positive
imaginary part is represented. As shown, as soon as the radii
of the cylinders become of the order of c/ωp, the quasistatic
approximation breaks down and the time retardation effects
play some role. The effect of time retardation is to reduce the
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FIG. 6. Comparison between the “exact” (ρ1 = c/ωp and ρ1 = 0.1c/ωp) and the quasistatic free oscillation complex frequencies of the
cavity ω = ω′ + iω′′ for the mode with positive imaginary part. Here n = 1, ρ2/ρ1 = 2, and � = 0. (a) ω′/ωp as a function of �/ωp .
(b) ω′′/ωp as a function of �/ωp .

strength of the instabilities. The threshold for the emergence
of instabilities is unaffected by the time retardation.

C. Wave energy

From the Poynting theorem in the time domain, it
is simple to show that for a closed cavity and in the
absence of external current sources the quantity Ew =∫ t

dt
∫

all space dV (E · ∂D
∂t

+ H · ∂B
∂t

) must be time independent.
It is implicitly assumed that the angular velocity of the rotating
bodies is time invariant. For lossless materials Ew can be
identified with the total wave energy of the system, which
includes the electromagnetic energy and part of the energy
associated with the kinetic degrees of freedom of the system
(see Ref. [25] for a detailed discussion). For time-harmonic
fields E = Re{Eωe−iωt }, D = Re{Dωe−iωt }, etc., it is straight-
forward to check that Ew = Ew0(t)e2ω′′t , where Ew0(t) is a
periodic function of time with period π/ω′. The time-averaged
value of Ew0(t) is given by Ew0,av = ∫

all space WavdV , where

Wav = 1

4
Re

{
Dω · E∗

ω

ω

iω′′
}

+ 1

4
Re

{
Bω · H∗

ω

ω

iω′′
}

(11)

is the time-averaged wave energy density envelope. For a
weak instability, ω′′ � ω′ (limit ω′′ → 0), and within the
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FIG. 7. Plot of ∂

∂ω
[ε(ω − n�)ω]ω=ω′ as a function of the normal-

ized frequency for � = 0, ωsp, and 2ωsp, and a dipolar interaction
(n = 1). The function is negative for 0 < ω < �.

approximations implicit in Eq. (2) the wave energy density
reduces to Wav = 1

4 Eω · E∗
ω

∂
∂ω

[εω] + 1
4 Hω · H∗

ω
∂

∂ω
[μω], con-

sistent with a well-known electromagnetic theory result [45].
In the quasistatic limit the field is predominantly electric and
hence

Wav ≈ 1

4
Eω · E∗

ω

∂

∂ω
[εω]ω=ω′

= 1

4
Eω · E∗

ω

∂

∂ω
[ε(r,ω − n�)ω]ω=ω′ . (12)

In Fig. 7 we plot ∂
∂ω

[ε(ω − n�)ω]ω=ω′ for a Drude plasma
as a function of the frequency for different values of the
angular velocity and assuming a dipolar mode (n = 1). As
shown, for nonzero angular velocities ∂

∂ω
[ε(ω − n�)ω]ω=ω′

can become negative; i.e., the wave energy density can be
negative in a moving region. In that case, an increase in the
electric field intensity leads to a decrease in the local wave
energy. These findings are completely consistent with the
results in Refs. [17], [25], and [26], where it was shown that
the wave energy density has no lower bound in a material that
moves at a velocity that exceeds the Cherenkov limit. This
theory provides an intuitive explanation of the reason why the
instabilities are associated with two oscillators with oppositely
signed frequencies. Indeed, in the case of an unstable behavior
(growing exponential) the total wave energy of the system can
be time independent only if Ew0,av = 0. Thus, an oscillator
with a positive frequency is required to increase its wave
energy by the exact same proportion that the oscillator with a
negative frequency decreases its energy, so that the total wave
energy remains time independent. Note that even though the
total wave energy is time independent, the wave energy density
varies with time and in space due to the energy transfer between
the two bodies under rotation.

