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Ground-state phase diagram of a dipolar condensate with quantum fluctuations
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We consider the ground state properties of a trapped dipolar condensate under the influence of quantum
fluctuations. We show that this system can undergo a phase transition from a low density condensate state to a
high density droplet state, which is stabilized by quantum fluctuations. The energetically favored state depends
on the geometry of the confining potential, the number of atoms, and the two-body interactions. We develop a
simple variational ansatz and validate it against full numerical solutions. We produce a phase diagram for the
system and present results relevant to current experiments with dysprosium and erbium condensates.
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I. INTRODUCTION

In Bose-Einstein condensates of dipolar (i.e., highly mag-
netic) atoms, such as chromium [1], dysprosium [2], and
erbium [3], a dipole-dipole interaction (DDI) between the
atoms becomes important. The DDI is long ranged and
anisotropic and gives rise to a rich array of new phenomena [4].
Many of these phenomena (e.g., roton-like excitations [5] and
structured ground states [6]) are predicted to occur only when
the DDI is stronger than the short-ranged s-wave interaction—
the so called dipole-dominated regime. However, in this
regime the attractive component of the DDI (i.e., head-to-tail
attraction between dipoles) tends to destabilize the condensate,
making it susceptible to local or global collapse dynamics. The
stability phase diagram and collapse dynamics have received
considerable experimental and theoretical attention [7–18],
and seemed to establish that the standard mean-field theory,
i.e., the Gross-Pitaevskii equation (GPE) with both (s-wave)
contact interaction and nonlocal DDI terms, provides an
accurate description of experiments in this regime.

However, recent experiments with dysprosium, aided by
high resolution in situ imaging, have made new observations
not accounted for by the standard mean-field theory [19].
These experiments quenched a condensate into the dipole
dominated regime and observed the formation of a stable
droplet crystal. Each droplet contained ∼103 atoms, and
had an estimated peak density about an order of magnitude
larger than the prequenched condensate. In contrast to these
observations, the mean-field theory predicts that the droplets
would continue to collapse to extremely high densities where
three-body recombination would cause rapid atomic loss and
heating. Two suggestions have been made for the mechanism to
stabilize these droplets at a finite size: (i) the presence of a con-
servative three-body interaction between the atoms [20–22]
(also see [23,24]), and (ii) the role of beyond-mean-field
quantum fluctuations [25–27] (also see [28]). Both effects
can be accounted for by adding a new nonlinear term to the
standard mean-field theory with a higher order dependence
on density than the usual two-body interactions. Due to this
density dependence, these terms have a limited effect in the
low density (prequenched) condensate, but can be significant
in the high density droplets. Recent path-integral Monte Carlo

calculations by Saito [27] have provided strong quantitative
evidence that quantum fluctuations alone are able to stabilize
droplets, without the need for a three-body interaction.

In this paper we investigate the role of quantum fluctuations
on the ground state of a dipolar condensate. These fluctuations
are accounted for at lowest order by corrections to the equation
of state for a condensate of hard spheres, originally predicted
by Lee, Huang, and Yang (LHY) [29,30]. The extension
of these LHY corrections to the case of a condensate with
DDIs was developed in Refs. [31–33]. At normal atomic
condensate densities (∼1020 m−3) these LHY corrections
are negligible. For this reason experiments with nondipolar
atoms have worked with strongly interacting atoms (i.e.,
using resonances to enhance the scattering length) to measure
LHY corrections (e.g., see [34–36]). In contrast, the LHY
corrections become important for the droplets, which achieve
much higher densities.

In order to investigate the nature of the ground states we
use a generalized GPE, in which the mean-field theory is
augmented with a local density treatment of the quantum
fluctuations. The accuracy of this approach, even when a
high density droplet-type ground state emerges, has been
established in Ref. [27], albeit for small atom numbers (∼103)
where path-integral Monte Carlo calculations were feasible.
We use two approaches to calculate the ground states of this
formalism: (1) a simple variational treatment and (2) full
numerical solutions of the generalized GPE. We validate that
both approaches are in good qualitative agreement over a wide
parameter regime. We find that this theory yields two types of
ground states, dependent on the system parameters such as trap
shape, condensate number and the s-wave scattering length.
The first type of state, which we refer to as the low density
phase (LDP), is the usual type of stable condensate observed
in experiments. The density profile of LDPs is dominated by
the interplay of the two-body interactions and the trapping
potential (cf. Thomas-Fermi solution [37]). The second type
of state, referred to as the high density phase (HDP), is a
single high density droplet that forms due to the attractive
character of the DDI. The quantum fluctuations play a crucial
role in stabilizing the droplet. We find that there are two
different regimes of the HDP depending on whether kinetic
energy (quantum pressure) plays a significant role which, in
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turn, depends on the atom number. In our results we make
predictions for both 164Dy and 168Er, and find that both species
should be suitable to explore our predicted phases and phase
transitions.

