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Maxwell boundary conditions imply non-Lindblad master equation
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From the Hamiltonian connecting the inside and outside of a Fabry-Pérot cavity, which is derived from the
Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived
when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-
wave approximation to the connecting Hamiltonian. We calculate absorption spectra by these Lindblad and
non-Lindblad master equations and also by the Maxwell boundary conditions in the framework of the classical
electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master
equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary
conditions. Although the discrepancy is highlighted only in the ultrastrong light-matter interaction regime with a
relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad
one for pursuing the consistency with the classical electrodynamics.
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I. INTRODUCTION

Most of all realistic systems are not isolated, but they
are coupled with environments. This system-environment
coupling (SEC) is important for discussing measurements,
thermalization, dissipation, noise, etc. In such open systems,
we in principle require naive consideration on the separation
of systems of interest and environments, mechanisms of the
SECs, preparation of environment, and so on [1,2]. The
quantum description of the Brownian motion has long been
discussed as an important subject of this kind of study [3–9].
The so-called Caldeira-Leggett master equation [3] is a
quantum counterpart of the Fokker-Planck equation of the
Brownian motion. However, this master equation is not of the
Lindblad form [10]. Then, the positivity of the density operator
is not guaranteed in general. Whereas we can add extra terms to
the Caldeira-Leggett master equation for transforming it to the
Lindblad form, the justification of these extra terms is unclear
in classical physics [8,9]. In this way, for the quantum descrip-
tion of open systems, we sometimes face a tradeoff between
the mathematical requirement (positivity of density operator)
and the physical one (consistency with the physical laws).

In this paper, we will show another example for this kind
of discussion: a high-quality Fabry-Pérot cavity embedding
matters with a damping of excitations. Such a system has
long been discussed in the study of quantum optics or so-
called cavity quantum electrodynamics (cavity QED) [7,11],
and master equations of the Lindblad form have been used in
most cases. However, we will show that, from the Hamiltonian
of the SEC derived for the Fabry-Pérot cavity [12], master
equations of a non-Lindblad form are obtained in general. For
transforming it to the Lindblad form, we need to apply the
rotating-wave approximation (RWA) to the SEC Hamiltonian,
which has been widely used in the study of quantum optics
(but implicitly in most cases). The influence of the RWA to the
SEC was discussed also in the study of the quantum Brownian
motion [6], while it was not used in the early study of the
quantum description of dissipation [1].
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We will calculate absorption spectra of the cavity system
by the Lindblad and non-Lindblad master equations, and they
will be compared with the results calculated by the Maxwell
boundary conditions (MBCs) at a mirror of the cavity in
the framework of the classical electrodynamics, which is
considered as the most reliable method (direct consequence
by the physical law) in this paper. Although the quantum
theory should reproduce the results in the classical theory, we
sometimes face an inconsistency caused by approximations
used in the quantum theory (RWA to SEC in our case). We
will find that the non-Lindblad master equation gives more
consistent results with those by the MBCs. The discrepancy
between the results by the Lindblad master equation and by
the other two is highlighted in the ultrastrong light-matter
interaction regime [13] with a relatively rapid damping of
excitations in matters. The ultrastrong interaction means that
the interaction strength is comparable to or larger than the
transition frequency of matters, and it has been realized
experimentally in a variety of systems [14–24]. While both
the ultrastrong light-matter interaction and the rapid damping
occur inside the cavity, the non-Lindblad form concerning the
cavity loss, which is basically supposed much slower than
them (good cavity), will be discussed in this paper.

This paper is organized as follows. In Sec. II, we first
overview some Lindblad master equations derived in the past
for the cavity system and the non-Lindblad one to be discussed
in this paper. In Sec. III, quantum Langevin equations that
are basically equivalent to the Lindblad and non-Lindblad
master equations are shown. The absorption spectra are in
fact calculated by these quantum Langevin equations for
simplifying the calculation. In Sec. IV, we show the models
of the cavity and the medium in the cavity. The Hamiltonians
inside the cavity and of the SEC are also shown. In Sec. V, we
explain the calculation methods by the MBCs and the quantum
Langevin equations. Typical absorption spectra are also shown
in figures. Section VI is devoted to the comparison of the three
approaches. The violation of the positivity in the non-Lindblad
master equation is numerically checked in Sec. VII. The
advantage of the non-Lindblad master equation is summarized
in Sec. VIII, and the conclusion is shown in Sec. IX. The
detailed derivation of the master and quantum Langevin

2469-9926/2016/94(3)/033802(20) 033802-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.033802


MOTOAKI BAMBA AND NOBUYUKI IMOTO PHYSICAL REVIEW A 94, 033802 (2016)

equations is shown in Appendix A. The master equations for
frequency-dependent loss rate are summarized in Appendix B.
The detailed calculation method by the Lindblad-type quantum
Langevin equations is shown in Appendix C. The absorption
spectra calculated by the Lindblad-type treatment for the
excitation damping are discussed in Appendix D.

II. NON-LINDBLAD FORM TO BE DISCUSSED

In most studies of cavity QED [7,11], the SEC has been
introduced simply as the injection and escape of photons
between a cavity and the outside in the framework of master
equation, quantum Langevin equation, stochastic differential
equation, or Fokker-Planck equation. This simple treatment
has well reproduced a variety of experimental results. The
SEC Hamiltonian is typically expressed as

Ĥphoton
SEC =

∫ ∞

0
dω i�

√
κ

2π
[f̂ †(ω)â − â†f̂ (ω)]. (1)

Here, κ is a frequency-independent loss rate. â is the
annihilation operator of a photon in a cavity mode. f̂ (ω)
is the annihilation operator of a photon with a frequency ω

outside the cavity, and it satisfies [f̂ (ω),f̂ †(ω′)] = δ(ω − ω′).
The Hamiltonian of the environment is expressed as

Ĥsimple
env =

∫ ∞

0
dω �ωf̂ †(ω)f̂ (ω). (2)

For the vacuum environment 〈f̂ †(ω)f̂ (ω′)〉 = 0 (nearly at zero
temperature compared to the frequency scale of interest) and in
the Born-Markov approximation, the cavity loss is described
in the master equation as

∂

∂t
ρ̂ = L̂0[ρ̂] + κ

2
([â,ρ̂â†] + [âρ̂,â†])

= L̂0[ρ̂] + κ

2
(2âρ̂â† − â†âρ̂ − ρ̂â†â). (3)

Here, ρ̂ is the density operator of system of interest (inside the
cavity), and L̂0[ρ̂] represents

L̂0[ρ̂] = 1

i�
[Ĥ0,ρ̂] + L̂others[ρ̂], (4)

where Ĥ0 is the Hamiltonian of the system of interest and
L̂others[ρ̂] represents the dissipative terms originating from
couplings with the other environments.

While the master equation such as in Eq. (3) has a simple
form to be used very easily, it is in general not appropriate for
strongly coupled composite systems as discussed in Refs. [25–
29]. The system of our interest is also such a composite system,
i.e., photons and excitations in matters. Instead of Eq. (3),
the master equation should be derived under specifying a
(nondimensional) physical quantity Q̂ of the system of interest
that mediates the SEC. From the detail of the mechanism of
SEC, the SEC Hamiltonian is typically derived as [12]

Ĥsimple
SEC =

∫ ∞

0
dω i�

√
κ

2π
Q̂[f̂ †(ω) − f̂ (ω)]. (5)

Here, applying the RWA to this SEC Hamiltonian in the basis
of the eigenstates {|μ〉} of Ĥ0, we get

Ĥsimple
SEC ≈

∫ ∞

0
dω i�

√
κ

2π
[f̂ †(ω)Q̂↓ − Q̂↑f̂ (ω)], (6)

where Q̂↓ and Q̂↑ are the lowering and raising components of
Q̂, respectively, as

Q̂↓ ≡
∑

μ

∑
ν>μ

Q̂μ,ν, (7a)

Q̂↑ ≡
∑

μ

∑
ν>μ

{Q̂μ,ν}† = {Q̂↓}†, (7b)

Q̂μ,ν ≡ |μ〉〈μ|Q̂|ν〉〈ν| = {Q̂ν,μ}†. (8)

Note that, in this paper, operators mediating SECs are supposed
to have no diagonal matrix element 〈μ|Q̂|μ〉 = 0 in the basis
of the eigenstates, whereas such a diagonal element causes the
pure dephasing in principle [11,30]. From the approximated
SEC Hamiltonian in Eq. (6), the master equation is derived in
the Born-Markov approximation as

∂

∂t
ρ̂ = L̂0[ρ̂] + κ

2
([Q̂↓,ρ̂Q̂↑] + [Q̂↓ρ̂,Q̂↑])

= L̂0[ρ̂] + κ

2
(2Q̂↓ρ̂Q̂↑ − Q̂↑Q̂↓ρ̂ − ρ̂Q̂↑Q̂↓). (9)

In contrast, if the interaction in the composite system is
weak enough compared with the loss rate κ (weak interaction
regime), the RWA to the SEC in the photon basis can be
justified, and the widely used SEC Hamiltonian in Eq. (1) is
derived by supposing Q̂ = â + â† or Q̂ = i(â − â†). Then,
the simple master equation in Eq. (3) is derived in the
Born-Markov approximation.

The master equation in Eq. (9) is not equivalent to the simple
one in Eq. (3) if the light-matter interaction is in the ultrastrong
regime [30]. For example, here we tentatively suppose a simple
Hamiltonian

Ĥsimple
0 = �ωcâ

†â + �ğ(â + â†)σ̂x + Ĥmat. (10)

Here, ωc is the resonance frequency of a cavity mode. Ĥmat is
the Hamiltonian of matters inside the cavity, and σ̂x = σ̂ + σ̂ †

is a nondimensional operator that annihilates (σ̂ ) or creates
(σ̂ †) an excitation in matters. ğ represents the strength of
the light-matter interaction, and the ultrastrong regime means
ğ � ωc,ωa, where ωa is a characteristic transition frequency
of the matter. Due to the so-called counter-rotating terms âσ̂

and â†σ̂ † in Ĥsimple
0 , the annihilation of a photon â no longer

corresponds to the lowering operator for the system inside
the cavity (â 
= Q̂↓) [13]. Then, in the ultrastrong interaction
regime, we must use the master equation in Eq. (9) [30].
If we use the simple master equation in Eq. (3) for the
Hamiltonian with the counter-rotating terms in Eq. (10),
the system inside the cavity is in general excited even by the
vacuum environment [31]. The degree of the excitation can no
longer be negligible in the ultrastrong interaction regime.

In contrast, in the normally strong interaction regime
(κ � ğ � ωc,ωa), we can apply the RWA to the light-matter
interaction, and the counter-rotating terms are eliminated as

Ĥsimple
0 ≈ �ωcâ

†â + �ğ(σ̂ †â + â†σ̂ ) + Ĥmat. (11)
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TABLE I. Validity of three types of master equations in Eqs. (3), (9), and (12). The first two equations are derived under the RWA to the
SEC Hamiltonian but with different bases, and they are of the Lindblad form. In contrast, Eq. (12) is derived without the RWA, and it is of a
non-Lindblad form. The validity of these master equations is summarized for the weak, normally strong, and ultrastrong light-matter interaction
regimes. The validity is shown for ω-independent loss rate κ . The case of ω dependent κ(ω) is discussed in Appendix B and summarized in
Table II.

Light-matter interaction regime

RWA to SEC Weak Strong Ultrastrong

Eq. (3) Photon based Lindblad Good Good Bad
Eq. (9) Eigenstate based Lindblad Good Good Gooda

Eq. (12) No Non-Lindblad Good Good Good

aGood quantitatively for narrow enough broadening avoiding mode overlaps.

For this approximated Hamiltonian, the photon annihilation
corresponds to the lowering of the cavity system (â = Q̂↓).
Then, the master equation in Eq. (9) is in fact reduced to the
simple one in Eq. (3). In Table I, we summarize the validity of
the two master equations in Eqs. (3) and (9).

Note that the simple master equation in Eq. (3) is valid in the
normally strong interaction regime only for the ω-independent
loss rate κ . If the loss rate κ(ω) relatively varies in the
frequency range of interest, we need to use the extended
version of the master equation in Eq. (9) applicable to the
ω dependent κ(ω) (see the detail in Appendix B). Such a
master equation can no longer be reduced to the simple
one as in Eq. (3). Further, the extended master equation is
of a non-Lindblad form, while both Eqs. (3) and (9) for ω

independent κ are of the Lindblad form. In this way, when
we consider the ω-dependent loss rate κ(ω), we have faced the
problem of the Lindblad form (positivity of density operator) in
the study of cavity QED even in the weak and normally strong
interaction regimes. The detail is discussed in Appendix B.

