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Evolution of few-cycle pulses in nonlinear dispersive media:
Velocity of the center of mass and root-mean-square duration
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Simple arithmetic dependencies of the velocity of the mass center motion and the root-mean-square duration
of initially single-cycle, two-cycle, and Gaussian pulses with a random number of oscillations under the pulse
envelope are derived depending on their center frequency, initial duration, and peak field amplitude, as well as on
dispersive and nonlinear characteristics of homogeneous isotropic dielectric media. In media with normal group
dispersion, it is shown that due to nonresonant dispersion the square of the few-cycle pulse duration increases
with distance inversely proportional to the fourth power of the number of input pulse cycles. In media with normal
group dispersion, the square of the pulse duration is inversely proportional to the number of input pulse cycles
due to cubic nonlinearity. In media with anomalous group dispersion, it is shown that due to cubic nonlinearity,
few-cycle pulse self-compression decreases with the reduction of the number of cycles in the initial pulse. This
pulse self-compression effect has a threshold nature and terminates at a fixed number of cycles of the input pulse.
Such a number of cycles is determined by the input intensity and the central frequency of the pulse, as well as by
the dispersive and nonlinear characteristics of the medium.
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I. INTRODUCTION

The development of ultrashort-pulse lasers in the past 2
decades has led to the creation of effective systems to generate
and detect few-cycle waves, including waves containing only
a single cycle [1–9]. These pulses find important applications
in the monitoring of ultrafast physical and chemical processes,
systems of ultrahigh-speed information transmission, record-
ing, and processing, in terahertz (THz) biophotonics [10–13].
These extremely short (few-cycle) pulses are characterized by
a very wide spectrum. Traditional theoretical methods, based
on the consideration of quasimonochromatic pulse envelope
dynamics [14], become invalid because the concept of an
“envelope” for such pulses loses its physical meaning.

Usually the analysis of few-cycle wave evolution in linear
[15–17] and nonlinear [18–22] media is based on equations
describing the dynamics of electric field radiation or on
equations describing the dynamics of spatiotemporal spectra
of radiation (a detailed overview of such works is given in
Ref. [23]).

For the special case of intense few-cycle waves, theoretical
analyses of their nonlinear evolution in optical media is usually
time-consuming and generally requires a numerical modeling.
However, in many practical situations an exhaustive analysis
of changes in electric fields and spectra of optical pulses
within the short distance is not required—it is sufficient to
consider only dynamics of their average parameters. Integral
relations for the moving velocity of center of mass and for
the velocity of pulse dispersion spreading as a function of
pulse temporal profile at the input of nonlinear medium
were obtained in Refs. [24,25] and based on equations of
optical field dynamics of broadband radiation covering a
significant part of the transparent range of the optical spectrum.
Kapoiko et al. [26] showed that for the special case of
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one-and-a-half-cycle pulses, such integral relations may be
reduced to the form of elementary functions depending on their
initial center frequency and pulse intensity, as well as on the
dispersive and nonlinear characteristics of the medium. Hong
et al. [27] considered in detail the evolution characteristics of
an optical pulse “mass center” during propagation in highly
noninstantaneous Kerr media. They found that the transversal
motion of the pulse mass center in a highly noninstantaneous
response can be approximated by a uniformly accelerated
motion up to one dispersion length of the pulse.

In this article, simple dependencies in elementary functions
for the velocity of the mass center motion and the dynamics of
few-cycle pulse duration in media with nonresonant dispersion
and cubic nonlinearity are obtained for initially single-cycle,
two-cycle, and Gaussian pulses with random pulse envelope
cycles. We have shown that with a decrease in pulse cycles
the difference between the velocity of pulse spreading and
the velocity of quasimonochromatic pulse spreading with the
same center frequency can be 25% or more in a medium with
normal group dispersion and instantaneous cubic nonlinearity.
We have shown that with a reduction of the number of
cycles in a pulse with the central frequency in the anomalous
group dispersion area the effect of few-cycle pulse self-
compression terminates at a fixed threshold cycle number due
to cubic nonlinearity of the medium. This threshold number is
determined by the central frequency of the pulse, its intensity,
and the dispersive and nonlinear characteristics of the medium.

