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Collective phases of strongly interacting cavity photons
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We study a coupled array of coherently driven photonic cavities, which maps onto a driven-dissipative XY
spin- 1

2 model with ferromagnetic couplings in the limit of strong optical nonlinearities. Using a site-decoupled
mean-field approximation, we identify steady-state phases with canted antiferromagnetic order, in addition to
limit cycle phases, where oscillatory dynamics persist indefinitely. We also identify collective bistable phases,
where the system supports two steady states among spatially uniform, antiferromagnetic, and limit cycle phases.
We compare these mean-field results to exact quantum trajectory simulations for finite one-dimensional arrays.
The exact results exhibit short-range antiferromagnetic order for parameters that have significant overlap with
the mean-field phase diagram. In the mean-field bistable regime, the exact quantum dynamics exhibits real-time
collective switching between macroscopically distinguishable states. We present a clear physical picture for
this dynamics and establish a simple relationship between the switching times and properties of the quantum
Liouvillian.
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I. INTRODUCTION

Despite numerous outstanding questions, the study of
quantum many-body systems in thermal equilibrium is on
relatively solid ground. In particular, very general guiding
principles help to categorize the possible equilibrium phases
of matter and predict in what situations they can occur [1–3].
In comparison, quantum many-body systems that are far
from equilibrium are less thoroughly understood, motivating
a large-scale effort to explore nonequilibrium dynamics
experimentally, in particular, using atoms, molecules, and
photons [4–9]. At the same time, it has become clear that
studying nonequilibrium physics in these systems is often
more natural than studying equilibrium physics; they are, in
general, intrinsically nonequilibrium. For example, thermal
equilibrium is essentially never a reasonable assumption in
photonic systems, where dissipation must be countered by
active pumping [10]. Indeed, the inadequacy of equilibrium
descriptions for photonic systems has long been recognized
[11], even though close analogies to thermal systems some-
times exist [12–16].

Until recently, photonic systems have been restricted to
a weakly interacting regime. With notable progress towards
generating strong optical nonlinearities at the few-photon
level, for example, with atoms coupled to small-mode-
volume optical devices [17–22], Rydberg polaritons [23,24],
and circuit-QED devices [25–28], this situation is rapidly
changing. The production of strongly interacting, driven and
dissipative gases of photons appears to be feasible [29,30]
and affords exciting opportunities to explore the properties
of open quantum systems in unique contexts, while studying
the applicability of theoretical treatments designed with more
weakly interacting systems in mind. For example, it is not

fully understood how the steady states of these systems relate
to the equilibrium states of their “closed” counterparts or how
conventional optical phenomena, such as bistability, manifest
in the presence of strong optical nonlinearities and spatial
degrees of freedom.

We consider an array of coupled, single-mode photonic
cavities described by a driven-dissipative Bose-Hubbard (BH)
model [31–35], which maps onto a driven-dissipative XY
spin- 1

2 model in the limit of strong optical nonlinearity.
We perform a comprehensive mean-field (MF) study and
identify a variety of interesting steady states including spin
density waves and limit cycles (LCs), which break the discrete
translational symmetry of the system. Spin density waves
possess canted antiferromagnetic (AF) order for a range
of drive strengths, despite the ferromagnetic nature of the
spin couplings. Interestingly, the exact quantum solutions
exhibit short-range AF correlations for parameters that have
notable overlap with the MF results. The system also supports
collective bistable phases, which manifest in the exact quantum
dynamics as fluctuation-induced collective switching between
MF-like states. We present a simple relationship between this
dynamics and properties of the quantum Liouvillian.

II. MODEL

For a system weakly coupled to a Markovian environment,
the dynamics of its density matrix ρ̂ is governed by a master
equation ∂t ρ̂ = L [ρ̂], where L [ρ̂] = −i[Ĥ,ρ̂] + D[ρ̂] is the
Liouvillian, Ĥ is the system Hamiltonian, and D[ρ̂] is a
dissipator in the Lindblad form [36,37]. Here, we consider an
array of coherently coupled, nonlinear, single-mode photonic
cavities driven by a spatially uniform laser field with frequency
ωl, which leak photons into the environment at a rate γ . In
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the frame rotating at the driving frequency, the Hamiltonian
for the coherent drive is Ĥl = �

∑
i(âi + â

†
i ). The system

Hamiltonian is then Ĥ = ĤBH + Ĥl, where

ĤBH = −J

d

∑
〈i,j〉

â
†
i âj − μ

∑
i

n̂i + U

2

∑
i

n̂i(n̂i − 1) (1)

is the Bose-Hubbard Hamiltonian [38]. Here, â
†
i (âi) creates

(annihilates) a photon in cavity i, n̂i = â
†
i âi is the local number

operator, and the sums run from i = 1 to N , the number
of cavities. The notation 〈i,j 〉 implies a further summation
over all cavities j that are nearest neighbors to cavity i,
the number of which is given by the coordination number
z. The nonlinearity of the cavities is quantified by effective
two-photon interactions of strength U . The first term in
Eq. (1) describes the hopping of photons between cavities;
J is the hopping rate, and d is the dimensionality of the
system (d = z/2 for hypercubic arrays). The laser drives
the system with strength � and is detuned from the cavity
resonance frequency ωc by μ = ωl − ωc. The coupling of
the system to the environment is described by the dissipator
D[ρ̂] = γ

2

∑
i(2âi ρ̂â

†
i − ρ̂n̂i − n̂i ρ̂).

For � = 0, the system evolves into a trivial vacuum at
long times, with 〈n̂i〉 = 0 for all i. The laser drive provides
a photon source and can stabilize nontrivial steady states ρ̂ss,
which satisfy L [ρ̂ss] = 0. Generally, these nonequilibrium
steady states are qualitatively distinct from the equilibrium
states of the closed (γ = � = 0) BH model described by
ĤBH, which are characterized by a superfluid order parameter
that spontaneously breaks the U(1) symmetry associated with
particle number conservation. This U(1) symmetry is explicitly
broken by the coherent laser drive, and the driven-dissipative
BH (DDBH) model conserves neither energy nor particle
number. Therefore superfluidity cannot emerge in the DDBH
model; this is in contrast to similar models with incoherent
pumps, which can support superfluid phases [39–45]. The
DDBH model does, however, possess a spatial symmetry
generated by discrete translations along the Bravais vectors
of the cavity array, which is broken spontaneously if spatial
structure develops in the steady state.

We study the steady states of the DDBH model using
both a site-decoupled Gutzwiller mean-field method [46]
and exact quantum trajectory simulations of finite systems
[47–50]. In this MF approximation, the density matrix is
decomposed as a product state ρ̂ = ⊗

ρ̂i , where ρ̂i is the
local density matrix at cavity i. Further, we restrict our study
to the “hard-core” limit, where strong optical nonlinearities
produce a perfect photon blockade, by taking U → ∞ [33].
In this limit, the photons can be mapped onto spins by an
inverse Holstein-Primakoff transformation [51], resulting in
an effective driven-dissipative XY spin- 1

2 model [40,52] with
symmetric, ferromagnetic spin couplings, described by the
Hamiltonian Ĥ = − J

4d

∑
〈i,j〉 (σ̂ x

i σ̂ x
j + σ̂

y

i σ̂
y

j ) + �
∑

i σ̂
x
i −

μ

2

∑
i σ̂

z
i , where σ̂

x,y,z

i are the Pauli matrices. We derive
equations of motion for the spin components σα

i = Tr[ρ̂σ̂ α
i ];

these are given by Eqs. (A4) in Appendix A. For clarity,
we specialize to the case of J/γ = 10, though many of the
qualitative features discussed below are valid more generally.

FIG. 1. Mean-field phase diagram for J/γ = 10 in the hard-core
(U → ∞) limit. Represented are dark (U1) and bright (U2) uniform
states, canted antiferromagnetic states (AF), frustrated AF states
(f-AF), and limit cycles (LC). Regions with double labeling exhibit
bistability between the indicated states. Discontinuous transitions
are indicated by thick black lines. Inset: Limit cycle for μ/γ = 2.5
and �/γ = 6.5 projected onto the Bloch sphere. Red (blue) lines
represent the dynamics of cavities in the A (B) sublattice.

