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Properties of bosons in a one-dimensional bichromatic optical lattice in the regime
of the pinning transition: A worm-algorithm Monte Carlo study
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The sensitivity of the pinning transition (PT) as described by the sine-Gordon model of strongly interacting
bosons confined in a shallow, one-dimensional, periodic optical lattice (OL), is examined against perturbations
of the OL. The PT has been recently realized experimentally by Haller et al. [Nature (London) 466, 597 (2010)]
and is the exact opposite of the superfluid-to-Mott-insulator transition in a deep OL with weakly interacting
bosons. The continuous-space worm-algorithm (WA) Monte Carlo method [Boninsegni et al., Phys. Rev. E 74,
036701 (2006)] is applied for the present examination. It is found that the WA is able to reproduce the PT,
which is another manifestation of the power of continuous-space WA methods in capturing the physics of phase
transitions. In order to examine the sensitivity of the PT, it is tweaked by the addition of the secondary OL. The
resulting bichromatic optical lattice (BCOL) is considered with a rational ratio of the constituting wavelengths
λ1 and λ2 in contrast to the commonly used irrational ratio. For a weak BCOL, it is chiefly demonstrated that
this PT is robust against the introduction of a weaker, secondary OL. The system is explored numerically by
scanning its properties in a range of the Lieb-Liniger interaction parameter γ in the regime of the PT. It is argued
that there should not be much difference in the results between those due to an irrational ratio λ1/λ2 and those
due to a rational approximation of the latter, bringing this in line with a recent statement by Boers et al. [Phys.
Rev. A 75, 063404 (2007)]. The correlation function, Matsubara Green’s function (MGF), and the single-particle
density matrix do not respond to changes in the depth of the secondary OL V1. For a stronger BCOL, however,
a response is observed because of changes in V1. In the regime where the bosons are fermionized, the MGF
reveals that hole excitations are favored over particle excitations manifesting that holes in the PT regime play an
important role in the response of properties to changes in γ .
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I. INTRODUCTION

It is known that weakly interacting bosons confined by
a deep periodic one-dimensional (1D) optical lattice (OL)
undergo a transition from a superfluid (SF) to a Mott insulator
(MI) [1–4] when the strength of the OL is increased. The oppo-
site situation of getting another kind of SF-to-MI transition in a
shallow 1D OL occupied by strongly interacting bosons [5–7]
is known as the pinning transition (PT), where the bosons are
“pinned” just by subjecting them to a very weak periodic OL.
Indeed, the PT has been first observed by Haller et al. [5],
although its concept has been communicated and examined
earlier [6,8], even later on in a hollow-core 1D fiber [9].

The main goal of this article is the examination of the
sensitivity of this PT against perturbations. In that sense,
we tweak the PT by the addition of a second disordering
OL component to establish a 1D bichromatic optical lattice
(BCOL), a method that has been used elsewhere [10–12]. Since
the latter PT has been realized experimentally and followed
later by another observation and analytical examination by
Boéris et al. [7] and Astrakharchik et al. [13], it is justified to
explore its stability under a perturbation of the OL. The chief
result of our work is that the PT is robust against the latter
perturbations.

Bóeris et al. [7] studied the PT in shallow 1D periodic OLs.
Their quantum Monte Carlo calculations verified the predic-
tions of the Bose-Hubbard model (BHM). They have shown,
both theoretically and experimentally, that the critical points
for the PT deviate from those predicted by the sine-Gordon
(SG) model [6] and that they are close to the BHM. In a related

work, Astrakharchik et al. [13] investigated an interacting 1D
Bose gas in an OL using the diffusion Monte Carlo method.
Their results for the PT critical points were found to agree with
the discrete BHM. It has been demonstrated that the SG model
for shallow lattices is inaccurate. Notwithstanding the fact that
the purpose of the present work is not to check the accuracy of
the SG theory, it nevertheless turns out that our critical points
for the PT deviate likewise from SG theory, bringing this in
line with [7,13].

Although investigations using BCOLs are quite abundant,
the literature on the effects of perturbing the primary OL is
lacking; nevertheless there have been a few earlier studies
about this, but within a different context. For example,
Edwards et al. [14] studied the effects of localization on
the loading of a Bose-Einstein condensate into a shallow 1D
BCOL. It has been found that the effects due to the addition
of a secondary component disappeared as interactions got
stronger. We can relate to this result since our simulations
are in the strongly interacting regime and yield analogously a
robustness of the PT against the latter perturbations for shallow
BCOLs. According to Edwards et al., the latter result is due
to the fact that increased interactions yield a suppression of
the long-wavelength wave-function modulations. In the case
of noninteracting quantum particles, Boers et al. [15] explored
localization properties in a 1D BCOL. It has been shown that
for a shallow BCOL the sharp metal-insulator transition shown
by the tight-binding model is replaced with a sequence of
mobility edges.

Another goal is the examination of the properties of
the bosons in the regime of this PT as measured by the
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pair correlation function g2(r) and one-body density matrix
(OBDM) g1(r) (with r the distance between a pair of particles),
the Matsubara Green’s function (MGF) G(p = 0; τ ), and SF
fraction ρs/ρ. It must be emphasized that in this work the
g2(r) of the homogeneous Bose gas is intentionally applied
to bosons in a 1D BCOL, for mathematical convenience, to
account for the density-density correlations (that are related to
g2(r) [16,17]) under the effect of a BCOL. On the other hand,
for inhomogeneous systems, the pair correlation function
and OBDM are normalized by the spatially varying density
instead of the average linear density. A key result is that for
a shallow 1D OL, the above properties are not influenced by
perturbations of the OL. We particularly focus on g2(r) because
it is important to examine it with regards to this and other kinds
of phase transitions. For example, the pair correlation function
for a 1D uniform Bose gas has been used as the ratio between
the photoassociation rates of Rb87 atoms in 1D and 3D [18].
Although we examine it only briefly, the g1(r) is also not
any less important; for example, Deissler et al. [19] presented
the first experimental analysis of g1(r), similar to ours, in a
quasiperiodic optical lattice (QPOL).

Indeed, the role of a 1D OL, such as the BCOL [10,11],
in conjunction with atom-atom interactions in defining the
properties of confined bosons, lies at the heart of many
investigations today [12,18,20–24]. So far, the BCOL has been
mostly applied to introduce quasidisorder in a “common exper-
imental route” [12]. This is usually achieved by superimposing
two OL wavelengths whose ratio λ1/λ2 yields an irrational
number [20,22,23]. However, the lattice setup with a rational
number λ1/λ2 is not very common and deserves, therefore,
an investigation, particularly due to the likelihood that there
may be not much difference between the use of a rational
and irrational λ1/λ2. For noninteracting quantum particles in
a 1D BCOL, Boers et al. [15] stated (quoting them) “... it
is not necessary to implement truly irrational numbers with
mathematical (i.e., unattainable) precision; after all, on a finite
lattice one can ‘resolve’ only a finite number of digits.” In fact,
real disorder can only be achieved by a speckle potential and
the investigation of bosons in this kind of potential (and add
to this a quasidisordered one) has been going on intensively in
the past few years [11,15,19,21,23,25–52].