II. MASS CENTER MOTION AND EVOLUTION OF
FEW-CYCLE PULSE DURATION IN NONLINEAR

DIELECTRIC MEDIA

The evolution of an electric field E of a linearly polarized
few-cycle pulse, which propagates in a transparent homoge-
neous isotropic dielectric medium, can usually be described
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by the following equation [23,28]:

∂E

∂z
+ N0

c

∂E

∂t
− a

∂3E

∂t3
+ b

t∫
−∞

Edt ′ + gE2 ∂E

∂t
= 0, (1)

where z is the direction of wave propagation, t is the time, c

is the speed of light in a vacuum, N0, a, and b are parameters
characterizing the nonresonant dependence of the refractive
index n of a medium with respect to radiation with frequency
ω:

n(ω) = N0 + caω2 − cb

ω2
. (2)

Here g characterizes the instantaneous cubic field nonlinearity
of the polarization response of the medium and is related to the
coefficient of the nonlinear refractive index n2 by g = 2n2/c.

Equation (1) can be used to describe the propagation of few-
cycle pulses because the dependence (2) correctly describes the
material dispersion of isotropic dielectric media for broadband
radiation, e.g., for the visible and near-infrared spectral range
[29]. When describing THz radiation, Eq. (2) can be restricted
to only the first two terms [19,22]. In addition, the dispersion of
n2 of optical media in the field of ultrashort pulses can, in many
cases including the one mentioned above, be neglected [23],
and the cubic nonlinear response, as was done for Eq. (1), can
be considered instantaneous. Of course, field equation (1) can
be refined for the case of more complex linear and nonlinear
dispersion of the refractive index [23]. In this article, however,
we restrict ourselves by the theoretical model of radiation

propagation (1) to describe the dynamics of average parameters
of few-cycle pulses in nonlinear medium.

Additionally, we note, that by the substitution

E(z,t) = 1
2A(z,t)ei(k0z−ω0t) + c.c., (3)

where ω0 is an arbitrary fixed frequency, k0 is equal to
ω0n(ω0)/c, n(ω) is described by formula (2), and field equation
(1) neglects the generation of frequency tripled radiation for
the new variable A(z,t) and is rewritten in the form [14,23]

∂A

∂z
+ 1

V

∂A

∂t
−

∞∑
n=2

βn

in+1

n!

∂nA

∂tn

− iγ1|A|2A + γ2
∂

∂t
(|A|2A) = 0, (4)

where V = (∂k/∂ω)−1
ω0

is the group velocity, βn =
[∂nk(ω)/∂ωn]ω0

, k = (N0/c)ω0 + aω3
0 − b/ω0, γ1 = gω0/4,

and γ2 = g/4. In other words Eq. (1) contains the well-known
Eq. (4) as a special case, where the complex amplitude of
the electric field A is associated with the pulse envelope.
In contrast to Eq. (4), field equation (1) also describes the
generation of radiation at tripled and higher frequencies
[19,22], except for the self-action of a pulse in nonlinear
medium.

The velocity V of the mass center motion of an optical
pulse, i.e., the first-order moment of the field distribution of

radiation 〈t〉 = 1

W

∫ ∞
−∞ tE2dt , where W = ∫ ∞

−∞ E2dt is the

pulse energy, within the theoretical model is described by
Eq. (1) and can be calculated by the following formula [24]:

V −1 = d〈t〉
dz

= N0

c
+ 1

W

[
3a

∫ ∞

−∞

(
∂E

∂t

)2

dt + b

∫ ∞

−∞

(∫ t

−∞
Edt ′

)2

dt + g

2

∫ ∞

−∞
E4dt

]
. (5)

Expression (5) can be obtained by the differentiation of the first-order moment 〈t〉 of the field distribution with respect to z,
followed by the replacement of dE/dz from the wave equation (1) and the integration of the obtained relationship by parts.

The evolution of the pulse duration defined as the square root of the central second-order moment of the field distribution [30]

τ =
√

〈�t2〉 =
√

1
W

∫ ∞
−∞ (t − 〈t〉)2E2dt is described by the following equation [24]:

τ 2 = τ 2
0 +

(
d〈t2〉
dz

)
0

z + Dz2, (6)

where τ0 = 〈t2〉0
1/2

is the input (at z = 0) pulse duration, (d〈t2〉/dz)0 characterizes at z = 0 the spectral finiteness of the pulse,
and the quantity D, characterizing the velocity of the dispersive spreading of the pulse, is calculated by the following formula
[24]:

D = 1

2

d2〈t2〉
dz2

−
(

d〈t〉
dz

)2

= 9a2

W 2

⎧⎨
⎩W

∫ ∞

−∞

(
∂2E

∂t2

)2

dt −
[∫ ∞

−∞

(
∂E

∂t

)2

dt

]2
⎫⎬
⎭

+ 6ab

W 2

[
W 2 −

∫ ∞

−∞

(∫ t

−∞
Edt ′

)2

dt

∫ ∞

−∞

(
∂E

∂t

)2

dt

]