III. MEAN-FIELD PHASE DIAGRAM

By solving the MF equations for a variety of parameters,
we find heuristically that all steady states are either spatially
uniform, where all spins point in the same direction (σα

i = σα
j

for all i,j ), or have antiferromagnetic spin density wave order,
where neighboring spins point in different directions, but
next-nearest neighbors point in the same direction (σα

i �= σα
i±1

and σα
i = σα

i±2 for all i). Because the neighboring spins are
not antiparallel, this AF order is “canted.” This motivates the
use of a two-sublattice ansatz, which we solve by evolving the
MF equations of motion for two sites. We find a variety of
interesting steady-state phases, shown by the colored regions
in Fig. 1. In the blue region, the system exhibits bistability
between spatially uniform darker (U1) and brighter (U2)
steady states. In the red region, there is a unique steady state
with AF order. In the green region, the system is bistable
between U1 and AF steady states. All phase boundaries in
Fig. 1 correspond to continuous transitions except those at
the threshold of bistability (dark lines), where the additional
steady state appears discontinuously.

The bistability in this system is inherently collective, in
that it does not exist for a single cavity in the hard-core
limit [53]. We note that collective bistability exists in a
variety of other driven and dissipative systems [54–62] and
was recently observed in an gaseous ensemble of Rydberg
atoms [63]. Gases of Rydberg atoms are also predicted to
exhibit AF order [64–66], though unlike the model we consider
here, their interactions (due to the Rydberg blockade) are
effectively antiferromagnetic in nature. Other works studying
the hard-core DDBH model also predict AF order, though they
consider variants of the model that include spatially varying
drive fields [67], two-cavity pumping [52], and cross-Kerr
terms [68,69]. Our system exhibits AF order in the absence
of these features, despite the ferromagnetic nature of the
couplings.
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In the region enclosed by the dashed line in Fig. 1, the
AF states acquire a limit cycle character [64,70,71], exhibiting
periodic oscillatory dynamics at long times and, thus, breaking
the continuous time-translational symmetry of the system. The
inset in Fig. 1 shows an example limit cycle projected onto
a Bloch sphere. Interestingly, the LC exists both as a unique
steady state and as part of a U1-LC bistable pair (green region).
We note that similar limit cycles were recently predicted for a
driven-dissipative XYZ spin- 1

2 model [72].
To determine the validity of the two-sublattice ansatz, we

perform a linear stability analysis on the spatially uniform
steady states [34,35,52] (see Appendix A, Sec. 2). In the light-
blue and light-green regions in Fig. 1, the U1 steady state
is dynamically unstable to the formation of incommensurate
(k < π ) spin density waves, which cannot be captured within
the two-sublattice ansatz. To understand the effects of this
instability, we solve the inhomogeneous MF equations for
a one-dimensional (1D) chain, with randomly seeded initial
states. In the light-blue region, the instability results in the
disappearance of the U1 steady state. In the light-green region,
we find steady states that exhibit AF order over finite-size
domains, which are interrupted by domains of the U1 state; we
refer to this as frustrated AF (f-AF) order. While the AF phase
is the only true periodically ordered steady state in this region,
U1 domains remain stable if they are sufficiently small to not
sample unstable wave vectors, which often exist over a very
narrow range of k. The limit cycles remain mostly AF ordered,
with some low-amplitude, small-k features, and the U1 state
of the U1/LC pair ceases to exist in the light-green LC region.

IV. BEYOND MEAN FIELD

It is important to understand how the rich physics predicted
by the Gutzwiller MF theory survives in the presence of
quantum and classical fluctuations, which exist in the true
steady state of the DDBH model and play particularly
important roles in low spatial dimensions. Toward this end,
we employ a quantum trajectory algorithm to study finite
1D systems [47–50] (see Appendix B). This method provides
exact results for physical observables in the steady state under
the ensemble averaging of trajectories.

We present results for a system with N = 12 cavities and
periodic boundary conditions in Fig. 2. In Fig. 2(a), we show
the nearest-neighbor part of the σ̂ y connected correlation
function 


y

1 , where 

y

i = 〈σ̂ y

j σ̂
y

j+i〉 − 〈σ̂ y

j 〉〈σ̂ y

j+i〉, which is
independent of j . We choose to study σ̂ y correlations because
the y components of the spins exhibit the strongest AF order
in the MF results, and 


y

i can be measured via correlated
homodyne detection in an experimental setup. The blue
region shows where 


y

1 is positive, and the red region shows
where 


y

1 is negative, corresponding to AF nearest-neighbor
correlations. The inset shows 


y

i for μ/γ = 10 and �/γ = 6
(12), represented by green diamonds (red squares). While both
correlation functions exhibit nearest-neighbor AF order, the
correlations for �/γ = 6 have incommensurate spin density
wave character, while the correlations for �/γ = 12 have
a true AF character, switching from negative to positive
values with each successive cavity. The incommensurate spin
density wave correlations are present where the MF linear
stability analysis predicts an incommensurate spin density