III. TORQUE

An obvious question is, What is the mechanism that pumps
unstable modes? Is it rooted, similarly to the planar case
[25], in the conversion of kinetic energy into electromagnetic
energy? Next, it is confirmed that this is indeed the case, and to
demonstrate this property we determine the mechanical torque
induced by the instabilities.
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The instantaneous force per unit of volume induced by the
electromagnetic field is [51]

f = ∇ · T − ∂

∂t
gEM, (13)

where gEM is the electromagnetic momentum density and T
the Maxwell stress tensor. The torque τ resulting from the
force f is then given by

τ =
∫

r × fd3r =
∫

r ×
(

∇ · T − ∂

∂t
gEM

)
d3r, (14)

where r is the position vector. Integrating by parts, it is possible
to write the contribution of the stress tensor as an integral over
the surface of the relevant body (at the air side):

τ =
∫

r × (ν̂ · T) ds −
∫

r × ∂

∂t
gEM d3r. (15)

Here, ν̂ is a unit vector oriented towards the outside of the body,

and we use the fact that
∑

i ûi · T × ûi = 0, ûi being a generic
unit vector along the Cartesian coordinate axes, because the
stress tensor is symmetric. In the surface integral the stress
tensor is evaluated at the air side of the interface and thus we
can use the standard formula,

T = ε0E ⊗ E + μ0H ⊗ H − 1/2(ε0|E|2 + μ0|H|2)I. (16)

Clearly, in a time-harmonic regime the torque (which is a
quadratic function of the electromagnetic fields) increases
exponentially as e2ω′′t . Hence, we can write τ = τ 0(t)e2ω′′t ,
τ 0 being the envelope of the torque, which typically has a
component that oscillates in time at frequency 2ω′. The def-
inition of the electromagnetic momentum density in material
media is surrounded by a century-old controversy [52,53]. We
can avoid this controversy by calculating the time-averaged
torque, obtained by time-averaging the envelope of the torque:
〈τ 〉 = τ 0,ave

2ω′′t . It is simple to check that with this definition
one has 〈 ∂gEM

∂t
〉 = 0, and hence it is finally found that

τ 0,av = 1

2
Re

{∫
r ×

(
ν̂ · Tc

)
ds

}
, (17)

where Tc = ε0Eω ⊗ E∗
ω + μ0Hω ⊗ H∗

ω − 1/2(ε0|Eω|2 +
μ0|Hω|2)I is a complex stress tensor written in terms of the
complex vector field amplitudes.

Let us apply this theory to the scenario considered in Sec. II
wherein material 2 is at rest (�2 = 0) and material 1 rotates at
angular velocity �1 = �. Straightforward calculations show
that the time-averaged torque per unit of length is

〈τ 〉
h

= 2πρ2
1
ε0

2
Re{Eω,ρ(ρ1)E∗

ω,φ(ρ1)}e2ω′′t ẑ, (18)

where h is the height of the cylinder. This formula shows
that the torque can be roughly estimated as 〈τ 〉 ∼ εEe2ω′′t ,
where εE is the electric energy stored in the air cavity at
time t = 0. Hence, in the time scale determined by 1/ω′′ the
mechanical torque is typically small and becomes relevant only
when t 	 1/ω′′ due to the exponential growth.

The time-averaged torque calculated with the quasistatic
approximation for the mode with positive imaginary part (the
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FIG. 8. Normalized time-averaged torque (in arbitrary units)
acting on the inner and outer cylinders as a function of the angular
velocity for ρ2/ρ1 = 2, �1 = �, �2 = 0, and lossless plasmonic
materials � = 0.

unstable mode) is represented in Fig. 8 as a function of the
angular velocity at a given instant in time.

In the numerical simulation it is assumed that only the
inner cylinder is rotating and that n = 1, ρ2/ρ1 = 2, and
� = 0. As seen in Sec. II, in this situation the instabilities
are developed for angular velocities higher than ωp due to
the interaction of the SPPs supported by each surface and
associated with ω̃1 < 0 and ω̃2 > 0. Comparing Figs. 2 and
8, it is seen that the torque is intimately linked to these
instabilities since it is nonzero only for the angular velocities
at which the system is unstable. Importantly, the torque acting
on the inner cylinder is negative and therefore acts against
the rotational motion: it is a friction-type torque. The torque
acting on the outer cylinder is exactly the opposite and tends
to drag the outer cylinder into motion, thereby reducing the
relative angular velocity between the cylinders. This result
confirms that the emergence of instabilities in the system has its
origin in the conversion of kinetic energy into electromagnetic
energy. Hence, as mentioned in Sec. I, to keep the angular
velocity constant a positive torque must be applied to the
inner cylinder in order to counterbalance this friction-type
torque. The results in this section further highlight the intimate
connection between electromagnetic friction and the coupling
between oscillators with positive and negative frequencies, in
agreement with previous studies [17,25,26,29].

IV. UNIDIRECTIONAL LIGHT FLOW

A moving medium is not invariant under a time-reversal
transformation, and consequently it is characterized by a
nonreciprocal electromagnetic response. This property raises
interesting possibilities in the context of asymmetric light
flows, which are otherwise generally forbidden in conventional
reciprocal media (e.g., isotropic dielectrics and metals at rest)
[54].