+ b2

W 2

⎧⎨
⎩W

∫ ∞

−∞

(∫ t

−∞
dt ′

∫ t ′

−∞
Edt ′′

)2

dt −
[∫ ∞

−∞

(∫ t

−∞
Edt ′

)2

dt

]2
⎫⎬
⎭

+3ag

W 2

[
4W

∫ ∞

−∞
E2

(
∂E

∂t

)2

dt −
∫ ∞

−∞
E4dt

∫ ∞

−∞

(
∂E

∂t

)2

dt

]
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− bg

W 2

[
8W

3

∫ ∞

−∞
tE3

(∫ t

−∞
Edt ′

)
dt +

∫ ∞

−∞
E4dt

∫ ∞

−∞

(∫ t

−∞
Edt ′

)2

dt

]

+ g2

W 2

[
W

3

∫ ∞

−∞
E6dt − 1

4

(∫ ∞

−∞
E4dt

)2
]
, (7)

where 〈t2〉 = (1/W )
∫ ∞
−∞ t2E2dt is the second-order moment

of the field distribution. Expression (7) can be obtained in
a similar way as expression (5) by the differentiation of the
second-order moment 〈t2〉 of the field distribution with respect
to z, followed by the replacement of dE/dz from the wave
equation (1) and the integration of the obtained relationship
by parts: once for the first derivative and once for the second
derivative.

In linear media with normal group dispersion (b = 0, g =
0) expressions (5) and (7) are integrals of the motion of the field
equation (1) for any pulse shape at the input of the medium
[31–33]. In other words, from the input pulse field profile
E0(t) and the medium parameters N0 and a from Eqs. (5) and
(6) it is not difficult to calculate the changes of average pulse
parameters such as V and τ in the medium [31].

In linear media where the group dispersion can be anoma-
lous (a �= 0, b �= 0, g = 0), expressions (5) and (7) are
integrals of the motion of Eq. (1) with additional restriction on
the temporal profile of the input pulse [31]:∫ −∞

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
Edt ′′′ = 0. (8)

Restriction (8) is due to the fact that dependence (2), describing
the dispersion of the linear refractive index of dielectrics
in the range of their transparency, is no longer correct at
low frequencies, even generating negative values of n. These
frequencies should not be included in the spectrum of the
theoretical model, as it is required for the satisfaction of Eq. (8).

In a nonlinear medium (a �= 0, b �= 0, g �= 0) expressions
(5) and (7) with condition (8) can also be considered as

integrals of motion, but at the distance [25]

z � cT0/N0

max
(

ac

N0T
2

0
,
bcT 2

0
N0

,
gcE2

0
N0

) , (9)

where T0 characterizes temporal distance between field zeros
(T0 ∼ 2π/〈ω〉, where 〈ω〉 is the central frequency of radiation).

III. CALCULATION FORMULAS OF MASS CENTER
DYNAMICS AND DURATION DYNAMICS FOR TYPICAL

MODELS OF FEW-CYCLE PULSES

We first consider the dynamics of the average parameters of
few-cycle optical pulses in a simpler case when their spectrum
falls entirely into the normal group dispersion region of the
medium. In this case, the dispersion model (2), as it was noted
above, can be restricted only with the first two terms, and
Eq. (1) takes the form of a well-known modified Korteweg-de
Vries equation [23,32,33].

Assuming that the field of radiation at the entrance of the
medium has the form of a Gaussian pulse,

E(t) = E0 exp

[
−

(
t

t0

)2]
sin(ω0t), (10)

where E0 is the amplitude of field cycles, ω0 is the frequency
of these cycles, and t0 sets the pulse duration, we obtain the
following for the inverse value of the velocity of the mass
center motion and the square of the pulse duration in a medium
from Eqs. (5), (6), (7):

V −1 = N0

c
+ 3aω2

0

π2N2

eπ2N2/2(π2N2 + 1) − 1

eπ2N2/2 − 1
+ 3gE2

0

8
√

2

eπ2N2/2 − 4/3eπ2N2/4 + 1/3e−π2N2/2

eπ2N2/2 − 1
, (11)

τ 2 = τ 2
0 + Dz2, (12)

where the initial pulse duration

τ0 = t0

2

√
eπ2N2/2 + π2N2 − 1

eπ2N2/2 − 1
, (13)