II. FORMALISM

A. Generalized GPE theory

Our system of interest is a harmonically trapped dipolar
condensate. We consider a cylindrically symmetric geometry;
i.e., the confining potential is cylindrically symmetric about
the z axis, and the dipoles are polarized along z. This choice is
a good approximation to the motivating experiments reported
in Ref. [19], and affords a more efficient and accurate solution
for the ground states.

Within a local density treatment of the quantum fluctua-
tions we can introduce a generalized time-dependent Gross-
Pitaevskii equation,1

i�
∂ψ

∂t
= LGPψ, (1)

=
[
Hsp +

∫
dr′ U (r − r′)|ψ(r′)|2 + γQF|ψ |3

]
ψ, (2)
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(
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ρρ
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zz
2), (3)

is the single-particle Hamiltonian including a harmonic con-
finement potential with trapping frequencies {ωρ,ωz}, where
ρ =

√
x2 + y2 is the radial coordinate. The two-body interac-

tions between atoms are described by the pseudopotential [4]

U (r) = gδ(r) + μ0μ
2

4π

1 − 3 cos2 θ

r3
, (4)

where g = 4πas�
2/m, with as being the s-wave scattering

length. The long-ranged DDI term is for dipoles of magnetic
moment μ polarized along z with θ being the angle between r
and the z axis.

The last term in Eq. (2) accounts for the quantum
fluctuations. In a homogeneous dipolar condensate quantum
fluctuations are predicted to shift the chemical potential, a
correction of the form 
μ = γQFn

3/2 [32], where n is the
density. The quantum fluctuation parameter γQF is determined
by the excitation spectrum, and thus depends on both the
contact and DDIs. Making the local density approximation
by setting n → n(r) = |ψ(r)|2 yields the term appearing in
our generalized GPE.

Some evidence for the applicability of the fluctuation
term [as used in Eq. (2)] in the regime of (HDP) droplet
ground states has been provided by recent path-integral Monte
Carlo calculations [27] for cases with ∼ 103 atoms. More
such studies, particularly at larger numbers, are necessary
to assess the accuracy of this treatment over a broader
parameter regime relevant to experiments. The general va-
lidity requirement for including quantum fluctuations in the

1The dipolar LHY local density treatment was formulated in [32,33]
and was recently applied as a generalized GPE in [26,27].

form we use here is that the gas parameter is small (or
equivalently that the depletion remains small; see Ref. [26]).
A separate concern is the applicability of the local density
approximation. Previous works concerning the excitations of
trapped dipolar condensates have demonstrated that the local
density approximation works well [38–40] in the regime of
LDP ground states, although these results were typically in
the regime of reasonably large condensates where the density
varies slowly. It is possible to include quantum fluctuation
effects without making the local density approximation (i.e.,
explicitly diagonalizing for the quasiparticle modes), as has
been done for condensates with contact interactions (e.g.,
see [41–44]). For the case of DDIs this task is more technically
challenging because exchange interactions involve computing
the two-point correlation function of the depleted atoms (e.g.,
see [45,46]).

The quantum fluctuation parameter has the analytic form

γQF = 32

3
g

√
a3

s

π

(
1 + 3

2
ε2

dd

)
, (5)

where the dimensionless number εdd = add/as , quantifies the
relative strength of the DDI and the s-wave interaction, where
add = mμ0μ

2/12π�
2 is the dipole length. When εdd > 1 we

refer to the system as being dipole dominated, and it was in
this regime that the droplet crystal was observed to form in
experiments.

Details of how we obtain result (5) from the Bogoliubov
theory of a homogeneous dipolar condensate, and a brief
comparison to the other approaches used in the literature, are
given in the Appendix.