The bosons in the BCOL are simulated using the
continuous-space worm-algorithm (WA) quantum Monte
Carlo approach [53]. The WA is a powerful method giving an
accurate estimate of physical observables, such as ρs/ρ, g1(r),
g2(r), density, etc. The ρs/ρ is plotted as a function of the Lieb-
Liniger interaction parameter γ [54] for various realizations
of the BCOL. It is verified again that WA reproduces the PT
accurately and that the interplay of BCOL and interactions
has little effect on changing the critical interaction at which
this PT occurs. The PT-critical points are close to those of
Boéris et al. [7]. In other results, (1) the OBDM of the system
displays substantial depletion of the SF as it passes through
the PT; (2) the MGF shows signals for fermionization detected
via the correlation function at the origin, g2(0), when the
total interaction energy goes to zero, demonstrating perfect
antibunching [55]; (3) the secondary OL has been found not
to play a role in aiding or preventing the fermionization.

The organization of the present paper is as follows.
Section II presents the method and Sec. III represents the

results. Section IV discusses the issue of a rational and
irrational ratio of the BCOL wavelengths and in Sec. V the
paper concludes with some closing remarks. In Appendix A
the WA is briefly described. In Appendixes B, C, and D,
the correlation functions that are normalized by the spatially
varying density are examined. In Appendix E the WA code is
tested for accuracy as applied to the present system.

II. METHOD

A brief description of the WA applied to the present system
is relegated to Appendix A and it is tested for accuracy in
Appendix E. The simulations have been conducted on the
excellent computational cluster of the Max Planck Institute
for Physics of Complex Systems in Dresden, Germany. In
essence, the present work has been a heavily computational
project with each simulation taking about a week of CPU time
to finish.

A. Optical lattice

In order to introduce disorder into the present system, the
WA code [56]—originally designed for a homogeneous Bose
gas—has been modified by including a BCOL potential of the
form

VOL(x) = V0 cos2(απx) + V1 cos2(βπx), (1)

where V0 and V1 are the primary- and secondary-OL depths,
respectively, and we always consider V1 < V0. The parameters
α = 2/λ1 and β = 2/λ2, with λ1 and λ2 the wavelengths,
determine the periodicity of the BCOL and such a type of
lattice was shown to realize disorder [11,29]. α and β were set
to 0.4 and 1.0, respectively, for a QPOL and 0.4 and 1.39 for
a quasidisordered optical lattice (QDOL).

A measure for the strength of the BCOL quasidisorder is
its standard deviation δV given by

δV =
√

〈V 2〉 − 〈V 〉2, (2)

with

〈V 〉 = 1

L

∫ L

0
VOL(x)dx (3)

and

〈V 2〉 = 1

L

∫ L

0
V 2

OL(x)dx, (4)

where L is the length of the system.

B. Interactions

The interactions between the bosons are accounted for
by the exact two-particle density matrix given by (see, e.g.,
Feynman [57])

ρ(x1 − x2) = 1 −
√

τ

4ma2
s

exp

{
m

4τ
(x1 − x2)2

+ |x1| + |x2|
a1D

+ τ

ma2
1D

}
, (5)

where τ = β/M is the “time step,” with β = 1/(T̃ Td ), T̃

being the temperature in units of the degeneracy temperature
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Td , kB = 1 Boltzmann’s constant, and m = 0.5 is the boson
mass. Equation (5) appears in the worm-update probabilities
as a multiplicative factor. The interactions are then essentially
described by a δ function g1Dδ(x1 − x2), where g1D is the
interaction parameter.

In Astrakharchik et al. [58], g1D is given by

g1D = − 2�
2

ma1D

, (6)

where � is Planck’s constant and a1D the scattering length.
Essentially, the absolute value of g1D is considered in the
present calculations. From Haller et al. [5], the Lieb-Liniger
parameter is given by

γ = mg1D/(�2n), (7)

where n = 〈N〉/L is the average linear density with 〈N〉 the
thermodynamic average of the particle number.

C. Pair correlation function

The spatially averaged pair correlation function (SAPCF)
for the 1D homogeneous Bose gas is given by

g2(r) = 1

Ln2

∫ L

0
dx〈ψ̂†(x + r)ψ̂†(x)ψ̂(x)ψ̂(x + r)〉, (8)

where r is the distance between any two particles along the
system and ψ̂(x) [ψ̂†(x)] is the field operator annihilating
[creating] a boson at position x. It can account for the spatially
averaged density-density correlation function [59], given by

nc(r) = 1

L

∫ L

0
dx〈n̂(x + r)n̂(x)〉. (9)

On the other hand, when g2(r) is normalized by the
convolution of two spatially varying densities, ρ(x) and
ρ(x + r), that is,

ρc(r) = 1

L

∫ L

0
dxρ(x + r)ρ(x) (10)

instead of n2, where ρ(x) = 〈ψ̂†(x)ψ̂(x)〉, one gets the SAPCF
for an inhomogeneous Bose gas given by [60,61]

h2(r) =
∫ L

0 dx〈ψ̂†(x + r)ψ̂†(x)ψ̂(x)ψ̂(x + r)〉∫ L

0 dxρ(x + r)ρ(x)
. (11)

The examination of h2(r) is relegated to Appendix B .

D. One-body density matrix

The spatially averaged one-body density matrix (SA-
OBDM) for the 1D homogeneous Bose gas is defined as

g1(r) = 1

Ln

∫ L

0
dx〈ψ̂†(x + r)ψ̂(x)〉, (12)

and again for the inhomogeneous case [61]

h1(r) =
∫ L

0 dx〈ψ̂†(x + r)ψ̂(x)〉
ρc, 1

2
(r)

, (13)

V0 = 3.158/Td, V1 = 0.5/Td

V1 = 0.7/Td

V1 = 0.5/Td

V0 = 1.579/Td ,V1 = 0.1/Td

γ

μ
(T

d
)

121086420

2

1.8

1.6

1.4

1.2

1

FIG. 1. Calibrated chemical potential μ as a function of γ for
the commensurate filling of a number of BCOLs with α = 0.4 and
β = 1.0 at N = 200 ± δ particles, where δ is a small error. The figure
displays the case for V0 = 1.579/Td and V1 = 0.1/Td (open circles);
0.5/Td (solid circles); 0.7/Td (solid up triangles); and then the case
for V0 = 3.158/Td and V1 = 0.5/Td (solid down triangles). μ is in
units of Td and γ is unitless.

where

ρc, 1
2
(r) = 1

L

∫ L

0
dx

√
ρ(x + r)ρ(x). (14)

The examination of h1(r) is also relegated to Appendix C.
ρc(r) and ρc, 1

2
(r) are from now on referred to as the

“convoluted densities.”

E. Chemical potential and interactions

The total number of particles 〈N〉 for each γ was fixed
to 200 by a careful tuning of the chemical potential μ from
a calibration curve, i.e., a plot of 〈N〉 versus μ for each
interaction strength γ . That is, after a long WA simulation
time, the number of particles stabilizes at 〈N〉 = 200 for all
systems. The error bars δ in N = 〈N〉 ± δ are within ±1 (in
fact � 0.1) and this error is unavoidable as one is dealing with
a continuous-space Monte Carlo simulation. Figure 1 displays
a plot of the calibrated μ versus γ for a number of BCOL
realizations. The μ rises in general with γ until it begins to
stabilize in the strongly interacting PT regime.