D = 36a2ω4
0

π4N4

eπ2N2
(π2N2 + 1/2) − eπ2N2/2(π2N2 + 2)2/4 + 1/2(

eπ2N2/2 − 1
)2

+ 3agω2
0E

2
0

4
√

2π2N2

eπ2N2/2(π2N2 + 3) + 2eπ2N2/4(π2N2 + 1) − (π2N2 + 2) − 2e−π2N2/4 − e−π2N2/2(
eπ2N2/4 + 1

)2

+ g2E4
0

1152

[
(80

√
3 − 81)eπ2N2 − 120

√
3e5π2N2/6 + 216e3π2N2/4 − 16(9 + 5

√
3)eπ2N2/2 + 168

√
3eπ2N2/3

− 48
√

3e−π2N2/6 + 72e−π2N2/4 − 8
√

3e−π2N2/2 + (8
√

3 − 9)e−π2N2 − 54
]
/
(
eπ2N2/2 − 1

)2
, (14)
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and N = t0ω0/π is the initial number of cycles in the pulse at
the level e−1.

We note that Eqs. (11) and (14) are quite complex. It should
be mentioned that they can be simplified in most practical
cases: for this purpose we assume that exp (π2N2/2) 	 1,
and therefore exp (π2N2/2) − 1 ∼= exp (π2N2/2). Even for
the case N = 1 one can obtain exp (π2N2/2) ≈ 140 	 1.
So at N � 1, one can instead use simpler expressions for
Eqs. (11), (13), and (14):

V −1 = N0

c
+ 3aω2

0

(
1 + 1

π2N2

)
+ 3gE2

0

8
√

2
, (15)

τ0 = t0

2
, (16)

D = 36a2ω4
0

π2N2

(
1 + 1

2π2N2

)

+ 3agω2
0E

2
0

4
√

2

(
1 + 3

π2N2

)
+ g2E4

0

20
. (17)

It is important to note that for the obtained relationships, for
cases N → ∞ and linear medium [nonlinear parameter g = 0
in Eq. (1)], expressions (15) and (17) transform into well-
known expressions for the quasimonochromatic pulse [14]:

V −1
lin,qm = d[n(ω)ω/c]

dω

∣∣∣∣
ω0

= N0

c
+ 3aω2

0, (18)

Dlin,qm = β2
2

t2
0

= 36a2ω4
0

π2N2
. (19)

The theoretical model for the limiting case of a pulse
initially containing only one full field oscillation is often used
[19,34]:

E(t) = E0
t

t0
exp

(
− t2

t2
0

)
, (20)

where E0 characterizes the input pulse amplitude and t0 char-
acterizes the pulse initial duration. Extremely low oscillation
pulses are generated, for example, in the THz spectral range
[35–37] (see example in Fig. 1). In radio physics, the model of
the pulse (20) sometimes is named the “Gaussian monocycle”
[38].

For the pulse with field distribution (20) at the entrance of
the medium, expressions (5)–(7) take the form

V −1 = N0

c
+ 9aω2

m

2
+ 3gE2

0

32
√

2
, (21)

where ωm = √
2/t0 is the frequency of the maximum spectral

density of a single-cycle wave, and relation (12), where

τ0 =
√

3t0

2
, (22)

D = 27a2ω4
m

2
+ 27agω2

mE2
0

16
√

2
+

(
5

432
√

3
− 9

2048

)
g2E4

0 .

(23)

It is useful to compare models of Gaussian pulses (10) by
reducing the number of field cycles under the pulse envelope
(20). The electric field and the modulus of the spectrum of
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FIG. 1. The electric field E of a THz pulse, generated by the
nonlinear effect of optical rectification in a crystal [37] (solid line),
and the interpolation of the pulse field profile by the model of a
single-cycle wave (20) (dashed line).

a Gaussian pulse for different small numbers of cycles N ,
including single-cycle pulses, are illustrated in Fig. 2. It is
shown from Fig. 2 that, at N = t0ω0/π = 0.5 and ωm = ω0,
models of Gaussian and single-cycle waves become close,
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FIG. 2. The electric field E (a) and the modulus of spectrum |G|
(b) of a Gaussian pulse (10) with frequency ν0 = ω0/2π = 1 THz at
different numbers of cycles: N = 1.5, N = 1.0, and N = 0.5. The
electric field (a) and the modulus of spectrum |G| (b) of a single-cycle
pulse (20) with the same frequency ωm = ω0 are depicted by dashed
lines.
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which is why formulas (15)–(17) and (21)–(23) are close with
such an N value. For clarity, pulses are illustrated for the
case ν0 = ω0/2π = 1.0 THz in the figure. We note that at
N < 1 the frequency of the maximum Gaussian pulse spectral
density becomes visibly different from ν0 and it shifts to higher
frequencies [Fig. 2(b)].