It is interesting to quantify the size of γQF, and hence
quantum fluctuations, for 164Dy and 168Er atoms. We show
results for both atoms in Fig. 1 as a function of as . On
each curve the location where εdd = 1 is indicated, noting
that the dipole dominated regime lies to the left of this
point. We observe that at εdd = 1 the value of γQF for 164Dy
is approximately six times larger than the value for 168Er,
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FIG. 1. The quantum fluctuation parameter γQF for each species
is indicated for (solid line) 164Dy and (solid line with symbols) 168Er
cases as a function of as (where a0 is the Bohr radius). The values
where εdd = 1 for each species are indicated by small red boxes.
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suggesting that at a given density and at εdd ≈ 1 the role of
quantum fluctuations will be much larger for dysprosium.

B. Full numerical solution for stationary states

It is of interest to find stationary states of the generalized
GPE (2) in order to characterize equilibrium or meta-stable
states of the system. These states can be obtained by numeri-
cally solving the time-independent GPE

LGPψ0 = μcψ0, (6)

where ψ0 is the stationary solution wave function, taken to be
normalized to the number of atoms N , and μc is the conden-
sate chemical potential. Because the system is cylindrically
symmetric we can extend the algorithm developed in Ref. [6]
to solve for these states. We emphasize that this algorithm
allows us to follow stationary states even once they become
metastable (i.e., are no longer the global ground state).

C. Variational solution

A simpler alternative to finding full numerical solutions
of the time-independent generalized GPE is to consider a
variational approach. Here we do this by approximating the
condensate by the Gaussian ansatz

ψvar =
√

8N

π3/2σ 2
ρ σz

exp

[
−2

(
ρ2

σ 2
ρ

+ z2

σ 2
z

)]
, (7)

where σρ and σz are the full widths at 1/e of the peak density
along ρ and z, respectively. In order to variationally deter-
mine the stationary state parameters we evaluate the energy
functional corresponding to the generalized GPE (6), i.e.,

E[ψ] =
∫

dr ψ∗
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Hsp + 1

2
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+ 2

5
γQF|ψ |3

]
ψ, (8)

with the last term corresponding to the energy correction due
to quantum fluctuations within the local density approximation
[cf. 
E in Eq. (A2)]. Evaluating the energy functional (8)
using the variational ansatz yields
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where

f (x) = 1 + 2x2

1 − x2
− 3x2arctanh

√
1 − x2

(1 − x2)3/2
(10)

and az = √
�/mωz. We identify the stationary solutions by

numerically locating the values of σρ and σz that minimize
the energy functional (9).

III. RESULTS

A. Ground and metastable states

We first consider the nature of stationary solutions for the
parameter regime of the experiments of Kadau et al. [19].
Results for the stationary state properties (from both the
variational solutions and the full numerical solutions) are
shown in Fig. 2 as a function of the s-wave scattering length.

The energies of these solutions [Fig. 2(a)] reveal two
distinct energy branches within the range of scattering lengths
considered. The upper energy branch corresponds to a solution
of low peak density [see Fig. 2(c)], and we label it as the
low density phase (LDP). This branch is the ground state for
as � 85 a0. For values of as below this the other branch is the
ground state, as it rapidly decreases in energy with decreasing
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FIG. 2. Stationary solution properties in an oblate trap as a
function of the s-wave scattering length. (a) Energy, (b) width
parameters, and (c) peak density. The variational and GPE solutions
are given as solid and dotted lines respectively. Insets to (a) show
contours of E(σρ,σz) highlighting the minima, for the as values
indicated [also shown as vertical dashed lines in (a)]. Vertical dashed
lines in (b) and (c) represent the cases studied in Fig. 3. Results are
for the case of N = 15 × 103 164Dy atoms with add = 130 a0, where
a0 is the Bohr radius, and {ωρ,ωz} = 2π × {45,133} s−1.
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as . The corresponding solutions have a high peak density [see
Fig. 2(c)] and we label this branch as the high-density phase
(HDP). The insets to Fig. 2(a) show the variational energy
surface as a function of (σρ,σz), revealing the two solutions as
local minima.