F. Units and parameters

The degeneracy temperature is given by Td = 2π�
2n2/m

and the photon recoil energy by ER = h2/(2mλ2); their ratio
is always Td/ER = 4/π . From Eqs. (6) and (7) one gets
γ = −2/(a1Dn). Here λ is the wavelength of the laser beams
creating the OL where λ = 2d is twice the primary lattice
period d [= 1/α; cf. Eq. (1)] and n = 2/λ is the average linear
density. Technically speaking, it should be emphasized that Td

is set by an initial density parameter n0 that is input into the
WA program and used to initialize the size of the system. Since
the present simulations are in the grand-canonical ensemble,
we carefully calibrated μ as in Sec. II E so that the final density
of the system n always ends up the same as n0 at the end of
the WA simulation. (Both 〈N〉, L, and therefore Td are then
the same for all systems.) An OL depth like, e.g., 1.0 in units
of ER corresponds to V0 = 1.0ER/Td = 1.0 × π/4=0.785 in
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units of Td . Now in the WA code m = 0.5, � = 1, λ/L=0.01,
and nλ = 2.0, and therefore Td = 4πn2 = 0.64π and ER =
4π2

�
2/(2mλ2) = 0.16π2. The temperature is set to T̃ =

T/Td = 0.001 to allow a significant value of ρs/ρ.
The length of the system is such that 2L/λ = 200 lattice

sites and is at almost perfect commensurate filling. For
purposes of comparison, the value of the wavelength is the
same as that used by Haller et al. [5]; namely, λ = 1064.5 nm
and the values for the OL depth V0 are of the same order of
magnitude as in Haller et al. [5], Gordillo et al. [12], and Boéris
et al. [7]. In [12], the wavelength of the laser beams generating
the OL was λ = 830 nm and considering that the 3D scattering
length of Rb87 is almost 100a0, the 1D Lieb-Liniger interaction
parameter becomes γ = 1.770. The values of γ used in the
present work are in general, larger than in Ref. [12] as they
extend into the strongly interacting PT regime.

III. RESULTS

A. Pinning transition

An important result of this work is that the WA is able to
reproduce the PT [5,7] in a 1D shallow periodic OL. It is found
that the latter PT is robust against perturbations arising from
the addition of a weaker secondary OL. The critical value
γc at which the PT occurs in a BCOL (1) remains exactly
the same as compared to a periodic OL with the same V0,
unaffected by the latter perturbations. This is the chief result
of this paper and is demonstrated by the behavior of ρs/ρ as
a function of γ for a Bose gas in various realizations of a 1D
BCOL (1). Figure 2 demonstrates this finding for two values
of the primary depth V

(a)
0 and V

(b)
0 and different strengths of

the associated secondary OL, V (a)
1 and V

(b)
1 , respectively. Here

ρs/ρ displays a steep decline towards the critical γc beyond
which it remains zero deep into the PT regime γ � γc. The
value of γc, indicated by a vertical dashed line, is obtained
by fitting a function of the form f (γ ) = A(γc − γ )s to the
data of ρs/ρ in a narrow range of γ , where ρs/ρ comes
close to zero. Here A, γc, and s are fitting parameters. We
return to this issue in a future publication, where a comparison
between WA numerical and experimental results is required in
order to explore the validity of the SG theory [7,13] at higher
temperatures. The addition of a secondary OL does not alter
the behavior of ρs/ρ from the one observed for V

(a,b,c)
1 = 0,

the purely periodic OL. For V
(c)

0 = 1.579/Td , the behavior of
ρs/ρ in frame (b) with β/α = 3.475 is exactly the same as
in frame (a) with β/α = 2.5 and the same V

(a)
0 = 1.579/Td .

This is a rather peculiar result showing that an increased
quasidisorder in a shallow BCOL does not alter the behavior
of ρs/ρ. From Fig. 2, we obtain 1/γc = 0.2944 ± 0.008 for
V0 = 1.579/Td (= 1ER) and 0.5794 ± 0.017 for 3.158/Td

(= 2ER). They are close to the ones obtained by Boéris
et al. [7], being 1/γc = 0.3638 ± 0.036 and 0.5072 ± 0.031
for V0 = 1.04 and 2.05ER , respectively. (The latter numbers
of Boéris et al. have been extracted from their Fig. 3 using a
special tool.) In that sense, the critical points given by the
SG model for V0 = 1 and 2ER , being 1/γc = 0.4515 and
0.7122, respectively, clearly differ from our critical points,
bringing this in line with Refs. [7,13]. This is again a striking
demonstration of the fact that the WA is a powerful method

0.7/Td

0.5/Td

V
(b)
1 = 0.000

0.7/Td

0.5/Td

0.1/Td

V
(a)
1 = 0.000

(a)

α = 0.4, β = 1.0

3.158/Td →
V

(b)
0 =

±0.050 →
γc = 1.726

±0.090
← γc = 3.397

← V
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γ

FIG. 2. Worm-algorithm superfluid fraction ρs/ρ versus the Lieb-
Liniger parameter γ for an interacting Bose gas in several realizations
of the BCOL. The figure demonstrates primarily the WA numerical
reproduction of the pinning transition observed experimentally in
Ref. [5]. The temperature of the system is T̃ = 0.001, its length L

is such that 2L/λ = 200, and the thermodynamic average particle
number 〈N〉 is 200 with a small error δ that is within the range ±1
(|δ| � 0.1). Two primary-OL depths V

(a)
0 = 1.579/Td and V

(b)
0 =

3.158/Td are considered with different associated depths V
(a)

1 and
V

(b)
1 of the superimposed secondary OLs, respectively. Each of

the primary OLs has exactly 200 sites with an occupancy of one
particle per site in the PT regime. Panel (a) is for a QPOL with
α = 0.4 and β = 1.0. Open circles, V

(a)
1 = 0.000 (purely periodic

OL); open up triangles, 0.1/Td ; solid down triangles, 0.5/Td ; and
solid diamonds, 0.7/Td . Solid squares, V

(b)
1 = 0.000; stars, 0.5/Td ;

and crosses, 0.7/Td . Panel (b) is for a quasidisordered OL with
V

(c)
0 = 1.579/Td , the same α, but a different β = 1.39. The labels

for V
(c)

1 are the same as for V
(a)

1 . The vertical dashed lines show
the PT points γc = 3.397 ± 0.090 for V

(a)
0 = V

(c)
0 = 1.579/Td , and

1.726 ± 0.050 for V
(b)

0 = 3.158/Td which are close to the ones found
by Boéris et al. [7]. V0, V1, and T̃ are in units of Td and γ is unitless.

enabling an accurate simulation of the behavior of lattice
bosons in continuous space.

The robustness of ρs/ρ against the secondary-OL perturba-
tions arises because the particles always seek the lowest energy
states of the BCOL, i.e., those of the primary OLs. Further, in
the strongly interacting regime γ > 1, the interactions override
the effects introduced by V1 as the behavior of bosons is chiefly
dictated by the commensurate filling of the primary OL. This
finding is brought in line with that of Boéris et al. [7], who
argued that in the limit of a shallow periodic potential the
optical depth becomes subrelevant when the Mott transition is
controlled only by interactions.
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FIG. 3. Effect of secondary optical lattice on the spatially aver-
aged correlation function g2(r) [Eq. (8)] and the spatially averaged
density matrix g1(r) [Eq. (12)] of the systems in Fig. 2. Here r is
the distance between any pair of particles along the lattice and all
frames share the same x-axis label. Panel (a) shows g2(r) for α = 0.4
at different interaction strengths and for various BCOL realizations.
For γ = 2.500, V0 = 1.579/Td , and β = 1, the figure displays the
cases for V1 = 0.1/Td (solid line); 0.5/Td (long-dashed line); 0.7/Td

(dotted line); 1.0/Td (fine-dotted line). (It is difficult to plot these lines
so that all symbols can be distinguished from each other because
they are exactly overlapping. The same applies to the rest of the
plots.) For γ = 1.724, V0 = 3.158/Td , and the same β, the figure
shows the cases for V1 = 0.0 (solid circles) and 0.5/Td (dash-dotted
line). The last set of data is for γ = 0.5, V0 = 1.579/Td , but with
β = 1.39 and V1 = 0.5/Td (double-dotted line) and 1.0/Td (open

B. Effect of secondary lattice

Figure 3 shows the influence of V1 on the spatial behav-
ior of g1(r) and g2(r), particularly the amplitudes of the
g2(r) oscillations, for various realizations of the BCOL. A
significant feature is that g2(r) reveals a spatial oscillatory
structure whose origin can be traced back to the primary OL.
On the other hand, g1(r) in panel (c) displays a structure similar
to that of g1(r) of the 1D homogeneous Bose gas in Fig. 10 of
Appendix E without any spatial oscillations.