It follows from expressions (12) and (17) that, in changing
pulse duration with distance in a medium with normal
group dispersion and instantaneous cubic nonlinearity, we
can separate contributions of purely dispersive and purely
nonlinear character [first and third terms in Eq. (17)], as well as
their combined action [second term in Eq. (17)]. The addition
with a decreasing number of cycles appears in contribution of
dispersion of linear refractive index into the change of square
of pulse duration, which is inversely proportional to the square
of this number at a large number of cycles in the pulse. This
addition is inversely proportional to the fourth power of the
number of cycles. The addition with a decreasing number of
cycles appears in the combined contribution of refractive index
nonlinearity and dispersion. The combined contribution also
does not depend on this number at the large number of cycles
in a pulse. In the second case such an addition is inversely
proportional to the square of the number of cycles.

It is not difficult to estimate that, when going from quasi-
monochromatic radiation (10) with a large N to a single-cycle
wave with N = 0.5, the contribution of linear refractive index
dispersion into value D, which characterizes the velocity of the
dispersion pulse spreading in the medium, is increased by 20%.
The combined contribution of nonlinearity and dispersion into
D is increased more than two times. The total change of
D when going from a large number of cycles N under the
envelope to N = 0.5, for example, when �nd = �nnl, where
�nd = caω2

0 characterizes dispersion and �nnl = (1/2)n2E
2
0

characterizes the nonlinearity of the medium refractive index,
is 24% [23]. This is confirmed by estimation of a more precise
formula (14), which gives the change of 25%.

Let us consider now the dynamics of average parameters
of pulses where the spectrum partially or entirely falls in the
region of zero or anomalous group dispersion of the medium.
In this case, one should use a much more complex model of
dispersion of the refractive index of the medium (2).

Dispersion (2), which correctly describes the anomalous
group dispersion of the medium [23,28], is due to the strong
absorption of radiation in the low-frequency range [29].
Therefore, this model is not reasonable for describing the
dynamics of few- or single-cycle waves in a medium because
a significant part of the energy of such waves is exactly in
the area of low frequencies. The requirements for radiation,
where the dispersion (2) originates from the conservation
of values, Eqs. (5)–(7), are formalized by condition (8).
This condition is conducted naturally for the field, where a
functional dependence on time is obtained in the form of the
second derivative d2/dt2 from, for example, the field of a
Gaussian pulse (10):

E(t) = E0 exp

(
− t2

t2
0

)
1

t4
0

[(
4t2 − 2t2

0 − ω2
0t

4
0

)
× sin(ω0t)−4t t2

0 ω0 cos(ω0t)
]
, (24)
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FIG. 3. The electric field E of a THz pulse generated from a
time-modulated beam of relativistic electrons [39] (continuous line),
and the interpolation of the pulse field profile by a theoretical model
(24) (dashed line).

where E0 characterizes the initial pulse amplitude, t0 char-
acterizes the pulse initial duration, and ω0 characterizes the
central frequency.

An example of the interpolation of the field profile of
an electromagnetic pulse generated by a beam of relativistic
electrons with dependence (24) is depicted in Fig. 3 [39].

The velocity of the mass center motion and the velocity of
the dispersive spreading of the pulse (24), as it follows from
expressions (5)–(7), are defined by the expression

V −1 = N0

c
+ 3aω2

0

(
1 + 9

π2N2 + 6

)

+ b

ω2
0

(
1 − 5

π2N2 + 6

)
+ 3gE2

0

8
√

2

(
1 + 4

π2N2 + 6

)
(25)

and relation (12), where

τ0 = t0

2

√
1 + 4π2N2

π4N4 + 6π2N2 + 3
, (26)

D = 36a2ω4
0

π2N2

(
1 + 9

2π2N2 + 24

)

− 24ab

π2N2

(
1 − 15

2π2N2 + 24

)

+ 4b2

π2ω4
0N

2

(
1 − 23

2π2N2 + 24

)

+ 3agω2
0E

2
0

4
√

2

(
1 + 39

π2N2 + 12

)

− bgE2
0

4
√

2ω2
0

(
1 − 16

π2N2 + 12

)

+ g2E4
0

20

(
1 + 8

π2N2 + 12

)
. (27)

Expressions (25)–(27) are described in assumption of N � 1.
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FIG. 4. The field E of a THz pulse generated during filamentation
in air of a near-infrared pulse (central wavelength λ0 = 1.75 μm) [41]
(continuous line), and the interpolation of a field profile of a pulse by
the model of the two-cycle wave (28) (dashed line).