However, the non-Lindblad form caused by the ω dependent
κ(ω) is not the target in this paper. We will argue that the
following non-Lindblad master equation should be used even
for the ω independent κ:

∂

∂t
ρ̂ = L̂0[ρ̂] + κ

2
([Q̂,ρ̂Q̂↑] + [Q̂↓ρ̂,Q̂]). (12)

This is derived also in the Born-Markov approximation.
But, in contrast to Eq. (9), this is derived directly from the
SEC Hamiltonian in Eq. (5) without the RWA performed in
Eq. (6) (the detailed derivation is shown in Appendix. A). For
discussing the necessity of this non-Lindblad form in Eq. (12),
we will basically suppose ω independent κ in the following
sections. Whereas the Lindblad master equation in Eq. (9)
was recognized to be applicable basically in the ultrastrong
interaction regime, we will show that the absorption spectra
by it in general deviate from those by the MBCs, which are
supposed to be the most reliable approach in this paper. We get
larger deviation for stronger light-matter interaction and wider
broadening (this is the reason of the footnote in Table I). We
will show that the non-Lindblad master equation in Eq. (12)
gives more consistent results with those by the MBCs than the
Lindblad one in Eq. (9).

Note that, by extending the master equations in Eqs. (9)
and (12) for the environments at a nonzero temperature T ,
we obtain the thermal state ρ = e−Ĥ0/kBT as a steady state

of such extended master equations of both the Lindblad and
non-Lindblad forms. The detail is discussed in Appendix B.

Note also that we basically neglect the energy shift (Lamb
shift) due to the SEC both in the Lindblad and non-Lindblad
master equations. While the energy shift is implicitly included
in the calculation of absorption spectra by the MBCs, it will not
clearly appear in the broad absorption peaks in our numerical
calculations.

III. MASTER AND LANGEVIN EQUATIONS

Whereas we aim to discuss the validity of the Lindblad
and non-Lindblad master equations as shown in Eqs. (9)
and (12), we will in fact calculate absorption spectra by
quantum Langevin equations corresponding to those two
master equations for pursuing simple and clear calculations.
In this section, we preliminarily show this correspondence.

We will consider the SEC Hamiltonian expressed as

Ĥcav
SEC =

∫ ∞

0
dω
∑

j

i�

√
κj

2π
Q̂j [f̂ †

c (ω) − f̂c(ω)]. (13)

Basically, all the modes indexed by j in a Fabry-Pérot cavity
are considered, and

Q̂j = âj + â
†
j (14)

is a coordinate of the j th mode. âj is the annihilation operator
of a photon, and κj is the loss rate of this mode. All the cavity
modes couple with the same environment described by f̂c(ω),
whose correlation is supposed as

〈f̂ †
c (ω)f̂c(ω′)〉 = 0, (15a)

〈f̂c(ω)f̂ †
c (ω′)〉 = δ(ω − ω′). (15b)

The Hamiltonian of the environment is expressed as

Ĥcav
env =

∫ ∞

0
dω �ωf̂ †

c (ω)f̂c(ω). (16)

Applying the RWA to Eq. (13), we get

Ĥcav-RWA
SEC =

∫ ∞

0
dω

∑
j

i�

√
κj

2π
[f̂ †

c (ω)Q̂↓
j − Q̂

↑
j f̂c(ω)],

(17)

where Q̂
↓
j and Q̂

↑
j are the lowering and raising components

of Q̂j , respectively, similarly defined as in Eqs. (7). From
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Eqs. (13) and (17), the non-Lindblad and Lindblad master
equations are derived, respectively, as

∂

∂t
ρ̂ = L̂0[ρ̂] +

∑
j,j ′

√
κjκj ′

2
([Q̂j ,ρ̂Q̂

↑
j ′] + [Q̂↓

j ′ ρ̂,Q̂j ]),

(18a)

∂

∂t
ρ̂ = L̂0[ρ̂] +

∑
j,j ′

√
κjκj ′

2
([Q̂↓

j ,ρ̂Q̂
↑
j ′] + [Q̂↓

j ′ ρ̂,Q̂
↑
j ]).

(18b)

The derivation of them are shown in Appendix A.
On the other hand, from Eqs. (13) and (17), quantum

Langevin equations for arbitrary system operator Ŝ are derived
(detail is shown also in Appendix A), respectively, as

∂

∂t
Ŝ(t) = D̂0[Ŝ] −

∫ ∞

0
dω

⎧⎨
⎩
∑

j

[Ŝ,Q̂j ]e−iωt√κj

×
⎡
⎣âin(ω) +

∑
j ′

√
κj ′

2
Q̂j ′(ω)

⎤
⎦+ H.c.

⎫⎬
⎭, (19a)

∂

∂t
Ŝ(t) = D̂0[Ŝ] −

∫ ∞

0
dω

⎧⎨
⎩
∑

j

[Ŝ,Q̂
↑
j ]e−iωt√κj

×
⎡
⎣âin(ω) +

∑
j ′

√
κj ′

2
Q̂

↓
j ′(ω)

⎤
⎦+ H.c.

⎫⎬
⎭, (19b)

where the first terms are represented as

D̂0[Ŝ] = 1

i�
[Ŝ,Ĥ0] + D̂others[Ô]. (20)

D̂others[Ŝ] includes the dissipation and noise terms by the
other environment. The Fourier transform of operators in the
Heisenberg picture is defined as

Q̂j (ω) = 1

2π

∫ ∞

−∞
dt eiωt Q̂j (t). (21)

âin(ω) is the so-called input operator [7,11,32] satisfying

[âin(ω),â†
in(ω′)] = δ(ω − ω′)/2π. (22)

From the SEC Hamiltonians in Eqs. (13) and (17), the input-
output relations are derived, respectively, as

âout(ω) = âin(ω) +
∑

j

√
κj Q̂j (ω), (23a)

âout(ω) = âin(ω) +
∑

j

√
κj Q̂

↓
j (ω). (23b)

The quantum Langevin equation in Eq. (19a) corresponds
to the non-Lindblad master equation in Eq. (18a) because they
are derived from the same SEC Hamiltonian in Eq. (13). On
the other hand, Eq. (19b) corresponds to the Lindblad one in
Eq. (18b), which are derived from Eq. (17). For checking
the correspondence, let us derive equations of motion of
expectation values. The equations of motion of 〈Ŝ(t)〉 are

derived from the master equations in Eqs. (18a) and Eq. (18b),
respectively, as

∂

∂t
〈Ŝ(t)〉 = 1

i�
〈[Ŝ,Ĥ0]〉 + . . . −

∑
j,j ′

√
κjκj ′

2

×{〈[Ŝ,Q̂j ]Q̂↓
j ′(t)〉 + c.c.}, (24a)

∂

∂t
〈Ŝ(t)〉 = 1

i�
〈[Ŝ,Ĥ0]〉 + . . . −

∑
j,j ′

√
κjκj ′

2

×{〈[Ŝ,Q̂
↑
j ]Q̂↓

j ′(t)〉 + c.c.}. (24b)

On the other hand, from the quantum Langevin equations in
Eqs. (19a) and (19b), respectively, we get

∂

∂t
〈Ŝ(t)〉 = 1

i�
〈[Ŝ,Ĥ0]〉 + . . . −

∑
j,j ′

√
κjκj ′

2

∫ ∞

0
dω{e−iωt

×〈[Ŝ,Q̂j ]Q̂j ′(ω)〉 + c.c.}, (25a)

∂

∂t
〈Ŝ(t)〉 = 1

i�
〈[Ŝ,Ĥ0]〉 + . . . −

∑
j,j ′

√
κjκj ′

2

∫ ∞

0
dω{e−iωt

×〈[Ŝ,Q̂
↑
j ]Q̂↓

j ′(ω)〉 + c.c.}. (25b)

In the absence of the SEC, the lowering component corre-
sponds exactly to the positive-frequency component as

Q̂
↓
j (t) =

∫ ∞

0
dω e−iωt Q̂j (ω), (26)

Q̂
↓
j (ω) ≡ 1

2π

∫ ∞

−∞
dt eiωt Q̂

↓
j (t) = Q̂j (ω) for ω > 0.

(27)

Even in the presence of the SEC, this equivalence is approx-
imately guaranteed, if the line broadening does not elongate
around ω = 0. We basically suppose such a situation in the
main text of this paper, and the dissipative terms approximately
equal between Eqs. (24a) and (25a) and between Eqs. (24b)
and (25b). In fact, what is more important are the commuta-
tors: [Ŝ,Q̂j ] for the non-Lindblad form and [Ŝ,Q̂

↑
j ] for the

Lindblad form. In this way, the quantum Langevin equations
in Eqs. (19a) and (19b) correspond to the non-Lindblad master
equation in Eq. (18a) and the Lindblad one in Eq. (18b),
respectively. We will calculate absorption spectra by these
quantum Langevin equations.

IV. MODEL AND HAMILTONIAN

In order to evaluate the validity of the Lindblad and
non-Lindblad master equations shown in the previous sections,
we consider a Fabry-Pérot cavity embedding a dispersive
and absorptive medium depicted in Fig. 1. We will com-
pare absorption spectra calculated by these master equations
(quantum Langevin equations exactly speaking) and by the
MBCs, which are shown in Sec. IV A. Perfect and imperfect
mirrors are placed at z = 
 and 0, respectively. Supposing
the spatially dependent dielectric function ε(z,ω) of this
cavity structure, we derive a SEC Hamiltonian connecting
inside and outside the cavity in Sec. IV B. The Hamiltonian
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FIG. 1. The Fabry-Pérot cavity considered in this paper. A perfect
and imperfect mirror are placed at z = 
 and 0, respectively. The
inside of the cavity is filled by a medium with a dielectric function
εp(ω).

describing the cavity modes and the dispersive and absorptive
medium is shown in Sec. IV D. From these Hamiltonians,
we will calculate absorption spectra by the Lindblad- and
non-Lindblad-type quantum Langevin equations in Sec. VI.
On the other hand, in Sec. IV C, from the Hamiltonian inside
the cavity, we calculate a dielectric function εp(ω) (dispersion
relation) of the electromagnetic wave in the medium. From
this dielectric function and that of the mirrors, we will also
calculate absorption spectra by the MBCs in Secs. V and VI.
We will compare these three absorption spectra for evaluating
the validity of the Lindblad and non-Lindblad master equations
in Sec. VI. In the following subsections, we explain the model
of the cavity system and the Hamiltonian describing it.

A. Maxwell boundary conditions

In the same manner as in Refs. [12,33,34], we describe
the imperfect mirror by the Kronecker’s delta function with a
coefficient η(ω), and the dielectric function of the system is
expressed as

ε(z,ω) = η(ω)δ(z) +
⎧⎨
⎩

0, z < 0
εp(ω), 0 < z < 


∞, 
 < z.