An intuitive picture of the effect of motion is that the phase
velocity depends on whether the wave propagates downstream
or upstream with respect to the flow of matter [55,56]. As
discussed next, this feature can be explored to design a light
“circulator.” A circulator is a nonreciprocal three-port network,
which is ubiquitous in microwave technology [57]. Circulators

033810-7
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FIG. 9. (a) Schematic of the optical circulator, with the incoming signal represented by the orange arrow and the outgoing waves by the
purple arrows. (b) Modes of the cylindrical cavity as a function of the normalized angular velocity for ρ2/ρ1 = 2, �1 = �, �2 = 0, and
� = 0.01ωp .

are also useful at optical frequencies for optical switching
and for optical isolation of the light source from the optical
channel. [54,58]. A circulator ideally allows transmission only
from port 1 to port 3, or from port 3 to port 2, or from
port 2 to port 1 (see Fig. 9; in the figure it is implicit that
optical waveguides are connected to the cylindrical cavity
at the relevant ports). Propagation in the opposite azimuthal
direction (e.g., from port 1 to port 2) is forbidden.

In conventional circulators, the unidirectional light flow
relies on the existence of constructive or destructive inter-
ference patterns at each output, arising from the different
oscillation frequency of the modes circulating in the clockwise
or anticlockwise direction in the cavity. Usually mode splitting
is achieved due to a Zeeman-type effect when magnetic
materials (e.g., ferrites and some garnets [57]) are biased by a
static magnetic field. Because of the drawbacks in terms of size
and weight of permanent magnets, different approaches free
of magnetic elements have recently been proposed [59–64].

In what follows, we theoretically demonstrate a paradigm
for an optical circulator based on a cavity with rotating walls. A
related result was recently reported for the acoustic case [65].
However, this effect is based neither on wave instabilities in
the cavity nor on the excitation of SPPs in each slab but, rather,
on the modal asymmetry between the waves propagating in the
direction of rotation (n = +1) and in the counter-propagating
direction (n = −1) [61–67]. Indeed, it can be shown using
Eq. (9) that at low velocities (� � ωp) one of the resonant
frequencies of the cavity is approximately given by

ωn ≈ ω0 + n�

2
− i

�

2
, (19)

where ω0 = ωsp

√
1−( ρ1

ρ2
)
|n|− �2

2ω2
p

is the resonant frequency of the

cavity when the walls are at rest. Then it follows that the natural
frequencies of oscillation for the modes with n = ±1 linearly
split as

ω± ≈ ω0 ± �

2
. (20)

This behavior is illustrated in Fig. 9, where the evolution of
the natural frequencies with the normalized angular velocity
is represented for a resonator with ρ2/ρ1 = 2, �1 = �,
�2 = 0, and � = 0.01ωp. As shown, the motion of the inner

cylinder induces a splitting of the modes, linear in � at low
angular velocities and somewhat analogous to the Zeeman
splitting obtained with magnetic materials. The splitting can
be understood by noting that the resonance condition is roughly
of the form ωl/vp = 2π , where l ≈ π (ρ1 + ρ2) is the mean
perimeter of the cavity and vp is the SPP phase velocity in
the cavity, which depends on the azimuthal quantum number.
Because of the Fresnel drag one may expect that when � > 0
the velocity vp is higher for modes associated with positive n

compared to modes with index −n. Thus, this indicates that
ω+ > ω−, consistent with the analytical model.

When the circulator is excited in port 1, the transmissivities
for ports 2 and 3 depend on the frequencies of the cavity modes
as (the formula below corrects a typo in Ref. [65]) [65,66]

T1→2 =
∣∣∣∣∣2

3

(
e−i 2π

3

1 − i(ω − ω−)/γ−
+ e−i 4π

3

1 − i(ω − ω+)/γ+

)∣∣∣∣∣
2

,

(21a)

T1→3 =
∣∣∣∣∣2

3

(
e−i 4π

3

1 − i(ω − ω−)/γ−
+ e−i 2π

3

1 − i(ω − ω+)/γ+

)∣∣∣∣∣
2

,

(21b)

where ω± and −γ± are the real and imaginary parts of the
natural mode frequencies ωn associated with n = ±1. Using
the approximate expression (19) for ωn, we find that for ω =
ω0 and � = �/

√
3 one has T1→2 = 0 and T1→3 = 1 and thus

the system behaves as an ideal circulator. Remarkably, the
energy flow in the circulator is towards the direction opposite
that of the motion of the inner cylinder.