FIG. 2. N = 12 cavities with periodic boundary conditions and
nearest-neighbor couplings for J/γ = 10. Black lines show the
mean-field phase diagram boundaries. (a) Nearest-neighbor part of
the σ̂

y

i correlation function, 

y

1 . The red region indicates antifer-
romagnetic correlations. (b) δN2/N (see text), which is strongly
enhanced in the presence of collective bistable switching. Inset in
(a): 


y

i for μ/γ = 10 and �/γ = 6 (12), exhibiting short-range
incommensurate spin density wave (antiferromagnetic) order.

wave instability of the U1 steady state, corresponding to the
f-AF region in Fig. 1.

We have performed finite-size scaling calculations for these
and a number of other parameters and found that N = 12
accurately captures the AF order of the DDBH model in the
thermodynamic limit for a large region of the phase diagram;
this is due to the short-range, exponentially decaying nature
of 


y

i . The black lines in Fig. 2 show the MF phase diagram
boundaries. Interestingly, there is reasonably good agreement
between the region of short-range AF correlations in the 1D
quantum system and the MF results.

In Fig. 2(b), we show the normalized fluctuations in the total
photon number N̂ = ∑N

i=1 n̂i , given by δN2/N , where δN2 =
〈N̂2〉 − 〈N̂〉2 and N = 〈N̂〉. Interestingly δN2/N becomes
anomalously large in the darker-blue region, which has sig-
nificant overlap with the MF bistability, indicating that photon
number fluctuations become strongly correlated when the MF
theory predicts collective bistability. The origin of the δN2/N

enhancement is revealed upon inspection of the trajectories
themselves. In Fig. 3(a), we show the photon number as
a function of time for N = 12 cavities with μ/γ = −2.5
and �/γ = 2.5, in the region of enhanced δN2/N [shown
by the white circle in Fig. 2(b)]. Interestingly, the trajectory
exhibits collective switching between macroscopically distin-
guishable states, which resemble the MF steady states for these
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FIG. 3. All panels correspond to N = 12 cavities and μ/γ =
−2.5. (a) Example quantum trajectory for �/γ = 2.5, in the bistable
regime, showing collective switching between dark (white) and bright
(blue) states. (b) Mean-field calculation of total photon number,
showing collective bistability. Solid (dashed) black lines correspond
to stable (unstable) solutions of the mean-field equations. (c) Total
photon number for the quantum trajectory shown in (a).

parameters. We plot the total photon number obtained via MF
calculations as a function of �/γ for μ/γ = −2.5 in Fig. 3(b);
the values at �/γ = 2.5 are indicated by the gray circles.
We show N for the quantum trajectory as a function of time
in Fig. 3(c). Here, N fluctuates about two mean values for
extended periods of time, which are interrupted by switching
events that drive the system from one MF-like state to the
other.

V. COLLECTIVE BISTABILITY AND SWITCHING

A recent work [73] showed that collective bistability
in the driven-dissipative XY spin- 1

2 model vanishes as the
Gutzwiller approximation is systematically improved. Our
results demonstrate that while ρ̂ss is indeed unique [74,75], it
retains clear signatures of the MF bistability, namely, that the
system dynamically switches between two macroscopically
distinguishable configurations that resemble the MF steady
states ρ̂1 and ρ̂2; in fact, this is a generic feature of bistable
systems [60,61,65,76,77]. The approach to ρ̂ss in the bistable
regime is then characterized by switching between these two
states, and the rate of convergence is directly related to the
average time spent in ρ̂1 and ρ̂2 between switching events;
we refer to these times as τ1 and τ2, respectively. In the
master equation formalism, the asymptotic rate of convergence
is set by the Liouvillian gap  = −Re[εex], where εex is
the eigenvalue of L with the smallest magnitude nonzero
real part [78,79]; this suggests that  and τ1,2 are intimately
related [80]. The presence of true bistability in the MF theory
reflects the fact that the Liouvillian gap vanishes at this
level of approximation. The collective switching in the exact
dynamics, and the concomitant opening of the Liouvillian gap,
can be understood to result from both quantum and dissipation-
induced (classical) fluctuations that are not included in the MF
theory.