(28)

The Maxwell boundary conditions at z = 0 are derived for the
electric field E(z,ω) and the magnetic one H (z,ω) as [12,34]

E(0−,ω) = E(0+,ω), (29a)

H (0−,ω) − H (0+,ω) = −iωε0η(ω)E(0,ω). (29b)

These are independent of the detail of εp(ω), i.e., the detail
inside the cavity. Further, at z = 
, the electric field satisfies

E(
,ω) = 0. (30)

The electric and magnetic fields are expressed by the vector
potential A(z,ω) as

E(z,ω) = iωA(z,ω), (31a)

H (z,ω) = 1

μ0

∂

∂z
A(z,ω) = 1

iωμ0

∂

∂z
E(z,ω). (31b)

B. Hamiltonian of system-environment coupling

From the above Maxwell boundary conditions, in Ref. [12],
we derived the Hamiltonian connecting inside and outside the

cavity, which is independent of the detail inside the cavity but
is valid only for good cavities. In the absence of the SEC (in
the case of perfect cavity) and of the light-matter interaction,
the Hamiltonian of the electromagnetic fields inside the cavity
is simply expressed as

Ĥcav =
∑

j

�ckj â
†
j âj , (32)

where âj annihilates a photon in the j th mode satisfying
[âj ,â

†
j ′ ] = δj,j ′ and

kj = jπ



, j = 1,2,3, . . . (33)

is the confinement wave number. The operators of the vector
potential and magnetic field inside the cavity are expressed as

Â(z) =
∑

j

√
�

ε0ckj 

sin(kj z)(âj + â

†
j ), (34a)

Ĥ (z) =
∑

j

kj

μ0

√
�

ε0ckj 

cos(kj z)(âj + â

†
j ). (34b)

Introducing a nondimensional quantity

Λ(ω) = η(ω)ω/c (35)

(Λ  1 corresponds to good cavity), the SEC Hamiltonian is
described by the magnetic field Ĥ (0+) at the imperfect mirror
z = 0 as [12]

Ĥcav
SEC =

∫ ∞

0
dω i�

√
μ0c

π�ωΛ(ω)2
[f̂ †

c (ω) − f̂c(ω)]Ĥ (0+)

=
∑

j

∫ ∞

0
dω i�

√
κj (ω)

2π
[f̂ †

c (ω) − f̂c(ω)](âj + â
†
j ),

(36)

where the loss rate κj (ω) for empty cavity is expressed as

κj (ω) = 2c2kj

ω
Λ(ω)2
. (37)

From the MBCs in Eqs. (29), the reflectance of the imperfect
mirror is obtained as

Rmirror(ω) = 1

1 + 4/Λ(ω)2
. (38)

Since the round-trip time of light inside the cavity is 2
/c, the
loss rate κj (decay rate of light intensity) of the j th mode is
estimated as

Kj = 1 − Rmirror(ωj )

2
/c
= c

2


1

1 + Λ(ωj )2/4
. (39)

In the good cavity limit Λ(ω)  1,κj (ωj ) in Eq. (37) is
certainly equal to Kj .

Since we will consider basically the ω independent κ , we
suppose η(ω) ∝ ω−3/2 and

Λ(ω) = Λ0

√
ωa

ω
. (40)

Here, Λ0 is independent of ω, and we will basically suppose
Λ0 = 103  1 in the numerical calculation.
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C. Dielectric function of medium

As the model of the dispersive and absorptive medium
inside the cavity, we consider a bosonic excitation with a
transition frequency ωa, transition dipole moment d, density D

of excitonic sites, and infinite translational mass of excitation.
Here, we first consider a spatially infinite medium, and derive
its dielectric function εp(ω). As discussed, for example, in
Refs. [35,36], when we restrict the light propagation in the z

direction, the Hamiltonian of such a medium can be described
in the velocity or length form (sometimes called the Coulomb
and electric dipole gauges while both are in the Coulomb gauge
in the sense of ∇ · A = 0) equivalently as

Ĥv
∞/� =

∑
k

[c|k|â†
kâk + ωab̂

†
kb̂k + ḡkQ̂kŶ−k

+ (ḡk
2/ωa)Q̂kQ̂−k], (41a)

Ĥr
∞/� =

∑
k

[c|k|â†
kâk + ωab̂

†
kb̂k − g̃kΠkX̂−k

+ (g̃k
2/c|k|)X̂kX̂−k]. (41b)

Here, âk and b̂k are annihilation operators of a photon and
a bosonic excitation with a wave number k. They satisfy
[âk,â

†
k′] = [b̂k,b̂

†
k′ ] = δk,k′ , and the other combinations are

commutable. The capital operators are Hermitian and defined
as

Q̂k = âk + â
†
−k, (42a)

Πk = i(âk − â
†
−k), (42b)

X̂k = b̂k + b̂
†
−k, (42c)

Ŷk = i(b̂k − b̂
†
−k). (42d)

They satisfy [Q̂k,Πk′] = [X̂k,Ŷk′] = −i2δk,k′ , and the other
combinations are commutable. The light-matter interaction
strengths are expressed for a nondimensional strength g as

ḡk = gωa

√
ωa

c|k| , g̃k = gc|k|
√

ωa

c|k| , g =
√

D|d|2
2ε0�ωa

.

(43)

The ultrastrong interaction means g � 1 in this paper. Using a
unitary operator

Û = exp

[
−ig

∑
k

√
ωa

c|k|Q̂kX̂−k

]
, (44)

the two Hamiltonians in Eqs. (41) are transformed to each
other as [35,36]

ÛĤv
∞Û † = Ĥr

∞. (45)

Since we will calculate the absorption (reflection) spectra of
the cavity system for evaluating the validity of the Lindblad and
non-Lindblad master equations, we consider also a damping
of excitations in matters. Otherwise, the absorption is never
observed. For keeping the equivalence between the velocity
and length forms, we consider that the damping is mediated
by {X̂k}, which is commutable with the unitary operator Û in
Eq. (44). The environment for the damping is introduced for

each excitation mode independently, and the Hamiltonian of
the environment and the SEC for the damping is described as

Ĥdamp
∞ =

∑
k

∫ ∞

0
dω

{
�ωf̂

†
k (ω)f̂k(ω)

+ i�

√
γ

2π
[f̂ †

k (ω) − f̂k(ω)]X̂k

}
. (46)

Here, f̂k(ω) is the annihilation operator of a boson in the
environment for mode k, and it satisfies [f̂k(ω),f̂ †

k′(ω′)] =
δk,k′δ(ω − ω′) and 〈f̂ †

k (ω)f̂k′(ω′)〉 = 0. We suppose that the
damping rate γ is ω independent for discussing the non-
Lindblad form focused in this paper. For deriving the dielectric
function εp(ω) of this damping medium (dispersive and absorp-
tive medium), in the same manner as in Eq. (19a), we consider
the following quantum Langevin equation corresponding to
the non-Lindblad master equation:

∂

∂t
Ŝ = 1

i�
[Ŝ,Ĥ0] −

∑
k

∫ ∞

0
dω

{
[Ŝ,X̂k]e−iωt

×
[
γ

2
X̂k(ω) + √

γ b̂in
k (ω)

]
+ H.c.

}
, (47)

where b̂in
k is the input operator due to the damping. The discus-

sion for Lindblad-type damping is performed in Appendix D.
Since there is no loss of photons in the infinite medium, the
quantum Langevin equations are derived in the velocity form
as

− iωQ̂k(ω) = −c|k|Πk(ω), (48a)

−iωΠk(ω) = (c|k| + 4ḡk
2/ωa)Q̂k(ω) + 2ḡkŶk(ω), (48b)

−iωX̂k(ω) = −ωaŶk(ω) − 2ḡkQ̂k(ω), (48c)

−iωŶk(ω) = (ωa − iγ )X̂k(ω) − i2
√

γ b̂in
k (ω). (48d)

On the other hand, in the length form, we get

− iωQ̂k(ω) = −c|k|Πk(ω) + 2g̃kX̂k(ω), (49a)

−iωΠk(ω) = c|k|Q̂k(ω), (49b)

−iωX̂k(ω) = −ωaŶk(ω), (49c)

−iωŶk(ω) = (ωa − iγ )X̂k(ω) − i2
√

γ b̂in
k (ω)

− 2g̃k[Πk(ω) − (2g̃k/c|k|)X̂k(ω)]. (49d)

In both forms, the four equations are reduced to

[c2k2 − εp(ω)ω2]Q̂k(ω) = 4ωg
√

ωa
3c|k|

ωa
2 − iγ ωa − ω2

√
γ b̂in

k (ω),

(50)

where the dielectric function (dispersion relation) of the
medium is obtained as

c2k2

ω2
= εp(ω) = 1 + 4g2ωa

2

ωa
2 − iγ ωa − ω2

. (51)

From this dielectric function εp(ω), the spatial dependence of
ε(z,ω) in Eq. (28), and by the MBCs, we can calculate the
absorption and reflection spectra of the cavity embedding the
dispersive and absorptive medium.
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D. Hamiltonian inside the cavity

Whereas the spatially infinite system is considered for
deriving the dielectric function εp(ω) of the medium in the
previous subsection, here we show the Hamiltonian inside the
cavity. Since the bosonic excitations have an infinite mass,
we have a freedom of choosing the basis for describing the
eigenmodes of them. We expand the excitations by the same
wave functions as the photon modes in perfect cavity, i.e.,
characterized by the confinement wave number kj in Eq. (33),
while the transition frequency is ωa for all the excitation modes.
In the similar manner as the Hamiltonian Ĥcav for the empty
cavity in Eq. (32), the Hamiltonian inside the filled cavity is
described as

Ĥv
0

�
=
∑

j

[
ckj â

†
j âj + ωab̂

†
j b̂j + ḡj Q̂j Ŷj + ḡj

2

ωa
Q̂j Q̂j

]
,

(52a)

Ĥr
0

�
=
∑

j

[
ckj â

†
j âj + ωab̂

†
j b̂j − g̃jΠj X̂j + g̃j

2

ckj

X̂j X̂j

]
.

(52b)

The former and latter Hamiltonians are in the velocity and
length forms, respectively. b̂j is the annihilation operator of an
excitation with kj . The capital operators are defined as similar
as in Eqs. (42). The light-matter interaction strengths ḡ and
g̃ are expressed by the non-dimensional strength g defined in
Eq. (43) as

ḡj = gωa

√
ωa

ckj

, g̃j = gckj

√
ωa

ckj

. (53)

In the similar manner as in the previous subsection, the SEC
Hamiltonian for the excitation damping is supposed as

Ĥdamp
SEC-env =

∑
j

∫ ∞

0
dω

{
�ωf̂

†
j (ω)f̂j (ω)

+ i�

√
γ

2π
[f̂ †

j (ω) − f̂j (ω)]X̂j

}
. (54)

In the numerical calculation of the absorption spectra by
the Lindblad-type quantum Langevin equation, we need the
lowering and raising components of the operators Q̂j ,X̂j , . . . .
Since the system of interest in this paper has no anharmonicity,
we can easily diagonalize the Hamiltonian Ĥv/r

0 in Eqs. (52) by
the Bogoliubov transformation [13,37]. Since the confinement
wave number kj is a good quantum number, the system can be
diagonalized for each kj by the polariton operator expressed
as

p̂j,ζ = wj,ζ âj + xj,ζ b̂j + yj,ζ â
†
j + zj,ζ b̂

†
j . (55)

For each kj , there are lower mode (ζ = L) and upper
one (ζ = U ). The coefficients {wj,ζ ,xj,ζ ,yj,ζ ,zj,ζ } and the
eigenfrequencies {ωj,ζ } are determined for satisfying[

p̂j,ζ ,Ĥv/r

0

] = �ωj,ζ p̂j,ζ (56)

and the normalization condition

[p̂j,ζ ,p̂
†
j ′,ζ ′] = δj,j ′δζ,ζ ′ . (57)

For the velocity form, the detailed analytical expressions are
shown in Refs. [34,37]. For the velocity and length forms, we
get the same eigenfrequencies {ωj,ζ }, while the coefficients
{wj,ζ ,xj,ζ ,yj,ζ ,zj,ζ } are different. In the calculations in this
paper, we checked numerically that the two forms certainly
give the same results. Since the annihilation operators are
expressed as

âj =
∑

ζ=L,U

(w∗
j,ζ p̂j,ζ − yj,ζ p̂

†
j,ζ ), (58a)

b̂j =
∑

ζ=L,U

(x∗
j,ζ p̂j,ζ − zj,ζ p̂

†
j,ζ ), (58b)

the lowering components of the Hermitian operators are
represented such as

Q̂
↓
j =

∑
ζ=L,U

(w∗
j,ζ − y∗

j,ζ )p̂j,ζ , (59a)

X̂
↓
j =

∑
ζ=L,U

(x∗
j,ζ − z∗

j,ζ )p̂j,ζ . (59b)

V. CALCULATIONS BY THREE APPROACHES

In order to evaluate the validity of the Lindblad and non-
Lindblad master equations, we compare the absorption spectra
calculated by them (exactly speaking, by corresponding
quantum Langevin equations) and that by the MBCs along
the classical electrodynamics. The comparison and discussion
will be performed in Sec. VI. In this section, we show the
calculation methods of the three approaches: by the MBCs
in Sec. V A, non-Lindblad-type equation in Sec. V B, and
Lindblad-type one in Sec. V C.

A. Absorption by Maxwell boundary conditions

From the spatially dependent dielectric function ε(z,ω) in
Eq. (28) and εp(ω) of the medium in Eq. (51), we can calculate
the reflection and absorption spectra of the cavity system. The
electric field in the whole system is expressed as

E(z,ω) =
{
E0(ω)ei(ω/c)z + Er (ω)e−i(ω/c)z, z < 0
E1(ω) sin[kp(ω)(
 − z)], 0 < z < 
.