As V0 increases, so do the oscillatory amplitudes of g2(r)
in panel (b) displaying its deep connection to the OL. An
enhanced spatial decay rate of g1(r) at larger V0 in panel (c)
indicates a reduction of the SF fraction. The spatial frequency
of the g2(r) oscillations changes neither with V0 nor with V1

and is largely governed by the lattice parameter of the primary
OL. When V0 and V1 are small, e.g., ∼ 1.5/Td in panels (a)
and (c), a change of V1 does not alter the spatial behavior.
Remarkably, the secondary OL is practically not “seen” by the
bosons in this case. The g1(r) and g2(r) for bosons in a QPOL
(β = 1.0) do not differ from those in a QDOL (β = 1.39).
However, when V0 is increased to larger values ∼ 6/Td as
in panels (b) and (d), a change in the band structure of the
BCOL via V1 and β begins to assert itself in g2(r) and g1(r).
Further, at larger V0 = 6.316/Td , the change in the oscillatory
amplitude of g2(r) with V1 is more pronounced for a QPOL
than for a QDOL, indicating that an increased disorder does not
necessary yield a stronger response to V1. The same argument
can be applied to g1(r) in panel (d). The secondary OL begins
to influence the properties only in conjunction with a larger
V0 at which the BCOL begins to compete with the boson-
boson interactions. Indeed, the difference in β/α introduces a
difference between the band structures of the QPOL and the
QDOL and therefore the corresponding g2(r).

C. Effect of interactions on the correlations

Figure 4 demonstrates the effect of interactions on g2(r) for
all realizations of the BCOL. The qualitative pattern of these
oscillations hardly changes with γ (and V1), even on going
through the PT. Quantitatively, however, the amplitude of these
oscillations rises, in general, in response to an increase of γ

(and V0). [Compare frame (c) with both (a) and (b).] The latter
manifests an increase in the interplay between the interactions

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
circles). Panel (b) is as in (a), except for V0 = 6.316/Td , γ = 0.833,
and V1 = 1.0/Td with β = 1.39 (dash-double-dotted line), 3.0/Td

with 1.39 (thick-dashed line), 1.0/Td with 1.0 (dotted line), and
3.0/Td with 1.0 (fine-dotted line). Going over to g1(r), panel (c)
displays it for γ = 2.500, V0 = 1.579/Td , and V1 = 0.1/Td with
β = 1.0 (solid line), 0.5/Td and 1.0 (thick-dashed line), and 1.0/Td

and 1.0 (dotted line). The following set of data is for γ = 1.724,
V0 = 3.158/Td and V1 = 0.000 with β = 1.0 (fine-dotted line), and
0.5/Td with β = 1.0 (dash-double-dotted line). Next comes V0 =
1.579/Td , γ = 0.5, and V1 = 0.5/Td , with β = 1.39 (dash-dotted
line) and 1.0/Td and 1.39 (double-dotted line). Finally, panel (d) is as
in (c), except for V0 = 6.316/Td , γ = 0.833, and V1 = 1.0/Td with
β = 1.39 (dash-double-dotted line), 3.0/Td and 1.39 (dashed line),
1.0/Td and 1.0 (solid line), and 3.0/Td and 1.0 (dash-dotted line).
The r is in units of L, T̃ is in units of Td , and γ is unitless.
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FIG. 4. Worm-algorithm pair correlation function g2(r) [Eq. (8)]
at various interactions γ for the systems of Fig. 2(a) and three
realizations of the BCOL with α = 0.4 and β = 1.0. Panel (a) is for
the BCOL of primary depth V0 = 1.579/Td and a secondary depth
V1 = 0.1/Td at γ = 16.667 (dotted line), 12.500 (dashed line), 6.250
(dash-triple-dotted line), 3.125 (dash-dotted line), 2.500 (thick solid
line), and 2.000 (double-dotted line). For additional comparison, the
thin solid line is exceptionally displayed for a homogeneous Bose gas
without an OL (V0 = V1 = 0) at γ = 2.000 and the same parameters
as in Fig. 2(a). It is also displayed in panels (b) and (c). Panel (b) is
as in (a); but for V1 = 1.0/Td and γ = 10.000 (dotted line), 6.250
(dash-dotted line), 4.000 (thick-solid line), 3.333 (thick-dashed line),
2.778 (thin-dashed line), 2.500 (double-dotted line). Panel (c) is for
V0 = 3.158/Td , V1 = 0.5/Td , and γ = 25.000 (dashed line), 10.000
(dotted line), 6.250 (dash-dotted line), 1.724 (thick solid line), 1.042
(circles). The thin-dashed and thin-dashed-dotted lines show the
analytic results g

(per)
2 (z,1/γ ), with z = nπr [Eq. (17)] at γ = 10 and

g
(per)
2 (r,

√
γ ) [Eq. (18)] at γ = 0.1 from Ref. [55]. The plot for these

functions was generated by Mathematica. There is almost perfect
commensurate filling with N = 200 ± δ particles, where δ is a small
error in the range ±1 (|δ| � 0.1). V0, V1, and T̃ are in units of Td ,
and γ is unitless.

and the BCOL that in turn enhances the boson-boson [i.e.,
density-density nc(r)] correlations. It must be emphasized that
the rise in the amplitude of g2(r) oscillations is particularly
significant beyond γc reaching deep into the PT regime where
the bosons are pinned. This is therefore indicative of a Mott
insulator (MI) state which is not inert. An examination of the
MGF G(p = 0,τ ) in Sec. III G and by making connections
to g2(r), it is inferred that holes, arising from particle-hole
(p-h) excitations, play an important role in the enhancement
of g2(r).