It is natural to expect that MF behavior can be recovered in
the quantum system as its coordination number z is increased.
We explore this possibility by taking the spin couplings (or

FIG. 4. (a) Liouvillian gap /γ for N = 20 cavities with J/γ =
10 and infinite-range coupling in the hard-core (U → ∞) limit. The
solid black line shows the mean-field bistable phase boundary for
spatially uniform states. (b) Liouvillian gap for μ/γ = −5. The solid
dark (light) blue line shows the gap calculated by diagonalizing the
Liouvillian for N = 12 (8) cavities. Circles (squares) show the gap
extracted from quantum trajectory simulations (see text); error bars
represent the standard error.

photon hopping) to be infinite-range. This corresponds to
modifying the hopping term in Eq. (1) to −J

∑
i �=j â

†
i âj ,

where J ≡ 2J/(N − 1). While this limit may seem unnatural
for arrays of photonic cavities, it could be achieved using
an external mirror, and it is in fact quite natural for other
open quantum systems, such as ensembles of Rydberg atoms
[64,66,81] or trapped ions [82,83]. We calculate the Liouvillian
gap exactly by taking advantage of an efficient parametrization
of the accessible space of density matrices (see [57,84], and
Appendix C); we show the Liouvillian gap for N = 20 as
a function of μ/γ and �/γ in Fig. 4(a). There is striking
agreement between the exact quantum results and the MF
results; where MF theory predicts collective bistability, the
Liouvillian gap decreases to  � γ [57].

We plot /γ for N = 8 (12) cavities and μ/γ = −5 as a
function of �/γ in Fig. 4(b), shown by the solid light-blue
(dark-blue) lines. Savage and Carmichael proposed a two-
state toy model to describe a bistable system with a small
Liouvillian gap [85], which has a gap toy = τ−1

1 + τ−2
2 . We

extract values for τ1 and τ2 heuristically by measuring the
time spent in the dark (1) and bright (2) states of the quantum
trajectory simulations, and plot τ−1

1 + τ−1
2 in Fig. 4(b), shown

by the squares (circles) for N = 8 (12). Already at N = 12,
there is excellent quantitative agreement between the exact
Liouvillian gap and the results of the simple two-state model
as extracted from the quantum trajectories with infinite-range
couplings. This provides a clear connection between the MF
and the quantum solutions in the bistable regime. We note
that Kinsler and Drummond performed a similar analysis for
the single-mode quantum parametric oscillator and also found
good quantitative agreement for large photon numbers [80].

VI. DISCUSSION

The thermodynamic limit of the 1D DDBH model with
nearest-neighbor interactions is challenging to study numeri-
cally, but we expect its dynamics to exhibit collective switching
over finite-size domains. This behavior is reminiscent of
equilibrium systems that, while exhibiting a first-order phase
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transition in higher dimensions, fail to do so in one dimension.
Whether or not mean-field bistability is associated with a true
first-order phase transition in higher spatial dimensions is an
interesting question that warrants further study. Finally, we
note that we have studied the soft-core DDBH model (with
finite U ) and identified features that are directly analogous to
those discussed here. A comprehensive study of the soft-core
DDBH model is the subject of future work.
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APPENDIX A: EQUATIONS OF MOTION
IN THE U → ∞ LIMIT

In this Appendix, we provide technical details to support the
theory and numerics in the text. Though many of our results are
valid more generally for soft-core bosons, here we specialize
to the limit of hard-core bosons, valid when U → ∞, where U

is the local interaction strength in Eq. (1) in the text. Hard-core
bosons can be conveniently mapped onto spins via an inverse
Holstein-Primakoff transformation,

â
†
i → σ̂+

i and âi → σ̂−
i , (A1)

where σ̂±
i = (σ̂ x

i ± iσ̂
y

i )/2 and σ̂+
i σ̂−

i = (σ̂ z
i + 1)/2, 1 is the

SU(2) identity operator, and σ̂
x,y,z

i are Pauli matrices that act
on cavity i. Following this transformation, the master equation
becomes

∂t ρ̂ = −i[Ĥ,ρ̂] + γ

2

∑
i

(2σ̂−
i ρ̂σ̂+

i − σ̂+
i σ̂−

i ρ̂ − ρ̂σ̂+
i σ̂−

i ),

(A2)

where Ĥ is the system Hamiltonian,

Ĥ = − J

2z

∑
〈i,j〉

(
σ̂ x

i σ̂ x
j + σ̂

y

i σ̂
y

j

) + �
∑

i

σ̂ x
i − μ

2

∑
i

σ̂ z
i .