The widths of the solutions are shown in Fig. 2(b). For the
full GPE solutions we extract the widths using the moments

σ 2
ρ = 4

N

∫
dr ρ2|ψ(r)|2, σ 2

z = 8

N

∫
dr z2|ψ(r)|2, (11)

chosen to correspond to the variational width parameters when
applied to the variational state (7). The LDP solution has an
oblate geometry with an aspect ratio similar to that of the trap,
although distorted slightly by the anisotropic character of the
DDI (this is the typical behavior of the dipolar Thomas-Fermi
solution [47]). In contrast the HDP solution is a narrow prolate
droplet with σρ 	 σz. This configuration reduces the dipolar
energy, but has an appreciable increase in the z extent of the
condensate and hence the z component of the trap potential
energy increases. We notice in Fig. 2(b) that the HDP widths
obtained from the full GPE solution have a sudden kink and
change in behavior for as � 80 a0. This happens as the solution
develops a radial lobe outside the main condensate, a feature
that is not captured by the variational ansatz. Examples of
these condensate profiles are shown in Fig. 3. This lobe occurs
because the effective potential for the atoms in the condensate,

Veff(r) = Vtrap + 1

2

∫
dr′U (r − r′)|ψ0(r′)|2 + 2γQF

5
|ψ0|3

(12)

[i.e., the nonkinetic part of the integrand in Eq. (8), with Vtrap

denoting the harmonic trap], has a local minimum outside the
condensate, and an appreciable number of atoms can tunnel
into this (cf. Saturn ring instability discussed in Ref. [47]).

The peak density npeak of the stationary solutions is shown
in Fig. 2(c). This is taken to be |ψvar(0)|2 and max {|ψc|2} for
the variational and full GPE solutions,2 respectively. The peak
density results emphasize the significant quantitative change
in density between the two branches, i.e., the HDP branch is
approximately two orders of magnitude more dense than the
LDP branch.

B. Phase diagram

Having validated that the variational approach is reasonably
accurate, we can employ it to calculate a phase diagram over
a wide parameter regime for the system. We find that the
interesting parameters to explore are the condensate number,
s-wave scattering length, and trap aspect ratio λ = ωz/ωρ .
The trap aspect ratio is important because it influences the
condensate geometry which directly affects the DDI energy.
That is, by virtue of the long-range and anisotropic character of
the DDI, its average energy changes from positive to negative
as the condensate shape changes from oblate to prolate. In

2In some regimes the full GPE solutions can have peak density
occurring away from trap center (e.g., see [7,13,48]).
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FIG. 3. Density slices of stationary state solutions to the gener-
alized GPE in the y = 0 plane for the LDP [(a)–(c)] and the HDP
[(d)–(f)] for three regimes as/a0 = 78, 81, and 86 indicated as vertical
dashed lines in Figs. 2(b) and 2(c). For as/a0 = 78 the LDP exhibits
a “blood-cell” profile, while for as/a0 = 81 and 86 the HDP has
a Saturn-ring-like feature. (g) The effective potential as defined in
Eq. (12) for the case of as/a0 = 86.

general we can identify whether a stationary solution is in the
LDP or the HDP by the distinctive peak densities associated
with these phases. In this way we are able to make a phase
diagram in (N,λ,as)-space. We show the result of such a phase
diagram calculated for 164Dy in Fig. 4. This figure shows the
phase transition surface, where the energies of the LDP and
HDP are degenerate [e.g., the intercept of the two branches
at as ≈ 82 a0 in Fig. 2(a)]. Above this surface (i.e., for higher
values of as) the LDP is the ground state, while below this
surface the HDP is the ground state. This phase transition
surface terminates on a critical line, and for aspect ratios λ � 1
and N � 103 there is no phase transition between the LDP and
HDP, but a continuous evolution between these two phases.
This behavior is similar to the usual gas-liquid phase transition,
which also involves two states primarily differing by density.
In that case it is also possible to pass between the liquid and
gas phases continuously by going around the critical point.

From Fig. 4 we also observe that there are two distinct
regimes of behavior for the phase diagram: At large N (�
5 × 103) the phase transition surface is almost independent
of N , while at small N the surface decreases rapidly with
decreasing N . We now explore these two regimes in more
detail.
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FIG. 4. Surface marking the phase transition between the low
density (LDP) and high density (HDP) phases of a dysprosium
dipolar condensate. The critical line is indicated as a thick black
line. Parameters are for 164Dy, and the harmonic trap is taken to
have a fixed geometric mean trap frequency of ω̄/2π = 64.6 Hz. The
phase diagram was calculated using the variational ansatz. Examples
of two paths are indicated as vertical lines that correspond to an
s-wave quench that (1) passes across the phase transition and (2)
avoids the phase transition by evolving continuously from the LDP to
HDP outside the critical line. Path (1) is the interaction quench used
in Ref. [19]. The two curves which lie on the surface are the cuts that
are explored further in Figs. 5(a) and 6(c).