(60)

Here, E0(ω), Er (ω), and E1(ω) are the electric field of
the incident wave, of reflected wave, and inside the cavity,
respectively. This expression satisfies the MBC at z = 
 as
E(
,ω) = 0. The complex wave number kp(ω) inside the cavity
is defined with the refractive index np(ω) = √εp(ω) as

kp(ω) = np(ω)ω/c. (61)

From the MBCs at z = 0 in Eqs. (29), we get

E0(ω) + Er (ω) = E1(ω) sin[kp(ω)
], (62a)

E0(ω) − Er (ω) = i{np(ω) cos[kp(ω)
]

−Λ(ω) sin[kp(ω)
]}E1(ω). (62b)
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Frequency ω / ωa

Ab
so

rp
tio

n 
10

5 
[1

 - 
R(

ω
)]

1st, 2nd, 3rd, ... lower modes

1st and 2nd upper modes

g = 0.1
g = 0.01

g = 0.2
g = 0.3
g = 0.4
g = 0.5
g = 0.6
g = 0.7
g = 0.8
g = 0.9
g = 1.0

FIG. 2. Absorption 1 − R(ω) calculated by the MBCs is plotted
as a function of ω/ωa. The light-matter interaction strength is changed
as g = 0.01, 0.1, 0.2, ..., 1.0. Parameters: 
 = πc/ωa, γ = 0.1ωa, and
Λ0 = 103.

Then, the reflection coefficient r(ω) = Er (ω)/E0(ω) is ob-
tained as

r(ω) = [1 + iΛ(ω)] sin[kp(ω)
] − inp(ω) cos[kp(ω)
]

[1 − iΛ(ω)] sin[kp(ω)
] + inp(ω) cos[kp(ω)
]
.

(63)

The reflectance and absorption are calculated as R(ω) =
|r(ω)|2 and 1 − R(ω), respectively.

In Fig. 2, we plot the absorption spectra 1 − R(ω) calculated
by the MBCs with changing the light-matter interaction
strength g = 0.01, 0.1, 0.2, ..., 1.0. The cavity length is
supposed as a half of the light wavelength at ωa in vacuum:

 = πc/ωa. Then, the resonance frequency of the lowest cavity
mode (j = 1) is ck1 = ωa. We supposed that the damping
rate is γ = 0.1ωa and the cavity loss is Λ0 = 103, which
corresponds to κj = j × 6.366 × 10−7ωa for the j th cavity
mode, and the quality factor is Q = ckj /κj = 1.571 × 106

for the empty cavity. We basically suppose such a good cavity
because the SEC Hamiltonian in Eq. (36) is valid only for good
cavities. For bad cavities, while the absorption spectra can be
calculated by the MBCs for given η(ω) or Λ(ω), the master
and quantum Langevin equations cannot well reproduce them
due to the invalidity of the SEC Hamiltonian.

Since the damping rate is γ = 0.1ωa, g = 0.01 corre-
sponds to the weak interaction regime, and the absorption
peaks are found at ω = ckj on the uppermost spectrum in
Fig. 2. For larger g, we can find the peak splitting of the lowest
(first) cavity mode and the excitations as the lower and upper
polariton modes. In the ultrastrong interaction regime g ∼ 1,
the center of these two peaks is shifted to the higher frequency
side, and the lower polariton frequency never becomes a
negative or imaginary value. Further, the peaks of the second
(third) lower polariton mode with k2 (k3) gradually appears
because the photonic component of these lower polariton
modes are increased (excited more efficiently) by the increase

Frequency ω / ωa

Ab
so

rp
tio

n 
10

5 
[1

 - 
R(

ω
)]

1st, 2nd, 3rd, ... lower modes
1st upper mode

0.2ωa

γ = 0.1ωa

0.3ωa

0.4ωa

0.5ωa

FIG. 3. Absorption 1 − R(ω) calculated by the MBCs is plotted
as a function of ω/ωa. The damping rate γ is changed from 0.1ωa to
0.5ωa. Parameters: 
 = πc/ωa, g = 1, and Λ0 = 103.

in g. For the present parameters, the lower polariton modes
with j > 3 appear as a broad and asymmetric peak around
ω ∼ ωa.

In Fig. 3, we fixed the light-matter interaction strength as
g = 1, but the damping rate γ is changed from 0.1ωa to 0.5ωa.
Increasing γ , the absorption peaks become broadened. For
γ = 0.5ωa, we cannot clearly find the second and the third
lower polariton modes.

In the following discussion, we will use the undermost
absorption spectrum in Fig. 3 as a standard reference for
evaluating the validity of the Lindblad and non-Lindblad
master equations. This is because the discrepancy between
them is highlighted for large g and γ as will be found in
Sec. VI.

B. Absorption by non-Lindblad-type equations

For the total Hamiltonian Ĥ = Ĥ0 + Ĥcav
SEC + Ĥcav

env +
Ĥdamp

SEC-env, the quantum Langevin equation corresponding to
the non-Lindblad master equation is obtained as

∂

∂t
Ŝ = 1

i�
[Ŝ,Ĥ0] −

∑
j

∫ ∞

0
dω

{
[Ŝ,X̂j ]e−iωt

[
γ

2
X̂j (ω)

+√
γ b̂in

j (ω)

]
+ H.c.

}
−
∫ ∞

0
dω

{∑
j

[Ŝ,Q̂j ]e−iωt

×√
κj

[
âin(ω) +

∑
j ′

√
κj ′

2
Q̂j ′ (ω)

]
+ H.c.

}
. (64)

The equations of motion of the positive-frequency components
of four Hermitian operators are obtained in the velocity form
as (ω > 0)

− iωQ̂j (ω) = −ckjΠj (ω), (65a)

−iωΠj (ω) = (ckj + 4ḡj
2/ωa)Q̂j (ω) + 2ḡj Ŷj (ω)
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−
∑
j ′

i
√

κjκj ′Q̂j ′(ω) − i2
√

κj âin(ω), (65b)

−iωX̂j (ω) = −ωaŶj (ω) − 2ḡj Q̂j (ω), (65c)

−iωŶj (ω) = (ωa − iγ )X̂j (ω) − i2
√

γ b̂in
j (ω). (65d)

The wave number kj is no longer a good quantum number due
to the coupling between inside and outside the cavity. This
equation set can be solved numerically, and we can get the
expression of Q̂j (ω) such as

Q̂j (ω) = αj (ω)âin(ω) +
∑
j ′

βj,j ′ (ω)b̂in
j ′ (ω), (66)

where the coefficients αj (ω) and βj,j ′ (ω) are determined
numerically. Since the input-output relation is written as in
Eq. (23a), the output operator is represented as

âout(ω) = r(ω)âin(ω) +
∑
j,j ′

√
κjβj,j ′ (ω)b̂in

j ′ (ω), (67)

where the reflection coefficient is expressed as

r(ω) = 1 +
∑

j

√
κjαj (ω). (68)

The reflection is calculated as Rnon-Lindblad(ω) = |r(ω)|2, and
the absorption is 1 − Rnon-Lindblad(ω). We checked numerically
that the same results are obtained even in the length form.

C. Absorption by Lindblad-type equations

The total Hamiltonian is written as Ĥ = Ĥ0 + Ĥcav-RWA
SEC +

Ĥcav
env + Ĥdamp

SEC-env. In the quantum Langevin equation, the cavity
loss is introduced corresponding to the Lindblad master
equation, while the damping is treated in the non-Lindblad
form. The quantum Langevin equation is expressed in this
case (under the RWA to the cavity loss) as

∂

∂t
Ŝ = 1

i�
[Ŝ,Ĥ0] −

∑
j

∫ ∞

0
dω

{
[Ŝ,X̂j ]e−iωt

[
γ

2
X̂j (ω)

+√
γ b̂in

j (ω)

]
+ H.c.

}
−
∫ ∞

0
dω

{∑
j

[Ŝ,Q̂
↑
j ]e−iωt

×√
κj

[
âin(ω) +

∑
j ′

√
κj ′

2
Q̂

↓
j ′(ω)

]
+ H.c.

}
. (69)

The commutator [Ŝ,Q̂
↑
j ] is calculated by rewriting Ŝ with

the polariton operators {p̂j,ζ ,p̂
†
j,ζ } and by rewriting Q̂

↑
j with

{p̂†
j,ζ } as in Eqs. (59). We calculated the absorption spectra

in the similar manner as in the previous subsection, while the
detailed equations are shown in Appendix C.

In this calculation, we replaced the Fourier transform of
the lowering component Q̂

↓
j ′(ω) by the positive-frequency

component Q̂j ′ (ω) for ω > 0. We checked numerically the
validity of this replacement in the case that both the cavity loss
and damping is treated in the Lindblad form. This is because we
can easily calculate the absorption spectra by replacing all the
positive-frequency components of Hermitian operators with
the Fourier transform of the lowering components, e.g., Q̂j (ω)

is replaced by Q̂
↓
j (ω), and polariton annihilation operators

{p̂j,ζ } and creation ones {p̂†
j,ζ } are not mixed in the equations

of motion. We checked numerically that the absorption spectra
by these approaches are approximately equivalent. The detail
of this discussion is shown in Appendix C.

VI. COMPARISON OF THREE APPROACHES

In Fig. 4(a), we plot the absorption spectra by the three
approaches: the MBCs (solid line), non-Lindblad-type quan-
tum Langevin equation (dashed line), and Lindblad-type one
(dashed-dotted line). The parameters are the same as the under-
most spectrum in Fig. 3: 
 = πc/ωa, Λ0 = 103, g = 1, and
γ = 0.5ωa. In the calculations by the quantum Langevin equa-
tions, we considered the wave numbers {kj } up to j = 2000.

Frequency ω / ωa

Ab
so

rp
tio

n 
10

6  [
1 

- R
(ω

)]
g = 1.0
γ = 0.5ωa

g = 1.0
γ = 0.25ωa

g = 0.5
γ = 0.5ωa

(a)

(b)

(c)

FIG. 4. Absorption spectra by three approaches: by the MBCs
(blue solid line), by non-Lindblad-type equation (red dashed line), and
by Lindblad-type equation (green dashed-dotted line). We considered
(a) g = 1.0 and γ = 0.5ωa, (b) g = 1.0 and γ = 0.25ωa, and
(c) g = 0.5 and γ = 0.5ωa. We basically get good agreement between
the spectra by the MBCs and by the non-Lindblad-type equation,
while those by the Lindblad-type equation show a discrepancy.
The discrepancy is basically reduced by the decrease in g and
γ . Parameters: 
 = πc/ωa and Λ0 = 103. kj up to j = 2000 are
considered.
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We can clearly find that the spectra by the MBCs and
non-Lindblad-type equation agree well with each other. A
small discrepancy is found at the top of the broad peak
around ω = ωa. This broad peak appears as the sum of the
peaks of lower polariton modes for 2 < j < ∞. The small
discrepancy basically comes from our neglect of higher modes
for j > 2000 in the calculation based on the non-Lindblad-
type quantum Langevin equation.

On the other hand, the spectrum by the Lindblad-type
equation clearly shows a discrepancy with that by the other two
approaches. Basically, a larger absorption is obtained for ω <

ωa, and smaller is obtained for ω > ωa in the frequency range
of the figure. It is hard to explain this discrepancy in terms
of physics, but, mathematically, it comes from the difference
between the commutator [Ŝ,Q̂j ] at the dissipation and noise
terms concerning the cavity loss in the non-Lindblad-type
equation (64) and [Ŝ,Q̂

↓
j ] in the Lindblad-type equation (69).

This difference originates from the RWA to the SEC.
In order to catch the tendency of this discrepancy, in

Fig. 4(b), we decreased the damping rate as γ = 0.25ωa

while keeping the other parameters g, Λ0, and 
. All the
absorption peaks become narrower than those in Fig. 4(a),
and we can now find the peak originating from the second
lower polariton mode. The discrepancy between the spectra by
the Lindblad-type equation and the other two is reduced than
Fig. 4(a), although we did not change the cavity-loss parameter
Λ0 and the RWA was performed to the SEC concerning the
cavity loss.