With a decreasing value of N = t0ω0/π , the number of full
cycles in a pulse (24) decreases naturally, and at N = 2 the
pulse contains only two cycles (on level e−1). With further
decreasing of N , the number of cycles in a pulse remains
equal to two, but the central frequency of the radiation begins
to grow. For the case of a two-cycle pulse it is possible to use
a simpler model [40]:

E(t) = E0
2t3 − 3t2

0 t

t3
0

exp

(
− t2

t2
0

)
, (28)

the form of which is set by the second derivative of the function
(24) and therefore also satisfies the conditions set in Eq. (8).

The example of the interpolation of the field profile of an
electromagnetic THz pulse generated during the filamentation
of a near-infrared pulse in air by dependence (28) is depicted
in Fig. 4 [41].

It can be shown that for the pulse (28), expressions (5) and
(7) are reduced to the form

V −1 = N0

c
+ 21aω2

m

6
+ 6b

5ω2
m

+ 4761gE2
0

10240
√

2
, (29)

D = 7a2ω4
m

2
− 12ab

5
+ 24b2

5ω2
m

+ 14283agω2
mE2

0

10240
√

2

− 1143bgE2
0

12800
√

2ω2
m

+ 5

78
g2E4

0 . (30)

The initial duration is τ0 = √
11/20t0, and the frequency of

the maximum spectral density of a two-cycle pulse is ωm =√
6/t0.

IV. ILLUSTRATIONS OF FEW-CYCLE-PULSE
EVOLUTION IN NONLINEAR DIELECTRIC MEDIA

To demonstrate the possibilities of obtained analytical
relations, we will first consider the spreading of an initially
single-cycle pulse in a optical medium with normal group dis-
persion and instantaneous cubic nonlinearity of its refractive
index.
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FIG. 5. Evolution of the electric field E (a) and the modulus of its
spectrum |G| (b) of an initially (at z = 0 mm) single-cycle THz pulse
with field profile (c) and spectrum (d) in a medium with dispersive
characteristics N0 = 4.73 and a = 2.224 ps3/m, corresponding to
stoichiometric crystal MgO:LiNbO3 [19] and induced nonlinear
refractive index in the medium �nnl = 3.3 × 10−2. The electric field
of the pulse (e) and the modulus of its spectrum (f) at the output of
nonlinear medium (z = 2 mm). τ = t − (c/N0)z is the retarded time.

Figure 5 shows calculation results of changing the field
structure and the modulus of the spectrum of a single-cycle
wave (20) in a medium with dispersion and nonlinearity
according to Eq. (1) in the special case of b = 0. Here Eq. (1) is
a modified Korteweg-de Vries equation. The Fourier split-step
method was used during numerical calculation [14] using our
department software package LBULLET 1D.

Here, radiation is considered to be “terahertz radiation”
at ν0 = 1/

√
2πt0 = 1.0 THz and with a corresponding central

wavelength λ0 = c/ν0 = 0.3 mm. The intensity of radiation I ,
as it was assumed, provided the induced change of the refrac-
tive index of the medium �nnl = (1/2)n2E

2
0 = n′

2I = 3.3 ×
10−2. Medium parameters in calculations were considered
corresponding to stoichiometric crystal MgO:LiNbO3: N0 =
4.73, a = 2.224 ps3/m [19,31], and n′

2 = 5.4 × 10−12 cm2/W
[42] (the large values of the coefficient of the nonlinear
refractive index in the THz spectral range are also confirmed
in Refs. [43,44]).

The pulse rapidly accrues new cycles and phase modulation
due to dispersion and the nonlinearity of the refractive index of
the medium (Fig. 5). The nonlinearity of the medium also leads
to changes in the spectrum of the radiation. The radiation is
generated at the spectral range from 4 to 6 THz in the medium
[Fig. 5(f)] and is clearly separated from the main part of the
spectrum of a wave. The maximum frequency of the spectrum
of new radiation exceeds the maximum frequency of the initial
spectrum over 4.5 times.