1. Large-N regime

In Fig. 5(a) we show a slice of the phase diagram in
(λ,as)-space for N = 15 × 103 164Dy atoms. We have shaded
this plot by the ground state peak density to reveal the sudden
change that occurs upon crossing the phase boundary. As the
critical point is approached along the phase transition line,
the difference in the HDP and LDP densities decreases. For
reference, the phase transition line in this figure corresponds
to the red line on the phase boundary surface in Fig. 4.
In this large-N regime the phase transition only occurs in oblate
traps, arising from an interplay of the anisotropy of the DDI and
the harmonic confinement. The stationary states for this case,
with λ = 2.96, were already presented in Fig. 2, revealing the
typical properties of the LDP and HDP states in this regime.
Notably, in the LDP the trap potential energy is minimized by
the condensate (approximately) adopting the aspect ratio of
the trap, and in this configuration the DDI energy is positive.
In the HDP the condensate adopts a prolate geometry that
minimizes the DDI, but at the expense of higher contact
interaction, quantum fluctuation, and z component of trap
potential energies. Generally we observe that as as decreases
the ground state density increases. This is because below the
phase boundary the quantum fluctuations play an important
role in stabilizing the condensate against the attractive DDIs.
As as and hence the value of γQF decrease (see Fig. 1), the
peak density has to increase for the quantum fluctuation term
to balance the DDIs.

In Fig. 5(b), we show the phase diagram for 168Er. Because
this atom has a much smaller value of add, the dipole dominated
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FIG. 5. Phase diagram as a function of s-wave scattering length
and trap aspect ratio for (a) dysprosium and (b) erbium. The shading
represents the peak density of the ground state. The black line
indicates the phase transition, the large dot marks the critical point
(CP), and the gray lines bound the region of metastable coexistence.
Note that for erbium the density eventually exceeds the maximum
given in the color bar but we allow this saturation to facilitate the
comparison with dysprosium. The HDP generally exists at smaller
as than the LDP. Parameters: N = 15 000, ω̄/2π = 64.6 Hz. The red
line with dots indicates the quench path used in Ref. [19].

regime occurs at a much lower s-wave scattering length, hence
the phase boundary is at lower values of as compared to the
dysprosium results. At these values of as the value of γQF is
much smaller than for 164Dy (see Fig. 1) and hence the peak
density of the droplets is much higher.

2. Small-N regime

We now turn to considering the behavior of the phase
diagram in the small-N regime. Here the kinetic energy
(quantum pressure) term becomes important in determin-
ing the stationary state properties. We find that a phase
transition between the LDP and HDP can occur for all
trap aspect ratios considered if the atom number is low
enough.

In Fig. 6 we present a slice of the phase diagram in
(N,as)-space. The phase boundary of the dysprosium results
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FIG. 6. Upper: Peak density versus scattering length. (a) Dysprosium atom numbers from black to red (gray): 500, 1000, 1250, 5 × 104.
(b) Erbium atom numbers from black to red (gray): 1500, 3000, 4000, 5 × 104. Solid curves represent variational solutions while points are
from the full GPE, the latter of which is only shown for the smallest and largest atom numbers. The vertical solid lines illustrate εdd = 1 and
εdd = 0.6. Lower: (c) Dysprosium phase diagram in as-N space demonstrating a critical point at N = 1110, as/a0 = 71.1. (d) Erbium critical
point at N = 3380, as/a0 = 44.1. The shading represents the peak density of the ground state. The black lines indicate the phase transition, the
large dots mark the critical points, and the gray lines bound the region of metastable coexistence. Note that for erbium the density eventually
exceeds the maximum given in the color bar, but we allow this saturation to facilitate the comparison with dysprosium. Trap parameters are the
same for all panels: ωρ = 2π × 81.4s−1, ωz = 2π × 40.7 s−1.

[Fig. 6(c)] corresponds to the magenta line on the phase
diagram shown in Fig. 4 (noting that it appears almost vertical
in Fig. 4 because of the N scale used there). In Figs. 6(a)
and 6(b) we consider the peak density as a function of as

for condensates of various numbers in a prolate trap. For this
trap geometry there is no phase transition at large N (just a
continuous crossover from the LDP to the HDP as as reduces),
but we observe that distinct LDP and HDP branches emerge for
sufficiently low atom number. At the aspect ratio considered
here, the critical point is at N ≈ 1100, as ≈ 71 a0 for 164Dy
and N ≈ 3400, as ≈ 44 a0 for 168Er.