On the one hand, the response of g2(r) to γ can be further
clarified by other arguments. First, it is known that g2(r)
[Eq. (8)] describes the probability of finding two particles at a
separation r . Hence, as the bosons become more localized
with increasing γ , the probability—i.e., the amplitude of
g2(r) oscillations—rises. Second, when the interactions are
large, higher harmonics in the density operator ρ̃(x) from
Ref. [8] become excited, playing a role in intensifying g2(r).
Here ψ(x) =

√
ρ̃(x) exp[iϕ(x)] is a field operator with ϕ(x) a

phase and [8,20]

ρ̃(x)

=
⎧⎨⎩n2 + 1

π2
[∇φ(x)]2 + n2

∑
p>1

cos[2πnx − 2pφ(x)]

⎫⎬⎭
1/2

,

(15)

where φ(x) is a boson-field operator and n the average density.
On the other hand, the rise in the amplitude with V0 can be
related to the amplitude of the Wannier state in each OL
well. For sufficiently deep OLs, the Wannier state can be
approximated by a harmonic oscillator ground state [15],

W (x) = k1/2

π1/4

(
V0

Er

)1/8

exp

[
−1

2

(
V0

Er

)1/2

k2x2

]
, (16)

where k is the primary lattice wave vector. The amplitude of
W (x) rises with V0 at each lattice site and, consequently, so
does the amplitude of g2(r). Moreover, it has been found [62]
that correlations arise from the interplay of quantum statistics,
interactions, thermal, and quantum fluctuations, the last of
which can be related to the higher harmonics in Eq. (15).

D. Test of g2(r) calculation by the WA

For the homogeneous Bose gas, we display in Fig. 4(c) the
analytic result for g2(r) perturbative in 1/γ [55]

g
(per)
2 (z,1/γ ) = 1 − sin2 z

z2
− 4

γ

sin2 z

z2
− 2π

γ

∂

∂z

sin2 z

z2

+ 2

γ

∂

∂z

[
sin2 z

z2

∫ 1

−1
dt sin(zt)ln

1 + t

1 − t

]
,

(17)

where z = nπr and the one perturbative in γ ,

g
(per)
2 (r,

√
γ ) = 1 − √

γ [L−1(2
√

γ nr) − I1(2
√

γ nr)], (18)

where, L−1(x) and I1(x) are the Struve and Bessel functions,
respectively. Equation (17) is plotted with γ = 10 for the
strongly interacting regime, whereas (18) is plotted with
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γ = 0.1 for the weakly interacting regime. The goal is to check
the WA g2(r) (e.g., for γ = 2.000) without an OL against
analytic calculations, and one can see that the WA result lies
largely intermediate between these analytic results. This shows
again that WA is reliable in calculating these properties.

E. Origin of oscillations

Despite the fact that (17) displays weak oscillations, these
are substantially enhanced in the WA g2(r) by the addition of
an OL. The WA g2(r) for the Bose gas without an OL does
not show any oscillations whatsoever (e.g., for γ = 2.000 and
no OL in Fig. 4). It is known that strongly repulsive bosons in
1D without an OL arrange themselves in a periodic structure
as if they were ordered inside an OL, but still the g2(r) reveals
no spatial oscillations. The fact is that the OL introduces a
different energy level structure that reshapes the wave function
into a spatially oscillatory form.

Let us here only mention briefly the results of the ap-
pendixes and the reader is referred to the them for more
information. In Appendix B, the SAPCF h2(r) [Eq. (11)] and
the SA-OBDM h1(r) [Eq. (13)] are displayed in Figs. 7 and 8
(for the same systems of Figs. 3 and 4, respectively). The goal
is to reveal the effects introduced into the correlations when
instead of n2 and n, the g2(r) and g1(r) are normalized by ρc(r)
and ρc, 1

2
(r) [Eqs. (10) and (14)], respectively. [That is g1(r) →

h1(r) = g1(r)n/ρc, 1
2
(r) and g2(r) → h2(r) = g2(r)n2/ρc(r).]

The result is that in general—for a shallow BCOL—h2(r)
displays oscillations with a (much) smaller amplitude than
g2(r). In fact, for a shallow BCOL, h2(r) is seen to approach
the behavior of g2(r) for a homogeneous Bose gas. It can
therefore be concluded that in this case the origin of the
g2(r) oscillations is the oscillations in the spatial density whose
structure is determined by the OL. In Appendix B, except for
small oscillations, h1(r) shows generally the same qualitative
behavior as g1(r).

In passing, it must be noted that the normalization by
n2 in g2(r), and by ρc(r) in h2(r), just remains a matter of
convenience regarding what purpose each one would achieve.
For g2(r) this simply entails information about the density-
density correlations and stronger signals than h2(r). For g1(r)
and h1(r) it turns out that the normalization by n and ρc, 1

2
(r),

respectively, does not make much difference.

F. Interaction energy and local g2(0)

According to Astrakharchik et al. [58], the total interaction
energy Eint can be computed from g2(r) at r = 0 using

Eint

〈N〉Td

= 1

2
g1Dng2(0). (19)

Now Eint goes to zero as γ is increased to large values beyond
γc because g2(0) → 0. This can be seen in Fig. 4 for γ > 6.250
in all frames and is a stark indication to fermionization of
the bosons [63] and demonstrates perfect antibunching [55].
In frame (c), fermionization is reached at γ = 10, whereas
in frames (a) and (b) it requires γ > 10. Therefore, a larger
V0 aids the fermionization process of bosons since there is
an enhanced effective interaction arising from the interplay
between the BCOL and the repulsive forces that reduces the

Kheruntsyan et al.
V1 = 0.500/Td

V0 = 3.158/Td, 0.000

1.000/Td

0.100/Td

V0 = 1.579/Td, V1 = 0.000
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g 2
(0

)

α = 0.4, β = 1.0

168421
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FIG. 5. Spatially averaged WA local pair correlation function
g2(r = 0) [Eq. (8)] as a function of γ for the systems of Fig. 4 in
comparison to g(2)(γ ) of Kheruntysan et al. [63] (dashed line) for
the homogeneous Bose gas in the strongly interacting regime γ > 1.
Here the QPOL is with α = 0.4 and β = 1.0. The figure displays g2(0)
for V0 = 1.579/Td with V1 = 0 (open circles), with V1 = 0.100/Td

(open squares), and with V1 = 1.000/Td (solid circles). Then one has
V0 = 3.158/Td with V1 = 0.000 (stars) and with V1 = 0.5/Td (solid
squares).

value of γ required for fermionization. The added secondary
OL does not play a role in this regard.

In Fig. 5, g2(0) is plotted as a function of γ for the two
BCOLs with V0 = 1.579/Td and 3.158/Td and some values of
V1. For comparison, the analytical result for the homogeneous
Bose gas of Ref. [63],

g(2)(γ ) = 4

3

π2

γ 2

[
1 + t2

4π2

]
, (20)

with t = T/Td is displayed by the linear dashed line. It is
immediately observed that, whereas, on the one hand, the
introduction of an OL to a homogeneous Bose gas reduces
Eint via a significant reduction of g2(0), the addition of a
secondary weaker OL does not play much of a role in changing
the behavior of g2(0) for the same V0. The interaction in the
system is therefore not influenced by a perturbation of the
primary OL. The effect of γ on g1(r) shall be explored in a
future publication in connection to the change of its behavior
across the PT.

In Appendix D, h2(0) vs γ is displayed in Fig. 9 for the
same systems of Fig. 5. Peculiarly, h2(0) shows qualitatively
the same behavior of g2(0).