On the other hand, in Fig. 4(c), we instead decreased the
light-matter interaction strength as g = 0.5 than in Fig. 4(a)
while keeping γ, Λ0, and 
. The discrepancy becomes rela-
tively smaller than Fig. 4(a) especially around the top of the
peaks and the tail of the lowest peak, while we can still find
the discrepancy around ω ∼ ωa.

In order to understand these tendencies of the discrepancy,
we tentatively simplify the calculation, i.e., let us consider
only the lowest wave number k1 for photons and excitations in
the Lindblad and non-Lindblad quantum Langevin equations.
Since we cannot eliminate the higher kj modes in the
calculation by the MBCs, we compare the absorption spectra
by the two quantum Langevin equations.

In Fig. 5(a), we plot the absorption spectra obtained by the
non-Lindblad-type quantum Langevin equation for g = 1.0,
0.5, and 0.25 with keeping γ = 0.5ωa, Λ0 = 103, and 
 =
πc/ωa. The broad peak around ω ∼ ωa disappears, and we
simply get the peaks of the lower and upper polariton modes
with k1. In Fig. 5(b), we plot the absorption spectra in the case
of γ = 0.25ωa. We can find narrower peaks than in Fig. 5(a).
Concerning the discrepancy between the Lindblad- and non-
Lindblad-type equations, we plot the normalized absorption
difference (RLindblad − Rnon-Lindblad)/(1 − Rnon-Lindblad) for g =
1.0, 0.5, and 0.25 in Fig. 5(c). Surprisingly, these curves are
independent of γ and Λ0, but they depend on only g and 
.
We get positive values between the lower and upper polariton
frequencies, and negative values are obtained out of this fre-
quency region. Especially, the normalized difference diverges
for ω → 0. This is because the original lowering components
such as Q̂

↓
j and the raising ones Q̂

↑
j are mixed through the

SEC for ω � ωa because the frequency difference 2ω of them
becomes negligible than the light-matter interaction strength
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FIG. 5. (a), (b) Absorption spectra calculated by the non-
Lindblad-type equation by considering only the lowest wave number
k1 are plotted for g = 1.0 (red solid line), g = 0.5 (green dashed line),
and g = 0.25 (blue dashed-dotted line). We supposed (a) γ = 0.5ωa

and (b) γ = 0.25ωa. (c) The differences of absorption spectra by the
Lindblad- and non-Lindblad-type equations normalized to that of the
non-Lindblad-type one are plotted as functions of ω/ωa. These curves
depend only on 
 and g. Parameters: 
 = πc/ωa and Λ0 = 103.

gωa. However, since the absorption peaks drop well to zero
for ω → 0, we do not focus on this divergence.

Since the normalized difference is zero at the lower and
upper polariton frequencies, we got the smaller discrepancy in
Fig. 4(b) by the decrease in the broadening γ . The discrepancy
is basically highlighted for large γ especially when γ is
comparable to or larger than the mode splitting ∼ 2gωa in
this case. On the other hand, in Fig. 5(c), the top of the curves
at ω = ωa are 0.1464, 0.0528, and 0.0149 for g = 1.0, 0.5, and
0.25, respectively. Thanks to this reduction of the discrepancy
with the decrease in g, we get the smaller discrepancy at the
top and the lower tail of the lower polariton peak in Fig. 4(c)
than in Fig. 4(a). For understanding the remaining discrepancy
around ω = ωa in Fig. 4(c), we need to consider also the higher
kj modes for j > 1. We calculated the absorption spectra
by the Lindblad- and non-Lindblad-type quantum Langevin
equations with eliminating the mixing of different kj , i.e., the
summation over j ′ is performed only for j ′ = j in Eqs. (64)
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and (69). Although we do not show the numerical results
in figures, we got almost the same absorption spectra as in
Fig. 4, which was calculated with the kj mixing. This minor
contribution of the kj mixing is natural because we supposed
the good cavity with Λ0  1. Then, we can say that the
discrepancy in Fig. 4 basically comes from the summation
of the differences seen in Fig. 5(c) for all the kj modes.

Concerning this discrepancy in Fig. 4(c), whereas the
k1 modes are a part of its origin, the higher kj modes
also contribute to it. From these facts, we can say that the
discrepancy between the Lindblad-type equation and the other
two methods clearly appear in the ultrastrong light-matter
interaction regime [as seen in Fig. 5(c)] with a concentration
of modes (overlap of absorption peaks), which is increased by
enlarging γ , i.e., wider broadening.

Anyway, whereas we considered only the good cavity case
(Λ0  1), we basically found a good agreement between the
absorption spectra by the MBCs and the non-Lindblad-type
quantum Langevin equation. The absorption spectrum by the
Lindblad-type equation shows a discrepancy from them in
the ultrastrong light-matter interaction regime with a large
broadening γ (overlap).

If the cavity quality is not so good as Λ0 � 1, we cannot
reproduce the absorption spectrum of the MBCs even by
the non-Lindblad-type quantum Langevin equation. This is
because our SEC Hamiltonian for the cavity loss is valid only
for the good cavities. On the other hand, for much low damping
γ � ωa, the peak widths are found to be almost the same for
the three approaches. However, since we did not consider the
Lamb shift due to the SEC, the Lindblad and non-Lindblad
master equations give almost the same absorption spectra,
while the peak positions are found to be shifted in the spectra
by the MBCs.

From these facts, we conclude that we should not apply
the RWA to the SEC of the cavity loss in the derivation
of the master and quantum Langevin equations for pursuing
the consistency with the physical laws. Although the master
equation of the non-Lindblad form is derived, it shows a better
agreement with calculations by the MBCs in the classical
electrodynamics, comparing to the Lindblad master equation
derived under the RWA to the SEC. Although we did not
discuss in detail the other SECs, such as the damping, the same
conclusion is probably obtained by considering explicitly the
mechanism of the SECs because the RWA is an approximation
basically for the mathematical requirement, i.e., the positivity
of density operator in the Lindblad master equation.

VII. POSITIVITY CHECK

Next, we check the violation of the positivity in the non-
Lindblad master equation. The non-Lindblad-type quantum
Langevin equation in Eq. (64) used in the previous sections
corresponds to the following non-Lindblad master equation:

∂

∂t
ρ̂ = 1

i�
[Ĥ0,ρ̂] +

∑
j

γ

2
([X̂j ,ρ̂X̂

↑
j ] + [X̂↓

j ρ̂,X̂j ])

+
∑
j,j ′

√
κjκj ′

2
([Q̂j ,ρ̂Q̂

↑
j ′] + [Q̂↓

j ′ ρ̂,Q̂j ]). (70)

For the ground state |g〉 of the Hamiltonian Ĥ0 of the system of
interest, it is clear that ρ = |g〉〈g| is a steady-state solution of
Eq. (70) because X̂

↓
j |g〉 = Q̂

↓
j |g〉 = 0 and 〈g|X̂↑

j = 〈g|Q̂↑
j =

0. Then, the positivity is never violated in the steady state in
this dissipative situation.

We therefore check the positivity in nonequilibrium or
dynamical situations by numerically solving the non-Lindblad
master equation. However, due to the computational difficulty,
we here consider only the lowest cavity and excitation modes
(j = 1), and the number of bosons in each mode is limited to
24, which is large enough in the following calculations. This
computational cost is the reason why we used the quantum
Langevin equations in the previous sections, where we could
consider 2000 modes without limiting the number of bosons.
The non-Lindblad master equation used in this section is

∂

∂t
ρ̂ = 1

i�

[
Ĥj=1

0 ,ρ̂
]+ γ n

2
([X̂1,ρ̂X̂

↓
1 ] + [X̂↑

1 ρ̂,X̂1])

+ γ (1 + n)

2
([X̂1,ρ̂X̂

↑
1 ] + [X̂↓

1 ρ̂,X̂1])

+ κ1

2
([Q̂1,ρ̂Q̂

↑
1 ] + [Q̂↓

1 ρ̂,Q̂1]). (71)

The Hamiltonian Ĥj=1
0 consists of only the lowest photonic

and excitonic modes with j = 1. We assume that the distri-
bution of the excitonic environment is flat as n(ω) = n in the
frequency range of interest.

We first check the positivity in the nonequilibrium steady
state under the incoherent excitation by the excitonic environ-
ment with n > 0. The density operator ρ̂ss in the steady state
is numerically calculated by searching zero eigenvalue of the
coefficient matrix for ρ̂ on the right-hand side in Eq. (71). As
far as we checked numerically, the minimum eigenvalue of ρ̂ss

is basically zero within the range of numerical error.
Then, what we have to check is the positivity in dynamical

situation. Compared with starting from the ground state ρ̂ =
|g〉〈g| under the incoherent excitation (n > 0), we can find a
clear violation of the positivity by starting from the state with
zero photon and zero excitation |0,0〉, which is not the ground
state |g〉 in the ultrastrong interaction regime.

Figure 6(a) shows the temporal development of the number
of photons starting from ρ(t = 0) = |0,0〉〈0,0|. We supposed
ck1 = ωa, κ1 = 6.366 × 10−7ωa, γ = 0.5ωa, and no incoher-
ent excitation n = 0. The results for g = 0.01, 0.1, 0.2, 0.5,
and 1.0 are plotted with different color. Since |0,0〉 is not the
true ground state of Ĥj=1

0 , the number of photons gradually
increases and oscillatory reaches 〈g|â†

1â1|g〉, which means
ρ(t → ∞) = |g〉〈g|. In the case of relatively weak interaction
strength g = 0.01, the density operator does not yet reach
|g〉〈g| at t = 100ω−1

a .
Figure 6(b) shows the minimum eigenvalue of the density

operator ρ(t). Negative eigenvalues are basically obtained, i.e.,
the positivity is violated in the non-Lindblad master equation
in Eq. (71). In this paper, we measure the positivity violation
by the absolute value of the minimum negative eigenvalue.
At the early stage of Fig. 6(b), the positivity is gradually
violated together with the increase in the number of photons.
The violation is maximized before the number of photons
starts to oscillate. While the violation for g = 1.0 is more
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FIG. 6. Temporal development of (a) number of photons inside
the cavity and (b) minimum eigenvalue of density operator calculated
by the non-Lindblad master equation in Eq. (71) for n = 0 (no
incoherent excitation). The initial density operator is ρ̂(t = 0) =
|0,0〉〈0,0| with zero photon and zero excitation. The results for
g = 0.01, 0.1, 0.2, 0.5, and 1.0 are plotted with different color.
Negative eigenvalues are clearly obtained as seen in panel (b), while
they become negligible when the system reaches the steady state ρ̂ss =
|g〉〈g|. Parameters: ck1 = ωa, κ1 = 6.366 × 10−7ωa, γ = 0.5ωa, and
n = 0.

significant than for g = 0.5 at the early stage, the former
starts to be suppressed earlier than the latter. As the result,
the positivity violation is most significant for g = 0.5 in
the present demonstration. Note that the positivity violation
gradually diminishes afterward, and it becomes negligible
when the system reaches the ground state since the steady
state ρ̂ss = |g〉〈g| guarantees the minimum eigenvalue equal
to zero.

We next check the positivity in the dynamics under the
incoherent excitation (n > 0). Figures 7(a) and 7(b) show the
development of the number of photons and of the minimum
eigenvalue, respectively, in the case of n = 0.1. For any g,
the number of photons finally becomes a larger value than
in Fig. 6(a) due to the incoherent excitation. The results in
the early stage are not strongly changed from the dissipative
situation in Fig. 6. However, during the oscillation period, the
positivity violation is clearly suppressed compared with Fig. 6,
and it becomes negligible at an earlier time. This is probably
because the higher states have positive probabilities thanks
to the incoherent excitation, which diminishes the negative
probability, whereas the higher states have zero probability
as ρ̂ss = |g〉〈g| in the dissipative situation. We numerically
checked that the positivity violation can be suppressed by
increasing n, i.e., by strengthening the incoherent excitation.

In conclusion, as far as we checked numerically, the positiv-
ity can be violated in the temporal development calculated by
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FIG. 7. Temporal development of (a) number of photons inside
the cavity and (b) minimum eigenvalue of density operator calculated
by the non-Lindblad master equation in Eq. (71) for n = 0.1 (under
incoherent excitation). The initial density operator is ρ̂(t = 0) =
|0,0〉〈0,0| with zero photon and zero excitation. The results for g =
0.01, 0.1, 0.2, 0.5, and 1.0 are plotted with different colors. Comparing
to Fig. 6(b), the negative eigenvalues are rapidly suppressed due to the
presence of of the incoherent excitation. Parameters: ck1 = ωa, κ1 =
6.366 × 10−7ωa, γ = 0.5ωa, and n = 0.1.

our non-Lindblad master equation, although it is not violated
when the system is close to the steady state. The positivity
violation becomes significant when we start from a special
initial state such as |0,0〉, while the violation remains small
starting from |g〉.