C. Relationship to dynamics

While the focus of this paper is on the equilibrium states,
it is useful to relate our results to the dynamical simulations
presented in Ref. [26] that used the time-dependent generalized
GPE (2). The main scenario studied there was the quench used

in experiments [19] where the scattering length was reduced
from an initial value as = 120 a0 to the final value of as =
70 a0 over a period of 0.5 ms. Such a quench takes the system
across the phase boundary from the LDP to the HDP [this
quench is indicated by the red dotted line in Fig. 5(a), also
shown as the path labeled (1) in Fig. 4]. This quench does not
produce the ground state we predict here (i.e., a single droplet),
instead approximately 10 ms after the quench a droplet crystal
consisting of up to 10 droplets forms. Each droplet contains
approximately 103 atoms. These observations are consistent
with those made in the experiments. In simulations the number
of droplets produced varies from run to run due to the stochastic
noise added to the LDP initial condition to mimic the effects
of quantum and thermal fluctuations. We conclude that the
crystal forms as a metastable excited state because the system
is unable to adiabatically cross the first-order phase transition.
Indeed, as observed in Ref. [26] (and similar to the findings in
Ref. [22]) the system approximately conserves energy during
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the droplet formation (after the quench) and is unable to access
the true ground state, which has a much lower energy. Instead,
the crystal of droplets is consistent with this energy constraint,
because each small (i.e., containing a smaller number of atoms)
droplet has a greater energy per particle than large droplets. In
Ref. [26] it was reported that for as = 70 a0 they were unable
to solve for droplets with N � 900 using an imaginary time
method to solve for stationary states of the generalized GPE.
This is approximately the same value of N for which we find
the phase boundary between the LDP and HDP phases; see
Fig. 6 for as = 70 a0.

D. Continuous droplet formation

In experiments the properties of dipolar condensates are
conveniently explored by changing the s-wave scattering
length using Feshbach resonances. However, as discussed in
Sec. III C, when a phase boundary is crossed the system will
be unable to follow adiabatically and will end up in an excited
state (e.g., a droplet crystal). Aided by the phase diagrams
we have developed here, we can explore paths in parameter
space that go from the LDP to the HDP without crossing a
phase boundary; i.e., paths beyond the critical point [e.g., the
path labeled (2) in Fig. 4]. For example, with reference to
Fig. 4, as quenches with N � 103 and λ � 1 do not cross
a phase boundary, but continuously evolve from the LDP to
the HDP.

In this section we consider a particular case of a dipolar
condensate in a trap of aspect ratio λ = 0.5. Widths and peak
densities are shown as a function of as in Fig. 7 and as a
function of N in Fig. 8 for dysprosium condensates. The widths
predicted by our variational model are shown as solid lines,
and are in reasonable agreement with the full generalized GPE
calculations, indicated by points, especially at small N . As
the scattering length is reduced, such that εdd > 1, the droplet
regime is smoothly obtained as indicated by the rapid radial
shrinking of σr [Fig. 7(a)] and a corresponding increase of
the peak density [Fig. 7(c)]. Meanwhile, σz remains relatively
unaffected by changes of as .

Considering a different slice in parameter space, Fig. 8(a)
reveals that the radial width does not change monotonically
with N , but instead exhibits a minimum at finite N after which
the droplet proceeds gradually to fatten with increasing N .
While Fig. 7(b) demonstrated that the axial width is relatively
insensitive to changes of as , Fig. 8(b) shows that σz markedly
increases with increasing N , with the exception of a small
downward spike as the critical point is grazed at small N for
as/a0 = 70. Remarkably, Fig. 8(c) demonstrates that the peak
density saturates at a constant value as a function of N . This
saturation is consistent with the Thomas-Fermi prediction for
the peak density in Ref. [25]:

nTF
peak = π

a3
s

(
εddf (κ) − 1

16
(
1 + 3ε2

dd/2
)
)2

, (13)

where κ = σr/σz is the droplet aspect ratio. We have drawn this
prediction in Fig. 8(c) as thin horizontal lines. The agreement
with our GPE and variational results is reasonable, deep in the
droplet regime where as/a0 = 70 (εdd = 1.87), but caution
should be taken at larger scattering lengths, as can be seen by
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FIG. 7. Properties of a single droplet of Dy atoms in a prolate
trap as a function of as : (a) radial width, (b) axial width, (c) peak
density. Variational solutions are given as lines while GPE results
are shown as points. Black is for N = 104 atoms and red (gray) for
N = 5 × 104. Vertical dashed lines represent the scattering lengths
of the curves shown in Fig. 8. Vertical solid line marks εdd = 1. Trap:
ωρ = 2π × 81.4 s−1, ωz = 2π × 40.7 s−1.