(A3)

Here the summations run over i = 1, . . . ,N , and the notation
〈i,j 〉 indicates an additional sum over all cavities j that
are coupled to cavity i (the number of which is equal to
the lattice coordination number z). Equations (A2) and (A3)
describe a driven-dissipative spin- 1

2 XY model, with isotropic
interactions and in the presence of a homogeneous applied
field.

To study the steady states of Eq. (A2), it is convenient to use
equations of motion for the spin components σ

x,y,z

i = 〈σ̂ x,y,z

i 〉;
these equations are readily derived by taking ∂tσ

x,y,z

i =
Tr[σ̂ x,y,z

i ∂t ρ̂]. Using the Pauli matrix commutation relations
[σ̂ α

i ,σ̂
β

j ] = 2iδij εαβγ σ̂
γ

i where εαβγ is the Levi-Civita symbol,

we find

∂tσ
x
i = −2J

z

∑
〈i,j〉

〈
σ̂ z

i σ̂
y

j

〉 + μσ
y

i − γ

2
σx

i ,

∂tσ
y

i = 2J

z

∑
〈i,j〉

〈
σ̂ z

i σ̂ x
j

〉 − μσx
i − 2�σz

i − γ

2
σ

y

i , (A4)

∂tσ
z
i = 2J

z

∑
〈i,j〉

〈
σ̂ x

i σ̂
y

j − σ̂
y

i σ̂ x
j

〉 + 2�σ
y

i − γ
(
σ z

i + 1
)
.

1. Gutzwiller mean-field approximation

In the Gutzwiller MF approximation, the density matrix is
assumed to factorize over all cavities, ρ̂ = ⊗

i ρ̂i . In the spin
formalism, this corresponds to the factorization of all nonlocal
two-spin expectation values. Thus, in the MF approximation,
Eqs. (A4) become

∂tσ
x
i = −2J

z
σ z

i

∑
〈i,j〉

σ
y

j + μσ
y

i − γ

2
σx

i ,

∂tσ
y

i = 2J

z
σ z

i

∑
〈i,j〉

σx
j − μσx

i − 2�σz
i − γ

2
σ

y

i ,

∂tσ
z
i = 2J

z
σ x

i

∑
〈i,j〉

σ
y

j − 2J

z
σ

y

i

∑
〈i,j〉

σx
j + 2�σ

y

i − γ
(
σ z

i + 1
)
.

(A5)

In the majority of the phase diagram in Fig. 1 in the text,
the steady states are obtained by evolving these equations
numerically using a fourth-order Runge-Kutta algorithm.

2. Linear stability analysis

The phase diagram in Fig. 1 in the text also shows results
from a linear stability analysis of spatially uniform steady
states within the MF approximation, which is carried out as
follows. Spatially uniform states have the property σα

i = σα
j ≡

σα for all i, j . Using this as an ansatz for Eqs. (A5), we find
the equations for the uniform steady states,

0 = −2Jσ zσ y + μσy − γ

2
σx,

0 = 2Jσ zσ x − μσx − 2�σz − γ

2
σy, (A6)

0 = 2�σy − γ (σ z + 1),

which can be solved analytically to find the spin configurations
of the uniform steady states. For example, we plot solutions
for J/γ = 10 and μ/γ = −5 as a function of �/γ in
Fig. 5(a); these solutions exhibit collective bistability, where
the dynamically stable steady-state solutions are shown by the
solid black lines. The dashed black line in this figure indicates
a dynamically unstable solution, which we discuss in more
detail below.