VIII. ADVANTAGE OF NON-LINDBLAD FORM

We finally discuss the advantage of the non-Lindblad master
equation than the Lindblad one, while the disadvantage is the
violation of the positivity as checked in the previous section.

One advantage is the agreement with the results by the
MBCs in the classical electrodynamics, which was checked in
Sec. VI. The Lindblad-type equation shows a discrepancy due
to the RWA to the SEC. Another advantage is the simplicity
in the calculation of the non-Lindblad-type quantum Langevin
equations (and stochastic differential ones in Appendix A 3).
As seen in Eq. (19a), the non-Lindblad-type quantum Langevin
equation does not include the lowering and raising components
of system operators, although they appear in the Lindblad-type
equation (19b). We need the information of all the eigenstates
of Ĥ0 for decomposing system operators to the lowering and
raising components. It is basically difficult to diagonalize Ĥ0

analytically and also numerically, if the system of interest has
much degrees of freedom. The non-Lindblad-type quantum
Langevin equations do not require such a diagonalization,
and they are sometimes easily solved. In the demonstration
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in this paper, we can easily solve the non-Lindblad-type
equations (65). In contrast, the calculation by the Lindblad-
type equations is complicated as shown in Appendix C.
Basically, the non-Lindblad-type quantum Langevin equations
can be solved easier than the Lindblad-type ones since we do
not need to diagonalize the Hamiltonian. For example, in the
study of the laser in the ultrastrong interaction regime, the
non-Lindblad-type quantum stochastic differential equations
enabled us to get easily the steady-state solutions [38], while
the Hamiltonian of the laser system is hard to be diagonalized
due to the huge number of finite-level atoms interacting with
the cavity modes.

IX. SUMMARY

From the MBCs at an imperfect mirror of a Fabry-Pérot
cavity, we derived a Hamiltonian connecting inside and outside
the cavity (SEC Hamiltonian) in the good-cavity case [12].
From this Hamiltonian, in the Born-Markov approximation
but without the RWA to the SEC Hamiltonian, the master
equation of a non-Lindblad form is derived even for frequency-
independent loss rates κj of the cavity modes. Then, the
positivity of the density operator is not guaranteed. For
transforming it to the Lindblad form, we need to apply the
RWA to the SEC Hamiltonian. However, we found that the
absorption spectra by the non-Lindblad master equation agree
well with those by the reliable calculation by the MBCs, while
the Lindblad master equation shows a discrepancy from them
in the ultrastrong light-matter interaction regime with a large
broadening (high damping rate γ ). In this way, in the similar
manner as in the studies of quantum Brownian motion [3–9],
for the consistency with the physical laws (Maxwell equations
or MBCs), we sometimes need to consider a non-Lindblad
master equation derived without the RWA to the SEC, while
the mathematical requirement (positivity of density operator)
is not guaranteed.

From the viewpoint of studying the ultrastrong light-matter
interaction regime, it still remains unclear how the response,
dissipation, and noise are changed before and after the
super-radiant phase transition (SRPT) [39–41] both for the
nonequilibrium analog [42,43] and for the original thermal-
equilibrium SRPT, which has not yet realized experimentally.
How to observe the SRPT is also open to dispute [44,45].
Since the spontaneous appearance of the coherent amplitude
of photonic field at the SRPT corresponds to the appearance
of a static electric or magnetic field in the system, the physics
involving the SEC is expected to be changed strongly reflecting
the MBCs between the environment and the system with
the static field. For the correct investigation of the response,
dissipation, and noise after the SRPT, the consistency with the
MBCs is essential as we pursued in this paper.
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APPENDIX A: DERIVATION OF MASTER, QUANTUM
LANGEVIN, AND QUANTUM STOCHASTIC

DIFFERENTIAL EQUATIONS

We will derive the master equation in Appendix A 1 and the
quantum Langevin equation in Appendix A 2 from the SEC
Hamiltonian expressed as

ĤSEC =
∫ ∞

0
dω

∑
j

i�

√
κj (ω)

2π
Q̂j [f̂ †(ω) − f̂ (ω)]. (A1)

As will be discussed in Sec. A 3, the quantum stochastic
differential equation is also derived from the master equation.
Whereas this SEC Hamiltonian has the same form as supposed
in Sec. III, here we consider the ω-dependent loss rate κ(ω)
and a more general correlation of the environment as

〈f̂ †(ω)f̂ (ω′)〉 = n(ω)δ(ω − ω′), (A2a)

〈f̂ (ω)f̂ †(ω′)〉 = [n(ω) + 1]δ(ω − ω′), (A2b)

where n(ω) is the expectation number of bosons with frequency
ω in the environment. The Hamiltonian of the environment is

Ĥenv =
∫ ∞

0
dω �ωf̂ †(ω)f̂ (ω). (A3)

We here consider that the system of interest described by Ĥ0

couples only with this environment through ĤSEC in Eq. (A1)
without considering any other environments. We will derive
the Lindblad and non-Lindblad master equations, and the
former is derived by applying the RWA to the SEC Hamiltonian
in Eq. (A1) in the basis of the eigenstates {|μ〉} of Ĥ0 as

ĤRWA
SEC =

∫ ∞

0
dω
∑

j

i�

√
κj (ω)

2π
[f̂ †(ω)Q̂↓

j − Q̂
↑
j f̂ (ω)], (A4)

where the lowering and raising operators are defined as in
Eqs. (7).

1. Master equation

Let us derive the master equation in the similar manner
as in Refs. [7,9]. In the interaction picture, the equation of
motion of density operator ρ̃ tot

I (t) of the whole system Ĥ =
Ĥ0 + ĤSEC + Ĥenv is written as

∂

∂t
ρ̃ tot

I (t) = 1

i�

[
H̃SEC(t),ρ̃ tot

I (t0)
]

− 1

�2

∫ t

t0

dt ′
[
H̃SEC(t),

[
H̃SEC(t ′),ρ̃ tot

I (t ′)
]]

, (A5)

where t0 → −∞ is the switch-on time of the SEC and the
operators are defined as

H̃SEC(t) ≡ ei(Ĥ0+Ĥenv)t/�ĤSECe−i(Ĥ0+Ĥenv)t/�, (A6)

ρ̃ tot
I (t) ≡ ei(Ĥ0+Ĥenv)t/�ρ̂ tot

S (t)e−i(Ĥ0+Ĥenv)t/�. (A7)

Here, ρ̂ tot
S (t) is the density operator of the total system in the

Schrödinger picture. We define the reduced density operator
ρ̃I(t) of the system of interest by taking the trace over the
degrees of freedom in the environment as

ρ̃I(t) ≡ Trenv
[
ρ̃ tot

I (t)
]
. (A8)
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Since we suppose that the fields in the environment have no
coherence at the initial time t0, the first term in Eq. (A5) is

Trenv
[
H̃SEC(t),ρ̃ tot

I (t0)
] = 0. (A9)

Then, we get the equation of motion of ρ̃I(t) as

∂

∂t
ρ̃I(t) =

∫ t

t0

dt ′

−�2
Trenv

[
H̃SEC(t),

[
H̃SEC(t ′),ρ̃ tot

I (t ′)
]]

.

(A10)

Next, we use the Born approximation [7,9], and the total
density operator is represented as

ρ̃ tot
I (t) = ρ̃I(t) ⊗ ρ̃B

I . (A11)

This means that the environment is modified only slightly
and remains approximately in the initial state ρ̃B

I , which is
justified when the environment is huge enough and the SEC is
relatively weak. Under the Born approximation, the integrand
in Eq. (A10) is rewritten as

− 1

�2
Trenv

[
H̃SEC(t),

[
H̃SEC(t ′),ρ̃ tot

I (t ′)
]] =

∑
j,j ′

∫ ∞

0
dω

√
κj (ω)κj ′(ω)

2π
{[n(ω) + 1](eiω(t−t ′)[Q̃j (t),ρ̃I(t

′)Q̃j ′(t ′)]

+ e−iω(t−t ′)[Q̃j ′(t ′)ρ̃I(t
′),Q̃j (t)]) + n(ω)(e−iω(t−t ′)[Q̃j (t),ρ̃I(t

′)Q̃j ′(t ′)]

+eiω(t−t ′)[Q̃j ′(t ′)ρ̃I(t
′),Q̃j (t)])}. (A12)

On the other hand, when we perform the RWA to the SEC Hamiltonian, we instead get

− 1

�2
Trenv

[
H̃ RWA

SEC (t),
[
H̃ RWA

SEC (t ′),ρ̃ tot
I (t ′)

]] =
∑
j,j ′

∫ ∞

0
dω

√
κj (ω)κj ′(ω)

2π
{[n(ω) + 1](eiω(t−t ′)[Q̃↓

j (t),ρ̃I(t
′)Q̃↑

j ′(t ′)]

+ e−iω(t−t ′)[Q̃↓
j ′(t ′)ρ̃I(t

′),Q̃↑
j (t)]) + n(ω)(e−iω(t−t ′)[Q̃↑

j (t),ρ̃I(t
′)Q̃↓

j ′(t ′)]

+eiω(t−t ′)[Q̃↑
j ′(t ′)ρ̃I(t

′),Q̃↓
j (t)])}. (A13)

Here, we use the Markov approximation in the sense of Ref. [9], i.e., the reduced density operator ρ̃I(t ′) in the interaction picture
is replaced by ρ̃I(t) in a short enough coherence time of the environment. Then, the equation of motion of the density operator
ρ̂(t) in the Schrödinger picture is obtained from Eqs. (A10) and (A12) as

∂

∂t
ρ̂(t) = 1

i�
[Ĥ0,ρ̂] +

∫ t

t0

dt ′
∑
j,j ′

∫ ∞

0
dω

√
κj (ω)κj ′(ω)

2π
{[n(ω) + 1](eiω(t−t ′)[Q̂j ,ρ̂(t)Q̃j ′(t ′ − t)]

+ e−iω(t−t ′)[Q̃j ′(t ′ − t)ρ̂(t),Q̂j ]) + n(ω)(e−iω(t−t ′)[Q̂j ,ρ̂(t)Q̃j ′(t ′ − t)] + eiω(t−t ′)[Q̃j ′(t ′ − t)ρ̂(t),Q̂j ])}, (A14)

where the density operator is defined as

ρ̂(t) ≡ e−iĤ0t/�ρ̃I(t)e
iĤ0t/�. (A15)

Under the RWA to the SEC, we instead get

∂

∂t
ρ̂(t) = 1

i�
[Ĥ0,ρ̂] +

∫ t

t0

dt ′
∑
j,j ′

∫ ∞

0
dω

√
κj (ω)κj ′(ω)

2π
{[n(ω) + 1](eiω(t−t ′)[Q̂↓

j ,ρ̂(t)Q̃↑
j ′(t ′ − t)]

+ e−iω(t−t ′)[Q̃↓
j ′(t ′ − t)ρ̂(t),Q̂↑

j ]) + n(ω)(e−iω(t−t ′)[Q̂↑
j ,ρ̂(t)Q̃↓

j ′(t ′ − t)] + eiω(t−t ′)[Q̃↑
j ′(t ′ − t)ρ̂(t),Q̂↓

j ])}. (A16)

Here, the integral over t ′ is rewritten for t0 → −∞ as

∫ t

−∞
dt ′e∓iω(t−t ′)Q̃

↓
j ′(t ′ − t) =

∑
μ,ν>μ

Q̂j ′,μ,ν

∫ t

−∞
dt ′ei(ων,μ∓ω)(t−t ′)

=
∑

μ,ν>μ

Q̂j ′,μ,ν

[
πδ(ων,μ ∓ ω) + P

i(ων,μ ∓ ω)

]
, (A17a)

∫ t

−∞
dt ′e±iω(t−t ′)Q̃

↑
j ′(t ′ − t) =

∑
μ,ν>μ

{Q̂j ′,μ,ν}†
∫ t

−∞
dt ′e−i(ων,μ∓ω)(t−t ′)