G. Matsubara Green’s function

The MGF G(p = 0,τ ) displays (1) the presence of a gas
of particle-hole (p-h) pairs, revealing that the insulating state
obtained following the PT is not inert similar to an MI [64] and
(2) that the weight of p-h excitations declines with increasing
γ . This is shown in Figs. 6(a) and 6(b), where G(p = 0,τ )
decays at a faster rate with |τ | as γ is increased for any
realization of the BCOL (we show here only two cases). In
the limit when τ → ±∞, one can approximate G(p = 0,τ )
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FIG. 6. Worm-algorithm Matsubara Green’s function G(p =
0,τ ) and weights of particle and hole (p-h) excitations G̃+(p = 0,ω =
0) and G̃−(p = 0,ω = 0) [Eq. (24)], respectively, for the systems of
Fig. 2. The top panels show G as a function of τ for some values of
γ , and the bottom panels show G̃± as a function of γ , all for different
values of V1. Panel (a) displays G for V0 = 1.579/Td and V1 =
0.100/Td with γ = 6.250 (dotted line), 4.000 (double-dotted line),
3.571 (dashed line), 3.125 (fine-dotted line), 2.500 (dash-triple-dotted
line). Panel (b) is as in (a), but with V0 = 3.158/Td , V1 = 0.5/Td and
γ = 25.000 (dotted line), 10.000 (solid line), 6.250 (dashed line),
1.724 (fine-dotted line), 1.042 (dash-triple-dotted line). Frame (c)
shows G̃+ for V0 = 1.579/Td and V1 = 0.1/Td (open circles), and
0.5/Td (solid circles). Panel (d) is as in (c) with the same labels, but
for G̃−. T and μ are in units of Td and γ is unitless.

by [17]

G(p = 0,τ ) ∼
{
e−EP t , τ → +∞
e+EH t , τ → −∞ (21)

where EP and EH are the single-particle and single-hole
excitation energies, and τ = it is imaginary time. G(p = 0,τ )
reveals that for larger γ and |τ | higher values of EP and EH

are required to induce p-h excitations. The lifetime of the
p-h excitations ∼ �/EP or ∼ �/EH , respectively, declines,
therefore, with increasing γ as well. This demonstrates that
because of the high repulsion the bosons become locked in
their positions unable to move unless excited by a strong
external perturbation. However, even after they are excited,
they are deexcited after a short time as they return to the OL.
Moreover, G(p = 0,τ ) is asymmetric about the origin τ = 0,
and particularly beyond the PT point γc, G(p = 0,τ ) displays
higher probability for hole excitations than particles.

One can obtain a weight for the particle (hole) excitations
from an integration of the area under G(p = 0,τ ) in the range
[0,τmax] ([−τmax,0]), where τmax = 250 is the maximum value
of τ . In fact, an integration from −τmax to +τmax would be
approximately equivalent to the Fourier transform of G(p =
0,τ ) at a frequency of excitation ω = 0. We therefore consider
for the present purpose

G̃(p = 0,ω) ∼
∫ +τmax

−τmax

G(p = 0,τ )e−iωτ dτ (22)

and separate it into two terms:

G̃(p = 0,ω) = G̃+(p = 0,ω) + G̃−(p = 0,ω), (23)

where

G̃+(p = 0,ω) ∼
∫ τmax

0
G(p = 0,τ )e−iωτ dτ,

G̃−(p = 0,ω) ∼
∫ 0

−τmax

G(p = 0,τ )e−iωτ dτ. (24)

One can then define G̃+(p = 0,ω = 0) and G̃−(p = 0,ω = 0)
as the weights of particle and hole excitations, respectively.
ω = 0 is chosen because there is no excitation agent in our
simulations.

Figures 6(c) and 6(d) display G̃+(0,0) and G̃−(0,0) as
functions of γ for V0 = 1.579/Td and some values of V1.
Obviously, G̃± decline with increasing γ and, moreover, both
frames show an apparent change in the curvature of G̃± close
to the critical γc at which the PT occurs. Therefore, the change
in the sign of ∂2G̃±(0,0)/∂γ 2 is a signal for the PT, and
∂2G̃±(0,0)/∂γ 2 = 0 near γ = γc.

IV. RATIONAL VS IRRATIONAL λ1/λ2

Whereas the ratio β/α = λ1/λ2 is clearly rational for
both pairs of (α,β) = (0.4,1.0) and (0.4,1.39), it could be
argued that had one used, for example, the irrational values
α̃ = √

0.161 = 0.401 248 . . ., which is very close to 0.4, or
β̃ = √

1.9320 = 1.389 964 . . ., close to 1.39, the same results
would be gotten as for (0.4,1.39). Within this context, Table I
lists δV [Eq. (2)] for various realizations of the BCOL at (̃α,β̃)
and the rational approximation (α,β). It can be seen that the
results of δV for (α,β) differ only slightly from that for (̃α,β̃)
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TABLE I. Standard deviation δV [Eq. (2)] for various realizations
of the BCOL (1). From left to right, the table lists the primary-
OL depth V0, the secondary depth V1, the standard deviation δV

for α = 0.4 and β = 1.39, and δV for α̃ = 0.401 248 . . . and β̃ =
1.389 964 . . ., respectively. V0, V1, δV are in units of Td .

V0 V1 δV (α,β) δV (̃α,β̃)
(Td ) (Td ) (Td ) (Td )

1.579 0.1 0.5594 0.5595
0.5 0.5856 0.5857
0.7 0.6107 0.6108

6.316 1.0 2.2609 2.2613
3.0 2.4721 2.4726

by an order of magnitude � 1%. In that sense, there should
not be much difference in the results because of rational and
irrational λ1/λ2.

V. CONCLUSION

In summary then, the properties of bosons in a shallow 1D
BCOL, with a rational ratio λ1/λ2 of its wavelengths, have
been examined by scanning the system along a range of the
Lieb-Liniger parameter γ in the regime of the PT [5,7,13]
described by the sine-Gordon model [6] at commensurate
filling of the primary OL.

The chief result is that this PT in a primary OL of depth V0 ∼
1.5/Td is robust against the perturbations by a secondary OL
of depth V1 < V0. The critical interaction strength γc at which
the PT occurs remains the same as for the periodic OL. The
corresponding behavior of the SF fraction ρs/ρ vs γ reveals
absolutely no response to changes in V1; this is quite the same
for other properties such as the correlation function g2(r) and
the one-body density matrix g1(r). In contrast, changes in the
latter observables arise with V1 for larger values of V0 ∼ 6/Td

at which the lattice-band structure of the primary OL begins to
be influenced by the secondary OL. These results may turn out
to be important in the research on hollow-core 1D fibers filled
with ultracold atoms, where photons have been pinned by a
shallow effective polaritonic potential just like atoms [9] and
the quantum transport of strongly interacting photons [65].

However, for V0 ∼ 1.5/Td the properties are significantly
affected by changes in γ . In this regard, g2(r) demonstrates
an oscillatory structure whose amplitude rises with γ and V0,
manifesting an increase in the interplay between BCOL and
interactions that yield the excitation of higher harmonics in the
density operator. The origin of these oscillations lies chiefly in
the primary OL. The latter changes are particularly significant
beyond γc, reaching deep into the PT regime signaling the
presence of a noninert Mott insulator in the form of a particle-
hole gas of bosons. At very large γ beyond the critical γc,
g2(0) → 0 signals fermionization and entrance to the Tonks-
Girardeau regime. The fermionization process is aided by the
primary OL and is unaffected by the secondary OL. Since g2(r)
has been measured experimentally [18] over a broad range of
the coupling strengths, our work should then motivate a future
experimental measurement of g2(0) in a BCOL.

Although a division of g2(r)n2 and g1(r)n by the convoluted
densities ρc(r) and ρc, 1

2
(r), respectively, yields qualitatively

the same results as far as the sensitivity to changes in the BCOL
is concerned, the response of h2(r) = g2(r)n2/ρc(r) to changes
in V0 and γ is, in general, significantly weakened. Hence, g2(r)
is more adequate for obtaining stronger signals of changes.
The g2(r) displays oscillations arising from oscillations in
the spatial density that account for the same behavior in the
density-density correlations.