the large deviation for the case of as/a0 = 100 (εdd = 1.31).
The latter issue arises when εddf (κ) ≈ 1, resulting in a van-
ishing numerator of Eq. (13).3 Peak density saturation should
be favorable for future experiments, as it means that broad
droplets with large atom numbers should be accessible without
reaching densities where loss is problematic. Importantly,
large atom numbers in prolate traps should produce droplets
with large in situ widths, on the order of a few μm. Such
widths are within reach of current in situ imaging methods,
and experiments in this regime should furnish a fertile
testbed to determine the precise details of the stabilization
mechanism.

3For the case of as/a0 = 70 we use κ = 1/20 and for as/a0 = 100
we use κ = 1/5 as estimates of the droplet aspect ratios based on our
results in Figs. 8(a) and 8(b).
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FIG. 8. Properties of a single droplet of Dy atoms in a prolate trap
as a function of N : (a) radial width, (b) axial width, (c) peak density.
Variational solutions are given as lines while GPE results are shown as
points. Black is for as/a0 = 100 and red (gray) for as/a0 = 70. Thin
horizontal lines show the analytic prediction of Eq. (13). Vertical
dashed lines represent the N values of the curves in Fig. 7. Trap:
ωρ = 2π × 81.4 s−1, ωz = 2π × 40.7 s−1.

IV. CONCLUSIONS

In this paper we have developed a phase diagram for the
ground state of a dipolar condensate including the effect of
quantum fluctuations. These fluctuations are treated within a
local density approximation, found to be accurate in recent
work that made comparisons to path-integral Monte Carlo
simulations [27]. This treatment, based on the leading order
expression for the contribution of the quantum fluctuations to
the energy, should be valid as long as the system is sufficiently
dilute. The highest densities we encounter in our results are
n ∼ 1023 m−3, for which na3

dd ∼ 0.03 (using add for 164Dy),
thus the system is still reasonably dilute.

Our main results concentrate on the two types of stationary
states that occur in this system: a low-density condensate and
a high-density droplet state that we identify as the LDP and
HDP, respectively. We have used a simple variational Gaussian
ansatz that quantifies these states, and have validated the
predictions of the variational solutions against full numerical

solutions of the generalized GPE. We find that the variational
predictions are reasonably accurate, although we observe
that in some regimes the full generalized GPE solutions for
the HDP develop novel halo features not captured by the
variational solution. We find that this halo arises from a
local minimum in the effective potential, which should also
confine excited thermal atoms, and thus may be observable in
experiments.

There exists a first-order phase transition between the LDP
and HDP, although beyond the critical line is it possible to
go smoothly between the phases. We have examined the phase
diagram as a function of as , N , and λ, and explored the generic
behavior of the phase transition for the cases of small and
large N . Dynamical simulations have shown that the quench
used in experiments crosses the phase boundary into the HDP
nonadiabatically, and hence an excited state (a droplet crystal)
is produced rather than the HDP ground state of a single
droplet. Utilizing our phase diagram we propose using a similar
quench in a dipolar condensate confined by a prolate trapping
potential. This case lies beyond the critical line, and the LDP
continuously evolves to the HDP. Alternatively, one could
directly evaporatively cool the atoms at low scattering length
in the prolate trap. Our results show that a single droplet forms
with parameters suitable for direct observation in experiments.
This regime may provide an opportunity to more carefully
quantify the role of quantum fluctuations in the ground state.
In addition to considering 164Dy we have also presented results
for 168Er to show that, despite its smaller dipole moment, this
atom is well suited for exploring our predicted phase diagram
in experiments.
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APPENDIX: QUANTUM FLUCTUATIONS

In this appendix we examine the calculation of the
quantum fluctuation corrections motivating the choice of the
parameter γQF we make in Eq. (5). Other papers in the
literature have made slightly different choices for evaluating
this parameter (notably treating finite size effects), and for
clarity we discuss and compare these other choices. We
begin by reviewing the calculation in the homogeneous case
before turning to the extension of this result to a finite
system.