To confirm this result, a density plot of the transmissivities
is shown in Fig. 10 as a function of the normalized frequency
and of the normalized angular velocity, for the same structural
parameters as in Fig. 9. As seen, there is a region near ω ≈ ω0

and � ≈ �/
√

3 where simultaneously T1→2 goes to 0 and
T1→3 goes to 1. In this regime, the moving cavity is strongly
nonreciprocal and behaves as an ideal circulator. The corre-
sponding transmission curves for an angular velocity close
to the optimal angular velocity � = �/

√
3 are represented in

Fig. 11 as a function of the frequency.
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FIG. 10. Density plot of the transmissivities T1→2 and T1→3 as a
function of the normalized frequency ω and of the normalized angular
velocity �. Here, ω0 is the resonance frequency when the walls are
at rest. The cavity has the same structural parameters as in Fig. 9.
Brighter (darker) colors represent a stronger (weaker) transmission.

Interestingly, the optimal angular velocity depends only on
the level of loss in the plasmonic material and is lower for
resonances with a high quality factor. In an optical design
relying on plasmonic materials, in the best scenario it can
be about three orders of magnitude lower than the plasma
frequency. Thus, typically the angular velocity required for the
cavity to operate as an optical circulator lies well below the
threshold associated with electromagnetic instabilities. This
puts into evidence that the regime wherein the wave has
strongly asymmetric azimuthal flows is independent of the
regime wherein the instabilities are developed.

V. DISCUSSION AND CONCLUSION

It is important to discuss the practical feasibility of the
light generator-amplifier or the optical circulator studied in the
previous sections. Remarkably, the angular velocities required
to obtain optical instabilities are comparable to the metal
plasma frequency and, in the best-case scenario, are about
three orders of magnitude lower for an optical circulator.
To our best knowledge, the highest angular velocities ever
reached experimentally are reported in [68], where a circularly

0
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0.6
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1

0.9 0.95 1 1.05 1.1

FIG. 11. Transmissivities T1→2 and T1→3 as a function of the nor-
malized frequency for the optimal angular velocity � = �/

√
3 and

a plasma collision frequency � = 0.01ωp . The structural parameters
of the cavity are the same as in Figs. 9 and 10.

polarized laser impinging on a birefringent particle produces
an angular velocity of the order of megahertz. This value is far
from the plasma frequencies of metals, which typically are in
the UV range [69], or the plasma frequency of semiconductors
such as InSb, which are in the terahertz range [44,70].
Consequently, direct laboratory verification of the concepts
proposed in this paper appears unfeasible with the available
technology.

Yet, there may be a way to overcome these difficulties.
Indeed, we envision that the physical motion of neutral bodies
can be mimicked by an electron drift (electrons flowing on
a positive-ion background) induced by a dc generator. A
preliminary assessment of this idea was reported in Ref. [71],
where it was demonstrated that the physics of the two
systems is rather similar in the planar case. The emergence
of electromagnetic instabilities due to an electron drift was
also discussed in Refs. [72] and [73], where instabilities were
found at terahertz frequencies due to the interaction of drifting
electrons with lattice waves within the same high-mobility
semiconductor. The analogies between the two platforms may
offer a viable alternative to the actual motion of neutral matter
and may allow for the experimental verification of the effects
discussed in this article. These ideas will be investigated in
future work.

In summary, we have studied the conditions under which
a pair of plasmonic cylinders rotating past one another
develops wave instabilities due to hybridization of the surface
plasmon polaritons supported by the individual cylinders. The
characteristic equation for the system natural modes is found,
and it is shown that for certain cylindrical harmonics, when the
angular velocity surpasses a threshold value comparable to the
plasma frequency, some natural modes may have an oscillation
frequency with positive imaginary part corresponding to a
wave amplitude increasing with time. The instabilities have
been shown to be robust with respect to realistic material
losses. By computing the mechanical torque acting on the
cylinders, it is demonstrated that, analogously to the planar
case, the wave amplification corresponds to a conversion of
kinetic energy into electromagnetic radiation and is observed
as long as the velocity of rotation is kept above the threshold.

We have also investigated the possibility of having a
strongly asymmetric light transmission relying on the rotation
of the cavity walls. It is shown that the motion of the walls
induces a frequency split of the cavity modes that results in
a strong nonreciprocal behavior that can serve to design an
optical circulator. The optimal angular frequency of rotation
is determined by the quality factor of the cavity. Cavities with
higher quality factors require lower angular velocities and,
hence, are the most interesting platform to demonstrate our
designs. Finally, we have suggested that the behavior of the
moving walls may be mimicked by an electron drift induced
by a dc voltage generator. This concept can provide a practical
roadmap to verify and explore the proposed ideas at terahertz
frequencies.
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