The MGF G(p = 0,τ ) displays a declining weight for
the particle-hole excitations with rising γ attributed to an
increased localization of the bosons. Moreover, it has been
found that the system favors hole excitations at strong
interactions, leading us to conclude that deep in the PT regime
holes play a chief role in the response of g1(r) and g2(r) to γ .
In addition, a change in the curvature of the Fourier transform
of the MGF G(p = 0,ω = 0) as a function of γ for either
particles or holes, is a signal for the PT.

An investigation that is very relevant to the present work
is that by Gordillo et al. [12], who calculated the phase
diagram of a continuous system of bosons in a BCOL. By
keeping the interaction strength fixed, the SF fraction has been
examined as a function of the secondary-OL depth for several
values of the primary-OL depth within a range of amplitudes
which is larger than ours. Among their findings, it has been
demonstrated that changes in the secondary OL influence
the properties and that an MI can be realized. In contrast,
the present work conducts a similar investigation chiefly by
varying the interaction strength in a shallow BCOL in a regime
of interactions near the PT. Our studies therefore complement
the work of Gordillo et al. and are further substantiated with
the examination of the PT. Moreover, for a strong BCOL
that we additionally considered, changes in the properties can
be observed as one varies the intensity of the secondary OL
bringing this is in line with the results of Gordillo et al. [12].

Finally, it must be emphasized that the WA code was able to
reproduce the PT observed earlier by Haller et al. [5], Boéris
et al. [7], and Astrakharchik et al. [13]. The investigation
bearing similarities to ours by Boéris et al. [7] applied the
WA to reproduce the PT, except that they only used a periodic
OL with a different procedure than ours here. The current
results are also in line with those of Edwards et al. [14],
who demonstrated that the effects of weak perturbations to
a primary 1D OL disappear as interactions get stronger and
we are in the strongly interacting regime.

This work provides more clarification for the interplay
between interactions and disorder for repulsive bosons in a
quasidisordered OL as has been given earlier by Deissler
et al. [30]. It is believed that this research will be an important
contribution to the field of disordered bosons in 1D.
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FIG. 7. As in Fig. 4, but for h2(r). (a) At γ = 2.5 and V0 =
1.579/Td the figure displays the results for V1 = 0.1/Td , β = 1.0
(thick solid line); 0.5, 1.0 (thick-dashed line); 0.7, 1.0 (short-
dashed line); 1.0, 1.0 (fine-dotted line). Then at γ = 1.724 and
V0 = 3.158/Td the results are shown for 0.0, 1.0 (long-dashed
dotted line); 0.5, 1.0 (short-dashed dotted line). At γ = 0.5 and
V0 = 1.579/Td again the results are shown for V1 = 0.5/Td , β =
1.39 (double-dotted dotted line) and 1.0, 1.39 (open circles). Panel
(b) is for V0 = 6.316/Td , γ = 0.833, and V1 = 1.0/Td , β = 1.39
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APPENDIX A: WORM ALGORITHM

Specifically, a WA code is applied which has been written
by Prokofev [56] originally for the simulation of 1D soft-core
bosons without any trapping potential. A 3D version of
this code, although for 4He on graphite, has been described
earlier [53]. The worm algorithm is a path-integral Monte
Carlo technique whose configurational space is extended to
include what one calls “worms.” In this method, particles are
described by Feynman’s path-integral formulation as closed
trajectories in space-time (diagonal configurations). Each
trajectory is a closed chain of “beads” and each “bead” is a pair
of positions of the same particle separated by a time τ along
the imaginary-time axis in space-time. In a closed trajectory,
the initial and final positions of the path are the same along the
space axis. The method considers imaginary “time” as inverse
temperature [66], i.e., it/� ↔ 1/(kBT ), where � is Planck’s
constant, kB Boltzmann’s constant, and T the temperature.
The configuration of the system is updated by adding or
removing open trajectories in space-time called “worms”
(off-diagonal configurations) which are paths in space-time
whose initial and final positions along the space axis are
not the same. Therefore, the configuration of the system is
divided into two sectors: the Z sector containing all the closed
trajectories and the G sector containing one open trajectory,
or worm. The code is designed to perform various updates on
these worms via certain acceptance and rejection probabilities
that are carefully weighted functions of, and including, the
factors exp[−(r� − r�−1)2/(4λτ )] and exp[−τV (r�)]. Here
λ = �

2/(2m) with m the mass of a boson, τ → 1/(MkBT ) is
the imaginary-time step, with M the total number of beads
constituting the particle’s trajectory along the imaginary-time
axis, r� the position of the �th bead along the space axis,
and V (r�) the potential energy of bead �. The above factors
included in a worm-update probability are integrated along
the time axis over the length of the trajectory being updated.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(long-dashed double-dotted line); 3.0/Td : 1.39 (thick-dashed line);
1.0/Td , 1.0 (solid line); 3.0/Td , 1.0 (dash-dotted line). Panel (c) is
for the same system in (a), but for h1(r) with V0 = 1.579/Td and
V1 = 0.1/Td , β = 1.0, γ = 2.5 (thick solid line); 0.5/Td , 1.0, 2.5
(long-dashed line); 1.0/Td , 1.0, 2.5 (short-dashed line). Then one has
for V0 = 3.158/Td : 0.0/Td , 1.0, 1.724 (long-dashed double-dotted
line): and 0.5/Td , 1.0, 1.724 (dash-dotted line). Next, one has for
V0 = 1.579/Td : 0.5/Td , 1.39, 0.5 (short-dashed dotted line) and
1.0/Td , 1.39, 0.5 (thin solid line). Finally, panel (d) is for the same
system in (b), but for h1(r): dashed double-dotted line: V1 = 1.0/Td ,
β = 1.39; dashed line: 3.0/Td , 1.39; thick solid line: 1.0/Td , 1.0;
dash-dotted line: 3.0/Td , 1.0.
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The beginning and end of the worm are termed MASHA and
IRA, respectively, where MASHA precedes IRA along the
imaginary-time axis. There are various types of updates: (1)
INSERT or REMOVE, in which a worm is created and added
to, or annihilated from, the configuration, respectively; (2)
MOVE FORWARD or MOVE BACKWARD, which change
the length of the worm in space-time along the imaginary-time
axis; (3) RECONNECT, in which a worm is connected to a
closed trajectory after opening it resulting in an exchange of
particles (permutation); (4) CUT or GLUE, where a closed
trajectory is cut open by removing, or an open trajectory is
closed by adding, a short chain of beads, respectively. All
these updates are described in more detail by the inventors of
the technique [53].

APPENDIX B: PAIR CORRELATION FUNCTION
FOR INHOMOGENEOUS 1D BOSE GASES

Figure 7 is as in Fig. 3, but for h2(r) given by Eq. (11). In
panel (a) for low V0, the amplitude of the spatial oscillations in
h2(r) is substantially reduced compared to the corresponding
g2(r). Although the h2(r) oscillations do not vanish com-
pletely, their amplitude does not change with V1, which is
the same for g2(r) in Fig. 3(a). Indeed, the g2(r) oscillations
are caused by the oscillations in the convoluted density ρc(r)
[Eq. (10)], and a division of g2(r)n2 by ρc(r) [to get h2(r)]
almost flattens h2(r) at larger r so that it oscillates close to 1.
Any changes in the structure of h2(r) with V1 are not detected.
There is a weak role of the band structure of the BCOL and its
disorder at low V0.