Calculated results of changes in the root-mean-square
duration of an initially single-cycle pulse (20) by formulas
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FIG. 6. Changing of the root-mean-square duration of an initially
single-cycle THz pulse with distance z in the medium with dispersion
characteristics N0 = 4.73 and a = 2.224 ps3/m, corresponding to
stoichiometric crystal MgO:LiNbO3 [19] with induced nonlinear
refractive index �nnl = 3.3 × 10−2 (solid line) and in linear medium
(dashed line). Values of pulse duration are obtained by numerical
calculation (see Fig. 5) according to Eq. (1) and are shown with a
dotted line.

(12) and (23) depending on the distance are shown in Fig. 6.
In this figure, the solid line illustrates an increase in pulse
duration in a nonlinear medium with normal group dispersion;
the dashed line depicts this behavior in a linear case. The dotted
line shows the calculation data of the pulse duration according
to results of numerical modeling (see Fig. 5) by field equation
(1). The parameters of radiation and the characteristics of the
corresponding medium are mentioned above.

One can see from Fig. 6 that the pulse duration is increased
by more than three times at the distance of 2 mm (it is about
seven central wavelengths of initial radiation). The dominant
effect of increasing the pulse duration for an initially few-cycle
pulse is the dispersion of the medium. Calculation results
of increasing the pulse duration according to the simple but
approximate formulas (12) and (23) are in agreement with
results corresponding to more precise but time-consuming
calculations of the field equation (1), as can be seen from
Fig. 6.

We now use analytical relations obtained in this work and
consider a much more multivariate case of few-cycle pulses,
where the spectrum may lie in the region of zero and anomalous
group dispersion of nonlinear medium. In full agreement with
known data [14], derived formulas (12) and (27) show that
the pulse can be both broadened and compressed depending
on its initial parameters and characteristics of the medium.
Simple arithmetic relation makes it easy to determine the
rate of change (decreasing or increasing) of the square of the
pulse duration D in selected media as a function of the initial
intensity, the central frequency, and the initial number of field
cycles.

Calculation results for the rate of the square of change
of pulse duration D (in logarithmic scale) are shown in
Fig. 7 during propagation of radiation in fused silica (N0 =
1.45, a = 2.74 × 10−42 s3/m, b = 3.94 × 1019 s−1m−1, n′

2 =
2.9 × 10−16 cm2/W [45,46]), with initial intensity I0 = 1 ×
1013 W/cm2 (this value of intensity corresponds to nonlinear
addition to the index of refraction �nnl = 2.9 × 10−3) de-

24
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λ
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 (p

s2
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2 )

FIG. 7. Dependence of the rate of change of the square of pulse
duration D (ps2/m2) (in logarithmic scale) with initial intensity
I0 = 1 × 1013 W/cm2 during propagation of radiation in fused silica
depending on the central wavelength of pulse λ0 and initial cycle N .

pending on the central wavelength of pulse λ0 = 2πc/ω0 and
the initial number of cycles N .

Figure 7 demonstrates the variety of self-action scenarios
for a pulse with a given initial intensity in a selected nonlinear
medium with dispersion. If the central wavelength of the pulse
is in the normal group dispersion of medium (it is less than the
wavelength of zero group dispersion, which for fused silica has
a value of λD ≈ 1.27 μm [45]), the rate of change of the square
of the pulse duration is positive: the pulse is spreading. In the
region of anomalous group dispersion (the central wavelength
of radiation is more than 1.27 μm at the entrance of the
medium), when the number of cycles in a pulse is not very
small (N � 8), the rate of change of the square of the pulse
is negative: it corresponds to a well-known effect in nonlinear
optics of self-compression of quasimonochromatic pulses in
this spectral range [14]. However, as one can see from Fig. 7,
with a reduction of the number of oscillations in the pulse, its
self-compression is no longer observed. This threshold number
of cycles in the pulse depends on the initial central wavelength
of radiation for a given intensity in selected media.

Results of the numerical calculations utilizing field equation
(1) which explain the above pulse’s self-action scenarios are
given in Fig. 8. As one can see from the figure, a pulse whose
spectrum falls in the region of normal group dispersion of the
medium [Fig. 8(a)] under dispersion and nonlinearity broadens
significantly. The pulse duration is increased more than ten
times after a propagation distance of 1 mm, wherein the pulse
obtains near-linear self-phase modulation [47,48].

A pulse with the central frequency near zero group
dispersion of the medium [Fig. 8(b)], broadens almost five
times at this distance. This high increase in pulse duration
is due to the fact that the spectrum width for the initially
few-cycle pulse is comparable with its central frequency.
Parts of this spectrum fall in regions with significant normal
and anomalous group dispersion. Frequencies appear close to
doubled frequencies in the spectrum of radiation in relation to
frequencies of the initial spectrum, and the main part of the
spectrum is shifted to shorter wavelengths.