The ansatz of spatially uniform steady states is not appro-
priate under all circumstances, for example, if the steady state
develops a spatial order that breaks the discrete translational
symmetry of the DDBH model. The presence of such spatially
ordered states can sometimes be captured by an instability
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FIG. 5. (a) Gutzwiller mean-field result for (σ z
0 + 1)/2 (equivalent to the local photon number) for J/γ = 10 and μ/γ = −5. Solid black

lines represent steady-state solutions that are stable at k = 0; the dashed black line represents a solution of the mean-field equations that is
unstable at k = 0. (b) Real part of the linear stability eigenvalues as a function of the wave number k. At values of k for which Re[ω/γ ] > 0
there is an instability of the uniform steady state.

of the uniform steady state. To explore this possibility, we
perform a linear stability analysis of the uniform steady-state
solutions of Eqs. (A6), specializing to 1D systems with z = 2.
In a system with infinite spatial extent, this is accomplished by
adding a small plane-wave perturbation to the uniform steady
state of the form σm = σ 0 + δeikm, where σ 0 = (σx

0 ,σ
y

0 ,σ z
0 )T

and σα
0 are the solutions of Eqs. (A6), m are cavity indices,

and k is the wave number of the perturbation. Linearizing in
δ, we find the equation

∂tδ = Mδ, (A7)

where

M =

⎛
⎜⎝

− γ

2 μ − 2Jσ z
0 cos(k) −2Jσ

y

0

2Jσ z
0 cos(k) − μ − γ

2 2Jσx
0 − 2�

2Jσ
y

0 [1 − cos(k)] −2Jσx
0 [1 − cos(k)] + 2� −γ

⎞
⎟⎠. (A8)

The matrix M has eigenvalues ω that depend on the wave
number k. When the real part of ω is negative for all k, the
uniform steady state σ 0 is dynamically stable. When some
ω acquires a positive real part, this signifies an instability
of the uniform steady state, and the wave number at which
Re[ω] is maximum corresponds to the mode that is maximally
unstable and dominates the dynamics of the instability. For
example, in Fig. 5(b) we plot Re[ω/γ ] as a function of k for
three sets of parameters, all with J/γ = 10. The blue lines
correspond to one of three solutions with �/γ = 2, shown by
the blue circle in Fig. 5(a). These modes are unstable at k = 0,
indicating a global instability of the uniform steady-state
solution. The green and red lines correspond to parameters
exhibiting spin density wave instabilities. The green line
exhibits an incommensurate spin density wave instability, as
the modes are stable at k = π but unstable in a small region of
k < π . The red line exhibits an antiferromagnetic spin density
instability, as the most unstable eigenvalue occurs for k = π .

APPENDIX B: EXACT NUMERICAL
SOLUTION OF EQ. (A2)

We employ a quantum trajectory algorithm to solve the
master equation, (A2), which is a powerful, exact method
for studying open quantum systems that relies on treating
the system-environment coupling (the dissipator in the master

equation) stochastically. Here, we present the algorithm for
generating a quantum trajectory using quantum jumps. We
begin by defining the effective non-Hermetian Hamiltonian,

Ĥeff = Ĥ − i
γ

2

∑
i

n̂i , (B1)

so Eq. (A2) can be written as

∂t ρ̂ = −i(Ĥeff ρ̂ − ρ̂Ĥ†
eff) + γ

∑
i

âi ρ̂â
†
i . (B2)

The quantum trajectory method amounts to evolving a
wave function, as opposed to a density matrix, under Ĥeff ,
while treating the rightmost “recycling” term in Eq. (B2)
stochastically.

Consider a wave function |ψ(t)〉 at time t that evolves under
Ĥeff . For a small time step δt , the wave function at t + δt can
be written as (using Euler integration)

|ψ ′(t + dt)〉 = (1 − iĤeffdt)|ψ(t)〉. (B3)

The norm of |ψ〉 is not conserved in real-time evolution under
Ĥeff due to its being non-Hermetian, so in general we have

〈ψ ′(t + dt)|ψ ′(t + dt)〉
〈ψ(t)|ψ(t)〉 = 1 − δp. (B4)

In the quantum trajectory formalism, we choose the wave
function at t + δt stochastically. With probability 1 − δp, we
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choose

|ψ(t + δt)〉 = |ψ ′(t + δt)〉√
1 − δp

, (B5)

and with probability δp we take our next state to be one that
emitted a photon from cavity i,

|ψ(t + δt)〉 = âi |ψ(t)〉√
δpi/δt

, (B6)

where the jump site i is chosen with probability

�i = δpi

δp
= δt〈ψ(t)|n̂i |ψ(t)〉

δp
, (B7)

and
∑

i δpi = δp.