As one increases V0 in Fig. 7(b), the amplitude of
oscillations in h2(r) rises similarly to g2(r). This time the
normalization by ρc(r) does not yield a significant suppression
of the oscillations as it occurs in panel (a). Therefore, at larger
V0 there is an increased effect of the band structure of the
BCOL and the disorder. Qualitatively, nevertheless, Fig. 7
shows the same effects as Fig. 3. That is to say that by either
g2(r) or h2(r) one reaches qualitatively the same conclusions
about the effect of V1 on the strength of the correlations,
namely that there is none at low V0.

Figure 8 is the same as Fig. 4, but for h2(r). Here
the effect of interactions γ at r > 0.000 25 is substantially
weakened by the division of g2(r)n2 by ρc(r), but remains
quite pronounced towards r → 0. The effect of γ at larger r

cannot therefore be significantly detected by h2(r) because the
effect of interactions is absorbed by the normalization process.
At r = 0, h2(r) displays a reduction with γ similar to Fig. 4
and shows the same decline as in Fig. 5 (see Sec. D below).

APPENDIX C: ONE-BODY DENSITY MATRIX
FOR INHOMOGENEOUS 1D BOSE GASES

The SA-OBDM h1(r) [Eq. (13)] in panels (c) and (d)
of Fig. 7 displays qualitatively the same behavior as the
corresponding g1(r), except for small oscillations that are a
result of normalizing by ρc, 1

2
(r). In fact, at larger V0, there is

really not much difference in the qualitative structure of h1(r)
and g1(r) in frames (d) of Figs. 7 and 3, respectively; both of
them display small oscillations. Therefore, for larger V0, h1(r)
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FIG. 8. As in Fig. 4, but for h2(r). (a) V0 = 1.579/Td , V1 =
0.1/Td , and γ = 16.667 (thick-solid line), 12.500 (dashed line),
6.250 (thin solid line), 3.125 (fine-dotted line), 2.500 (long-dashed
dotted line), 2.000 (short-dashed dotted line). (b) V0 = 1.579/Td ,
V1 = 1.000/Td , and γ = 10.000 (solid line), 6.250 (dashed line),
4.000 (fine-dotted line), 3.333 (dash-dotted line), 2.778 (double-
dotted line), 2.500 (thin solid line). (c) V0 = 3.158/Td , V1 = 0.5/Td ,
and γ = 25.000 (thick-dashed line), 10.000 (thin-dashed line), 6.250
(dash-dotted line), 1.724 (thick-solid line), 1.042 (circles).

and g1(r) can both be applied on the same footage to draw
conclusions about the SF depletion and role of the BCOL.

APPENDIX D: LOCAL CORRELATION FUNCTION
FOR INHOMOGENEOUS 1D BOSE GASES

The SAPCF at r = 0, i.e., h2(0), displays in Fig. 9 a drop
with increasing γ and shows almost the same behavior as g2(0)
in Fig. 5. Again, changes in V1 for the same V0 have no effect
on h2(0).

APPENDIX E: TESTS OF THE WA CODE

In this section, the WA code [56] is tested on a uniform
interacting Bose gas in the absence of any trapping potential.
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FIG. 9. As in Fig. 5, but for h2(0) with V0 = 1.579/Td and V1 =
0 (times), 0.1/Td (open square), and 1.0/Td (solid circles). Next
data are for V0 = 3.158 and V1 = 0 (open circles) and 0.5/Td (open
triangles).

First, it is verified that the code produces the OBDM properly
via a comparison with previous results. Second, it is confirmed
that for suitably chosen parameters, the temperature of the
simulations is low enough to obtain a significant SF fraction
ρs/ρ. In this respect, WA results for ρs/ρ as a function of T̃

were found to exactly match an analytical calculation.

1. One-body density matrix

The top panel of Fig. 10 displays the OBDM g1(r)
as a function of nr at various n|a1D| obtained from WA
simulations for three of the homogeneous Bose-gas cases
already considered by Astrakharchik and Giorgini (AG) [58].
The values of n|a1D| range from the strongly to the weakly
interacting regime as n|a1D| is increased. One can see that the
agreement is excellent.

2. Superfluid fraction

The bottom panel of Fig. 10 displays a comparison between
the SF fraction ρs/ρ obtained by WA and that by the
equation

ρs/ρ = 1 − u

∣∣∣∣θ ′′
3 (0,e−2πu)

θ3(0,e−2πu)

∣∣∣∣, (E1)

which is the same as Eq. (16) of Ref. [67], except that it
is rescaled to our units. Here u = 1/(2T̃ 〈N〉), with T̃ = T/Td ,
〈N〉 = 302, and L/a1D = 50. θ3 is the Jacobi theta function of
the third kind given by

θ3(z,q) =
+∞∑

n=−∞
qn2

exp(i2nz) (E2)

and can be evaluated using Wolfram Mathematica. The system
is a weakly interacting, dilute, and uniform 1D Bose gas whose

AG n|a1D| = 30.000
WA n|a1D| = 29.320
AG n|a1D| = 1.000
WA n|a1D| = 1.003
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FIG. 10. (Top) Worm-algorithm first-order correlation function
g1(r) (one-body density matrix) as a function of nr for several
parameters n|a1D| compared to results from Astrakharchik and
Giorgini (AG) [58] for values of n|a1D| which are almost identical
to the WA ones. The system is a 1D homogeneous Bose gas at
a temperature of T̃ = 0.001. Here n is the average linear density
and a1D the 1D scattering length. For the WA we have n|a1D| =
0.303 (open circles), 1.003 (open up triangles), and 29.320 (stars),
respectively. The corresponding data from AG are for almost the same
n|a1D|: 0.300 (solid circles), 1.000 (solid up triangles), and 30.000
(solid down triangles), respectively. (Bottom) Superfluid fraction
ρs/ρ as a function of temperature T̃ . The system is again a 1D
homogeneous gas of Bosons. The scattering length is a1D/L = 1/50,
the length of the system is L/a1D = 50 and the thermodynamic
average of the number of particles is 〈N〉 = 302. The solid circles
are the WA results, whereas the solid line is an analytical calculation
using Eq. (E1) of Del Maestro and Affleck [67] with the same latter
parameters. T̃ is in units of the transition temperature Td and the
initial density of the WA simulation is n0 = 0.4.

initial density was set to n0 = 0.2 so that Td = 0.5027. The
WA results match exactly those of the analytical Eq. (E1),
casting away all doubts about the accuracy of the WA code.
Further, T̃ = 0.001 is low enough to allow a significant value
for ρs/ρ. The reader must be alerted that the parameters used
in this section and the previous one are only for the purpose of
making the comparisons in Fig. 10. The rest of this paper uses
the parameters of Sec. II F.
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Grémaud, C. A. Müller, and C. Miniatura, Phys. Rev. A 80,
023605 (2009).

[28] M. White, M. Pasienski, D. McKay, S. Q. Zhou, D. Ceperley,
and B. DeMarco, Phys. Rev. Lett. 102, 055301 (2009).

[29] L. Fallani, J. E. Lye, V. Guarrera, C. Fort, and M. Inguscio, Phys.
Rev. Lett. 98, 130404 (2007).

[30] B. Deissler, M. Zaccanti, G. Roati, C. DÉrrico, M. Fattori, M.
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