A pulse with the central frequency in anomalous group
dispersion of nonlinear medium, as it is well known, can
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FIG. 8. Dynamics of the root-mean-square pulse duration τ

with input intensity I0 = 5 × 1012 W/cm2 depending on the dis-
tance z in fused silica (N0 = 1.45, a = 2.74 × 10−42 s3/m, b =
3.94 × 1019 s−1m−1, n′

2 = 2.9 × 10−16 cm2/W) at different central
wavelengths λ0 and initial numbers of cycles N [(a) N = 2.0, λ0 =
780 nm; (b) N = 2.0, λ0 = 1270 nm; (c) N = 2.0, λ0 = 1550 nm;
(d) N = 4.0, λ0 = 1550 nm] of radiation by the derived formula (27)
(solid line) and results of numerical calculation by field equation
(1) (dotted line). The electric field of a pulse E and its modulus of
spectrum |G| at z = 1 mm (solid line) are shown at the right side.
The initial spectrum is also given by a dashed line.

compress. This is demonstrated in Fig. 8(d). In this case, high-
frequency components appear in the spectrum of radiation up
to tripled frequencies in relation to frequencies of the initial
spectrum. The main part of this spectrum is shifted to longer

wavelengths. It is shown from Fig. 8(c) that by decreasing
the pulse duration until N = 2, a self-compression effect is no
longer observed, giving way to effects of pulse broadening due
to rapidly increasing contribution of dispersion of the change
of pulse duration. Spectrum changes are also qualitatively
similar to the ones demonstrated in Fig. 8(d).

Results of calculation of the change in pulse duration
according to derived approximate formulas (12) and (27) are in
agreement with more precise but time-consuming calculations
utilizing field equation (1) [Figs. 8(a)–8(c)]. In the case of
complication in pulse duration behavior (first compression
and then broadening) derived in this work, formulas cor-
rectly display the initial character of radiation self-action
[Fig. 8(d)].

V. CONCLUSION

In this article, analytical expressions describing the dynam-
ics of average parameters of single-cycle, two-cycle, and other
few-cycle waves in nonlinear media are obtained. Expressions
take the form of elementary functions for the velocity of the
mass center motion [Eqs. (15), (21), (25) and (29)] and the
root-mean-square duration ([Eqs. (12), (17), (23), (27) and
(30)] for such waves depending on the distance spent in a
medium and its dispersive and nonlinear characteristics, as
well as initial pulse parameters. This allows us to use these
relations for the quick estimation of duration changes of
few-cycle waves in various media and at different distances.

One can see that the obtained expressions for different
pulse models look qualitatively alike. The reason for this is the
proximity of the considered pulse models. Actually, Gaussian
pulses and their second derivative allow us to describe similar
relatively large-oscillation pulses. Further, single-cycle and
two-cycles pulses may be considered as their individual cases.
The analysis of these different pulse models was aimed at
obtaining the simplest analytical expressions for different
reasonable cases. Upon increase in the number of oscillations,
these pulse models transform into quasimonochromatic pulses,
removing any differences in dynamics of average parameters
that can be seen when comparing the equations, for example,
Eq. (15) vs Eq. (25) or Eq. (17) vs Eq. (27) with the assumption
N → ∞.

The obtained expressions are used for the calculation of
the duration dynamics for THz and optical pulses in nonlin-
ear media with dispersion. The comparison with numerical
calculations by wave equation has shown that expressions
extremely accurately describe the dynamics of high-intensity
few-cycle pulses, even when their duration increases ten times
during propagation in nonlinear media. The calculation of
analytical expressions was performed with the help of Wolfram
MATHEMATICA software.

According to the obtained analytical relations, it is proven
that in media with normal group dispersion, the square of the
few-cycle pulse duration increases with distance in inverse
proportion to the fourth power of the number of input pulse
cycles due to nonresonant dispersion. In media with normal
group dispersion, it is shown that due to cubic nonlinearity,
the square of the few-cycle pulse duration increases with
distance in inverse proportion to the square power of the
number of input pulse cycles. In media with anomalous group
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dispersion, it is shown that due to cubic nonlinearity, the
effect of few-cycle pulse self-compression decreases with the
reduction of the number of initial cycle pulses. The pulse
self-compression effect has a threshold nature and terminates
at a certain number of input pulses. This number of cycles is
determined by the input intensity, the central frequency of the

pulse, and the dispersive and nonlinear characteristics of the
medium.
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