=
∑

μ,ν>μ

{Q̂j ′,μ,ν}†
[
πδ(ων,μ ∓ ω) − P

i(ων,μ ∓ ω)

]
. (A17b)
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The last terms contribute to the shift of the energies due to the SEC (Lamb shift), and we neglect it in this paper. Then, the master
equation is obtained without the RWA to the SEC as

∂

∂t
ρ̂(t) = 1

i�
[Ĥ0,ρ̂] +

∑
j,j ′

∑
μ,ν>μ

√
κj (ων,μ)κj ′(ων,μ)

2
{[n(ων,μ) + 1]([Q̂j ,ρ̂(t){Q̂j ′,μ,ν}†] + [Q̂j ′,μ,ν ρ̂(t),Q̂j ])

+ n(ων,μ)([Q̂j ,ρ̂(t)Q̂j ′,μ,ν] + [{Q̂j ′,μ,ν}†ρ̂(t),Q̂j ])}. (A18)

For ω independent κ and n(ω) = 0, this master equation is reduced to the non-Lindblad master equation in Eq. (18a). Further,
when the system of interest couples with the environment only through an operator Q̂, it is reduced to Eq. (12). When n(ω) 
= 0
and the system of interest couples with the environment only through an operator Q̂, the above master equation is reduced to
Eq. (B6) for ω dependent κ(ω) and to Eq. (B3) for ω independent κ . On the other hand, under the RWA to the SEC, we get

∂

∂t
ρ̂(t) = 1

i�
[Ĥ0,ρ̂] +

∑
j,j ′

∑
μ,ν>μ

√
κj (ων,μ)κj ′(ων,μ)

2
{[n(ων,μ) + 1]([Q̂↓

j ,ρ̂(t){Q̂j ′,μ,ν}†] + [Q̂j ′,μ,ν ρ̂(t),Q̂↑
j ])

+ n(ων,μ)([Q̂↑
j ,ρ̂(t)Q̂j ′,μ,ν] + [{Q̂j ′,μ,ν}†ρ̂(t),Q̂↓

j ])}. (A19)

For ω independent κ and n(ω) = 0, this master equation is
reduced to the Lindblad master equation in Eq. (18b). Further,
when the system of interest couples with the environment only
through an operator Q̂, it is reduced to Eq. (9). When n(ω) 
=
0 and the system of interest couples with the environment
only through an operator Q̂, the above master equation is
reduced to Eq. (B4) for ω dependent κ(ω) and to Eq. (B2) for
ω independent κ .

2. Quantum Langevin equation

Let us next derive the quantum Langevin equation in the
similar manner as in Ref. [7]. From the SEC Hamiltonian
without the RWA in Eq. (A1), the Heisenberg equation of
f̂ (ω) is derived as

∂

∂t
f̂ (ω,t) = −iωf̂ (ω,t) +

∑
j

√
κj (ω)

2π
Q̂j (t). (A20)

This equation is rewritten for t0 → −∞ as

f̂ (ω,t) = e−iω(t−t0)f̂ (ω,t0)

+
∑

j

√
κj (ω)

2π

∫ t

t0

dt e−iω(t−t ′)Q̂j (t ′) (A21a)

= e−iω(t−t0)f̂ (ω,t0) +
∑

j

√
κj (ω)

2π

∫ ∞

−∞
dω′

× e−iω′t
[
πδ(ω − ω′) − iP

ω − ω′

]
Q̂j (ω′). (A21b)

The last term also contributes to the Lamb shift, and we neglect
it in this paper. Then, the quantum Langevin equation without
the RWA to the SEC is obtained from the Heisenberg equation
for arbitrary operator Ŝ of the system of interest as

∂

∂t
Ŝ = 1

i�
[Ŝ,Ĥ0]

−
∫ ∞

0
dω

⎧⎨
⎩
∑

j

[Ŝ,Q̂j ]

√
κj (ω)

2π
f̂ (ω,t) + H.c.

⎫⎬
⎭
(A22)

≈ 1

i�
[Ŝ,Ĥ0] −

∫ ∞

0
dω

⎧⎨
⎩
∑

j

[Ŝ,Q̂j ]e−iωt
√

κj (ω)

×
⎡
⎣âin(ω) +

∑
j ′

√
κj ′(ω)

2
Q̂j ′ (ω)

⎤
⎦+ H.c.

⎫⎬
⎭, (A23)

where the input operator is defined as

âin(ω) = eiωt0 f̂ (ω,t0)/
√

2π. (A24)

This satisfies [âin(ω),â†
in(ω′)] = δ(ω − ω′)/2π . The input-

output relation is obtained as [7,11]

âout(ω) = âin(ω) +
∑

j

√
κj (ω)Q̂j (ω). (A25)

On the other hand, under the RWA to the SEC, the quantum
Langevin equation is derived from the SEC Hamiltonian in
Eq. (A4) as

∂

∂t
Ŝ ≈ 1

i�
[Ŝ,Ĥ0] −

∫ ∞

0
dω

⎧⎨
⎩
∑

j

[Ŝ,Q̂
↑
j ]e−iωt

√
κj (ω)

×
⎡
⎣âin(ω) +

∑
j ′

√
κj ′(ω)

2
Q̂

↓
j ′(ω)

⎤
⎦+ H.c.

⎫⎬
⎭. (A26)

The input-output relation is obtained as

âout(ω) = âin(ω) +
∑

j

√
κj (ω)Q̂↓

j (ω). (A27)

3. Quantum stochastic differential equation

From the master equation in Eq. (A18) derived without the
RWA to the SEC, in the case of the ω independent κ and flat
distribution n(ω) = n, the corresponding quantum stochastic
differential equation in Itoh’s form [7] is obtained for arbitrary
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operator Ŝ of the system of interest as

dŜ = 1

i�
[Ŝ,Ĥ0]dt

+
∑
j,j ′

√
κjκj ′

2
(n + 1){Q̂↑

j ′[Ŝ,Q̂j ] + [Q̂j ,Ŝ]Q̂↓
j ′ }dt

+
∑
j,j ′

√
κjκj ′

2
n{Q̂↓

j ′[Ŝ,Q̂j ] + [Q̂j ,Ŝ]Q̂↑
j ′ }dt

−
∑

j

√
κj {[Ŝ,Q̂j ]dF̂ (t) + dF̂ †(t)[Q̂j ,Ŝ]}, (A28)

where the fluctuation operator satisfies

dF̂ (t)2 = dF̂ †(t)2 = 0, (A29a)

dF̂ †(t)dF̂ (t) = ndt, (A29b)

dF̂ (t)dF̂ †(t) = (n + 1)dt. (A29c)

On the other hand, from the master equation in Eq. (A19)
derived under the RWA to the SEC, we get

dŜ = 1

i�
[Ŝ,Ĥ0]dt

+
∑
j,j ′

√
κjκj ′

2
(n + 1){Q̂↑

j ′[Ŝ,Q̂
↓
j ] + [Q̂↑

j ,Ŝ]Q̂↓
j ′ }dt

+
∑
j,j ′

√
κjκj ′

2
n{Q̂↓

j ′[Ŝ,Q̂
↑
j ] + [Q̂↓

j ,Ŝ]Q̂↑
j ′ }dt

−
∑

j

√
κj {[Ŝ,Q̂

↑
j ]dF̂ (t) + dF̂ †(t)[Q̂↓

j ,Ŝ]}. (A30)

Replacing Q̂
↓
j and Q̂

↑
j by ĉ and ĉ† (Q̂j = ĉ + ĉ†), respectively,

this equation is certainly reduced to the Itoh’s quantum
stochastic differential equation shown in Ref. [7].

APPENDIX B: NON-LINDBLAD MASTER EQUATIONS
FOR ω DEPENDENT κ(ω)

Whereas we basically supposed the zero-temperature envi-
ronment in the main text, we can in general consider that the
environment has a population distribution as 〈f̂ †(ω)f̂ (ω′)〉 =
δ(ω − ω′)n(ω). For ω independent κ and n in the frequency
range of interest, the master equations in Eqs. (3), (9), and (12)

are rewritten, respectively, as

∂

∂t
ρ̂ = L̂0[ρ̂] + κ

2
(n + 1)([â,ρ̂â†] + [âρ̂,â†])

+ κ

2
n([â†,ρ̂â] + [â†ρ̂,â]), (B1)

∂

∂t
ρ̂ = L̂0[ρ̂] + κ

2
(n + 1)([Q̂↓,ρ̂Q̂↑] + [Q̂↓ρ̂,Q̂↑])

+ κ

2
n([Q̂↑,ρ̂Q̂↓] + [Q̂↑ρ̂,Q̂↓]), (B2)

∂

∂t
ρ̂ = L̂0[ρ̂] + κ

2
(n + 1)([Q̂,ρ̂Q̂↑] + [Q̂↓ρ̂,Q̂])

+ κ

2
n([Q̂,ρ̂Q̂↓] + [Q̂↑ρ̂,Q̂]). (B3)

The validity of these master equations is resummarized in
Table II.

When the cavity loss κ(ω) and distribution n(ω) depends
on the frequency ω in the frequency range of interest, the
above three master equations are not appropriate in general.
However, if the frequency range of interest is only around the
cavity resonance ωc and κ(ω) is not strongly varied in it, i.e.,
in the weak light-matter interaction regime, the above three
master equations are basically valid. In this sense, in Table II,
we denote that they are good in the weak interaction regime
even for ω dependent κ(ω) or n(ω).

In the normally strong or ultrastrong light-matter inter-
action regime for ω dependent κ(ω) or n(ω), as derived in
Appendix A, the master equations are never expressed with
the photon operator â as in Eq. (B1), but they are represented
as similar as the two master equations in Eqs. (B2) and (B3).
Instead of Eq. (B2) derived under the RWA to the SEC
Hamiltonian, the master equation for ω dependent κ(ω) and
n(ω) is obtained in the Born-Markov approximation (we obey
Ref. [9] concerning the meaning of the Markov approximation
as performed in Appendix A of this paper) as

∂

∂t
ρ̂ = L̂0[ρ̂] +

∑
μ,ν>μ

κ(ων,μ)

2

×{[n(ων,μ) + 1]([Q̂↓,ρ̂{Q̂μ,ν}†] + [Q̂μ,ν ρ̂,Q̂↑])

+ n(ων,μ)([Q̂↑,ρ̂Q̂μ,ν] + [{Q̂μ,ν}†ρ̂,Q̂↓])}. (B4)

Whereas, under the RWA to the light-matter interaction, Q̂↓
and Q̂↑ are reduced to â and â†, respectively, we cannot
rewrite the summation of κ(ων,μ)Q̂μ,ν [×n(ων,μ)] and its

TABLE II. Validity of six types of master equations both for ω-independent cavity loss rate κ and distribution n of environment and for ω

dependent κ(ω) or n(ω).

ω independent κ and n ω dependent κ(ω) or n(ω)

RWA to SEC Weak Strong Ultrastrong Weak Strong Ultrastrong

Eq. (B1) or (3) Photon based Lindblad Good Good Bad Good Bad Bad
Eq. (B2) or (9) Eigenstate based Lindblad Good Good Gooda Good Bad Bad
Eq. (B3) or (12) No Non-Lindblad Good Good Good Good Bad Bad

Eq. (B4) Eigenstate based Non-Lindblad Good Good Gooda Good Good Gooda

Eq. (B5) Eigenstate based Lindblad Bad Good Gooda Bad Good Gooda

Eq. (B6) No Non-Lindblad Good Good Good Good Good Good

aGood quantitatively for narrow enough broadening avoiding mode overlaps.
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Hermite conjugate simply by the photon annihilation or
creation operators. In this way, for the ω dependent κ(ω) or
n(ω), we need to use the master equation in Eq. (B4) even in
the normally strong light-matter interaction regime, instead of
Eq. (B1) or (B2).

Note that, while the two master equations (B1) and (B2)
are of the Lindblad form, Eq. (B4) is of a non-Lindblad form.
In order to transform it to the Lindblad form, we sometimes
neglect rapidly oscillating terms [called the post-trace RWA
in Ref. [29] and the RWA in Eqs. (6) and (1) are called the
pre-trace RWA], and Eq. (B4) is approximated as

∂

∂t
ρ̂ = L̂0[ρ̂] +

∑
μ

∑
ν>μ

κ(ων,μ)

2
{[n(ων,μ) + 1]

× ([Q̂μ,ν,ρ̂{Q̂μ,ν}†] + [Q̂μ,ν ρ̂,{Q̂μ,ν}†])
+ n(ων,μ)([{Q̂μ,ν}†,ρ̂Q̂μ,ν] + [{Q̂μ,ν}†ρ̂,Q̂μ,ν])}.