APPENDIX C: INFINITE-RANGE INTERACTIONS

In general, long-range interactions introduce considerable
difficulties when numerically studying the dynamics of many-
body systems. However, when all pairs of spins interact with
the same strength, the model becomes symmetric under the
exchange of any two spins, which allows for an extremely effi-
cient parametrization of the accessible Hilbert space. In the ab-
sence of spontaneous emission, permutation symmetry of the
Hamiltonian restricts the dynamics of initially permutation-
symmetric pure states to the subspace of collective spin
states, often referred to as Dicke states, and the dimension
of the accessible Hilbert space is therefore O(N ). For an
open quantum system governed by a permutation-symmetric
Liouvillian, dynamics is restricted to the space of permutation
symmetric density matrices, which can be parametrized in
terms of symmetrized direct products of Pauli matrices. The
space of permutation-symmetric, Hermitian matrices over the
product Liouville space of N spins is spanned by basis states
of the following form:

M̂(n) = 1

2N
∑

χ

(
σ̂ x

χ(1) ⊗ · · · ⊗ σ̂ x
χ(nx )

)

⊗
(
σ̂

y

χ(nx+1) ⊗ · · · ⊗ σ̂
y

χ(nx+ny )

)

⊗ (
σ̂ z

χ(nx+ny+1) ⊗ · · · ⊗ σ̂ z
χ(nx+ny+nz)

)

⊗ (
σ̂ 0

χ(nx+ny+nz+1) ⊗ · · · ⊗ σ̂ 0
χ(N )

)
. (C1)

Here the parameters n = {nx,ny,nz} are positive integers that
are arbitrary up to the constraint nx + ny + nz � N , σ̂ 0

i is
the identity matrix on the Hilbert space of spin i, and χ

is a permutation of integers {1, . . . ,N }. The most general
permutation-symmetric Hermitian matrix can be written

ρ̂ =
∑

n

c(n)M̂(n). (C2)

Note that M̂({0,0,0}) has unity trace, while all the other basis
states are traceless; hence ρ̂ can only be a valid density matrix if
c({0,0,0}) = 1. The number of unconstrained coefficients, and
hence the dimensionality of the space that must be considered
in the dynamics, is the number of ways of choosing n such that
0 < nx,ny,nz � N . It is straightforward to check that there are
D such n, where

D = (N + 3)(N + 2)(N + 1)

3!
− 1, (C3)

hence the dimension of the accessible space of density matrices
is O(N 3). Even after the restriction c({0,0,0}) = 1, a matrix
of the form in Eq. (C2) is not guaranteed to be a valid density
matrix, as it may have negative eigenvalues (equivalently, it
need not satisfy Tr[ρ̂2] � Tr[ρ̂] = 1). However, the master
equation provides a positive map and preserves the positivity
of the density matrix eigenvalues dynamically. Therefore if we
start with an initial state that is a valid density matrix, it will
remain restricted to the space of valid density matrices during
the time evolution.

The permutation symmetry of the Liouvillian endows it
with a block diagonal structure, with one of the blocks spanned
by the states ρ̂ in Eq. (C2). The dynamics of an initial
density matrix within this block can therefore be calculated
by determining the action on all states M̂(n):

L (M̂(n)) =
∑

m

Lm,nM̂(m). (C4)

The coefficients Lm,n are straightforward to compute, and
using Eq. (C4) the master equation can be written

∂tc(n) = Ln,mc(m). (C5)

This set of O(N 3) first-order, linear, ordinary differential
equations is straightforward to integrate for N � 100.
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J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S.
Dang, Nature 443, 409 (2006).

[5] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J.
Schmiedmayer, Nature 449, 324 (2007).

[6] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M.
D. Martin, A. Lemaı̂tre, J. Bloch, D. N. Krizhanovskii, M. S.
Skolnick, C. Tejedor, and L. Vina, Nature 457, 291 (2008).
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and A. Imamoğlu, Phys. Rev. Lett. 103, 033601 (2009).
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[58] B. Nagorny, T. Elsässer, and A. Hemmerich, Phys. Rev. Lett.

91, 153003 (2003).
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