(B5)

This is certainly of the Lindblad form. However, this ap-
proximation is valid only when the transitions between the
eigenstates are well identified under strong enough light-
matter interaction. Then, the master equation in Eq. (B5) is
not appropriate in the weak interaction regime (we note this
fact in Table II). In such case, we should rather use the simple
Lindblad master equation in Eq. (B1) or the non-Lindblad
master equation in Eq. (B4). In this way, we have faced the
problem of the Lindblad form (positivity of density operator)
in the study of cavity QED even in the weak and normally
strong interaction regimes.

For ω dependent κ(ω) or n(ω), instead of Eq. (B3), the
master equation is derived in the Born-Markov approximation
but without the RWA to the SEC as

∂

∂t
ρ̂ = L̂0[ρ̂] +

∑
μ

∑
ν>μ

κ(ων,μ)

2

×{[n(ων,μ) + 1]([Q̂,ρ̂{Q̂μ,ν}†] + [Q̂μ,ν ρ̂,Q̂])

+ n(ων,μ)([Q̂,ρ̂Q̂μ,ν] + [{Q̂μ,ν}†ρ̂,Q̂])}. (B6)

Compared with Eq. (B4), the lowering and raising components
Q̂↓ and Q̂↑ are replaced by the original operator Q̂, while both
of them are of the non-Lindblad form.

In this way, there are two kinds of the non-Lindblad forms:
one is found in Eq. (B4), which appears also in the weak
and normally strong light-matter interaction regimes in the
case of ω dependent κ(ω) or n(ω). The other is found in
Eqs. (B3) and (12), whose difference from the Lindblad
master equation is highlighted in the ultrastrong light-matter
interaction regime with a large broadening. In order to analyze
the latter non-Lindblad form, we considered the ω independent
κ with n(ω) = 0 in the main text. Equation (B6) contains both
the two non-Lindblad contributions.

Note that, if all the environments have the same temperature
T and bosonic environments show the Bose distribution
n(ω) = 1/(e�ω/kBT − 1), the thermal state ρ = e−Ĥ0/kBT is
obtained as a steady state of the master equations in
Eqs. (B4), (B5), and (B6). On the other hand, if all the
environments are at zero temperature, the steady state is
guaranteed as the ground state of Ĥ0 in the master equations

in Eqs. (9) and (12), although Eq. (3) does not give the ground
state of the Hamiltonian such as in Eq. (10) (in ultrastrong
interaction regime) [30].

APPENDIX C: CALCULATION OF ABSORPTION BY
LINDBLAD-TYPE EQUATIONS

Whereas the absorption can be calculated by the simple
equation set for the non-Lindblad-type quantum Langevin
equations as discussed in Sec. V B, here we show the
calculation method applicable to both the Lindblad- and
non-Lindblad-type equations not only for the cavity loss, but
also for the excitation damping.

We first define the array of operators for wave number kj

as

v̂j = (Q̂j Πj X̂j Ŷj

)T
, (C1)

where T means the matrix transpose. For both the Lindblad-
and non-Lindblad-type quantum Langevin equations, the
equation set for the positive-frequency components is ex-
pressed as

(M0
j + iω1)v̂j (ω) = √

κj Cκ
j

⎡
⎣∑

j ′
(
√

κj ′/2)Q̂j ′ (ω) + âin(ω)

⎤
⎦

+ Cγ

j

[
(γ /2)X̂j (ω) + √

γ b̂in
j (ω)

]
. (C2)

Here, the matrix on the left-hand side is derived from Ĥv
0 in

the velocity form as

M0
j =

⎛
⎜⎝

0 −ck 0 0
ck + 4ḡk

2/ωa 0 0 2ḡk

−2ḡk 0 0 −ωa

0 0 ωa 0

⎞
⎟⎠, (C3)

and from Ĥr
0 in the length form as

M0
j =

⎛
⎜⎝

0 −ck 2g̃k 0
ck 0 0 0
0 0 0 −ωa

0 −2g̃k ωa + 4g2ωa 0

⎞
⎟⎠. (C4)

We checked numerically that the same absorption spectra are
obtained in the two form. The coefficient vectors on the right-
hand side are expressed as

Cκ
j =

{(
0 i2 0 0

)T
, non-Lindblad∑

ζ

(
Qj,ζ Πj,ζ Xj,ζ Yj,ζ

)T
Q∗

j,ζ , Lindblad

(C5)

Cγ

j =
{(

0 0 0 i2
)T

, non-Lindblad∑
ζ

(
Qj,ζ Πj,ζ Xj,ζ Yj,ζ

)T
X∗

j,ζ , Lindblad

(C6)

where we defined

Qj,ζ = (w∗
j,ζ − y∗

j,ζ ), (C7a)

Πj,ζ = i(w∗
j,ζ + y∗

j,ζ ), (C7b)

Xj,ζ = (x∗
j,ζ − z∗

j,ζ ), (C7c)

Yj,ζ = i(x∗
j,ζ + z∗

j,ζ ). (C7d)
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Cκ
j and Cγ

j govern the SEC of the cavity loss and excitation
damping, respectively, reflecting whether they are treated in
Lindblad- or non-Lindblad-form. The equation set is rewritten
as∑

j ′
Mj,j ′ (ω)v̂j ′(ω) = √

κj Cκ
j âin(ω) + √

γ Cγ

j b̂in
j (ω), (C8)

where the coefficient matrix is expressed as

Mj,j ′ (ω) = δj,j ′

[
M0 − γ

2
Cγ

j × (0 0 1 0
)+ iω1

]

−
√

κjκj ′

2
Cκ

j × (1 0 0 0
)
. (C9)

From the input-output relation, we can get the reflection
coefficient r(ω) as

âout(ω) = âin(ω) +
∑

j

√
κj Q̂j (ω) = r(ω)âin(ω) + . . . .

(C10)
Then, we can calculate the reflection and absorption spectra.

For deriving Eq. (C2), we in fact replaced all the lowering
operators with the original ones such as Q̂

↓
j (ω) with Q̂j (ω)

for ω > 0. On the other hand, if we treat both the cavity
loss and damping in the Lindblad-type treatment, we can get
simple equation set for polariton annihilation operators {p̂j,ζ }

Frequency ω / ωa

Ab
so

rp
tio

n 
10

6  [
1 

- R
(ω

)] ℓ = 2πc/ωa

(a)

(b)

ℓ = 4πc/ωa

FIG. 8. Absorption spectra by three approaches: by MBCs (blue
solid line), by non-Lindblad-type equation (red dashed line), and by
Lindblad-type equation (green dashed-dotted line). The cavity lengths
are (a) 
 = 2πc/ωa and (b) 
 = 4πc/ωa, where the frequency of
the lowest cavity mode is ck1 = 0.5ωa and 0.25ωa, respectively. We
basically get the same tendency as in Fig. 4. Parameters: g = 1, γ =
0.5ωa, and Λ0 = 103. kj up to j = 2000 are considered.

by inversely replacing Q̂j (ω) with Q̂
↓
j (ω) as

i(ω − ωj,ζ )p̂j,ζ (ω)

= Q∗
j,ζ

√
κj

[∑
j ′

√
κj ′

2

∑
ζ ′

Qj ′,ζ ′ p̂j ′,ζ ′(ω) + âin(ω)

]

+X∗
j,ζ

[
γ

2

∑
ζ ′

Xj,ζ ′ p̂j,ζ ′ (ω) + √
γ b̂in

j (ω)

]
. (C11)

Frequency ω / ωa

Ab
so

rp
tio

n 
10

6  [
1 

- R
(ω

)]

g = 1.0
γ = 0.5ωa

g = 1.0
γ = 0.25ωa

g = 0.5
γ = 0.5ωa

(a)

(b)

(c)

FIG. 9. Absorption spectra are calculated with the Lindblad-type
treatment for excitation damping. For the cavity loss, we used the three
approaches: by the MBCs (blue solid line), by non-Lindblad-type
equation (red dashed line), and by Lindblad-type equation (green
dashed-dotted line). We considered (a) g = 1.0 and γ = 0.5ωa,
(b) g = 1.0 and γ = 0.25ωa, and (c) g = 0.5 and γ = 0.5ωa. In
contrast to the non-Lindblad-type treatment for damping in Fig. 4,
we can find a clear discrepancy between the spectra by the MBCs
and by the non-Lindblad-type equation concerning the cavity loss.
However, for the Lindblad-type equation concerning the cavity loss,
we get a larger discrepancy, and the tendency is similar as in
Fig. 4 Parameters: 
 = πc/ωa and Λ0 = 103. kj up to j = 2000 are
considered.
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From this equation set and the input-output relation

âout(ω) = âin(ω) +
∑

j

√
κj

∑
ζ

Qj,ζ p̂j,ζ , (C12)

we can also calculate the reflection coefficient r(ω), reflection
and absorption spectra. As far as we checked numerically, we
get approximately the same absorption spectra by Eq. (C11)
and by Eq. (C8) with the Lindblad-type treatment for both
the cavity loss and damping. In this way, Q̂j (ω) and Q̂

↓
j (ω)

are approximately equivalent in the parameter region of this
paper.

APPENDIX D: OTHER NUMERICAL RESULTS

In Fig. 8, we show the absorption spectra for (a) cav-
ity length 
 = 2πc/ωa and (b) 
 = 4πc/ωa, where the
frequency of the lowest cavity mode is ck1 = 0.5ωa and
0.25ωa, respectively. The other parameters are g = 1, γ =
0.5ωa, and Λ = 103. The spectra by the three approaches
are plotted with different lines. We get basically the same
tendency as the case of 
 = πc/ωa discussed in the main
text.

In Fig. 9, we show the absorption spectra in the Lindblad-
type treatment for the excitation damping. The three curves
are calculated by the MBCs (solid blue line), quantum
Langevin equation with the non-Lindblad-type treatment for
the cavity loss (red dashed line), and that with the Lindblad-
type treatment for the cavity loss (green dashed-dotted line).
The calculation method of the latter two are explained in
Appendix C. For the calculation by the MBCs, we numerically
calculated the dielectric function εp(ω) of the medium in
the Lindblad-type treatment for the excitation damping as
follows. In the spatially infinite system as discussed in
Sec. IV C, the quantum Langevin equation of the polariton

annihilation operator is obtained as

i(ω−ωk,ζ )p̂k,ζ (ω) = X∗
k,ζ

⎡
⎣γ

2

∑
ζ ′

Xk,ζ ′ p̂k,ζ ′(ω) + √
γ b̂in

k (ω)

⎤
⎦.

(D1)

The dispersion relation is obtained from the zero determinant
of the coefficient matrix as

det

[
i(ω − ωk,L) − γ

2 |Xk,L|2 − γ

2 X∗
k,LXk,U

− γ

2 X∗
k,UXk,L i(ω − ωk,U ) − γ

2 |Xk,U |2
]

= 0.

(D2)

For given ω, we numerically find a complex wave number
kp(ω) satisfying this equation by using analytical expressions
of ωk,ζ and Xk,ζ . Then, using this kp(ω) and np(ω) = ckp(ω)/ω,
the reflection coefficient r(ω) is calculated by Eq. (63).

As seen in Fig. 9, we get a clear discrepancy between the
absorption spectra by the MBCs and by the non-Lindblad-
type equation, while a larger discrepancy is obtained for the
Lindblad-type equation and these discrepancies are reduced for
smaller broadening as in Fig. 9(b). Although it is hard to catch
correctly the reason of this new discrepancy between the MBCs
and the non-Lindblad-type equation, it is rather natural because
the two approaches are apparently different, and the influences
of the RWA to the SEC of the damping are of course different in
the two approaches. Since we did not specify the mechanism of
the damping, we cannot determine which spectrum is correct
if the SEC Hamiltonian of damping is really expressed such as
in Eq. (6) or the RWA to the SEC is justified by some reasons.
However, by looking the surprisingly good agreement of the
spectra by the MBCs and by the non-Lindblad-type equation
in Figs. 4 and 8, we should basically not apply the RWA to the
SEC and use the SEC Hamiltonian such as in Eq. (5) for any
SECs in the ultrastrong light-matter interaction regime with a
large broadening.
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