1. Homogeneous system

We consider a uniform dipolar condensate system with
Bogoliubov spectrum

εk =
√

ε0
k

[
ε0
k + 2ngf (ϑ)

]
, (A1)
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where ε0
k = �

2k2/2m, f (ϑ) = 1 + εdd(3 cos2 ϑ − 1), and ϑ

is the angle between the polarization of the dipoles and k.
The corrections to the energy and chemical potential due to
quantum fluctuations are given by [33]4


E = V

2

∫
dk

(2π )3

[
εk − ε0

k − ngf (ϑ) + [ngf (ϑ)]2

2ε0
k

]
, (A2)

= 64Vg

15

√
a3

s

π
Q5(εdd)n5/2 = 2V

5
γQFn

5/2, (A3)


μ = ∂
E

∂N
= γQFn

3/2, (A4)

where we have introduced the quantum fluctuation parameter

γQF ≡ 32g

3

√
a3

s

π
Q5(εdd), (A5)

and Q5(εdd) is given by

Q5(εdd) = (3εdd)5/2

48

[
(8 + 26y + 33y2)

√
1 + y

+ 15y3 ln
1 + √

1 + y√
y

]
, (A6)

= 1 + 3

2
ε2

dd + O
(
ε4

dd

)
, (A7)

with y = (1 − εdd)/3εdd.

2. Finite-size system

In applying the homogeneous results to the experimental
regime of micrometer scale droplets it is necessary to consider
finite size effects. That is, a system of extent {σρ,σz} can
only support excitations of wave vectors exceeding the cutoff
values kc,i = π/σi , with i = {ρ,z}. We can account for this by
restricting the k domain of the integral (A2) to values greater
than this.

Cutoff I: An obvious choice is to exclude an ellipsoidal
region of long-wavelength modes, so that the integration is
taken over the region

(kρ/kc,ρ)2 + (kz/kc,z)
2 � 1 (A8)

(see Fig. 9), i.e., an angular varying cutoff of the form

kc(ϑ) = 1/

√
sin2 ϑ/k2

c,ρ + cos2 ϑ/k2
c,z. (A9)

Performing this integration gives the parameter γQF according
to Eq. (A5), but with Q5 replaced by Q′

5 which can be
calculated numerically as5

Q′
5(εdd) = 1

64

∫ π

0
sin ϑ dϑ[(8f (ϑ) − 3k̄2)(4f (ϑ) + k̄2)3/2

+ 3k̄5 + 10k̄3f (ϑ) − 30k̄f (ϑ)2], (A10)

where k̄ ≡ kc(ϑ)/k0 is the boundary of the integration region
with k0 = √

4πnas .

4The last term of Eq. (29) of [33] is too high by a factor of 2.
5This is consistent with Eq. (5) of [26], except that their −qc(θ )2/2

should be −qc(θ )2/10.

kρ/k0

k
z
/k

0

0 1 2
0

0.5

1

FIG. 9. Cutoff regions with {σρ,σz} = {1/6,1} μm with k0

from n = 1.5 × 1015 cm−3 and as = 70a0 [26], giving {kc,ρ,kz,ρ} =
{2.1,0.35}k0. Lines indicate the kc boundaries (see text) used for
Cutoff I (blue/gray), Cutoff II (red/light gray), and Cutoff III (with
εdd = 1.87, black).

Two other cutoff choices have also appeared in the litera-
ture, and we introduce these for the purposes of comparison.

Cutoff II: Wächtler et al. [26] used a cutoff of the form

kc(ϑ) =
√

k2
c,ρ sin2 ϑ + k2

c,z cos2 ϑ, (A11)

(see Fig. 9), which can similarly be used to obtain γQF by
numerically evaluating Q′

5 as in Eq. (A10).
Cutoff III: For εdd > 1 the integrand (A2) is not real

everywhere as some modes have gone soft and developed
imaginary energies. Saito [27] proposed restricting the domain

R
e{
Q

5
(

d
d
)}

dd

0 1 2 3
0

5

10

15

FIG. 10. Results for the real part of Q′
5(εdd) for the cutoff

options from Fig. 9 (same colors). Also shown is the result with
no cutoff (green dash-dotted) and the approximate result Q5(εdd) =
1 + 3

2 ε2
dd (black dashed). At εdd = 1.87,Im{Q5(εdd)} ≈ 0.137 and

Im{Q′
5(εdd)} ≈ 0.013 for Cutoff I.
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of integration to regions where the integrand is real, i.e.,

kc(ϑ) = 2
√

max[0, − gnmf (ϑ)]/� (A12)

(see Fig. 9), which can be used to numerically evaluate Q′
5

again using Eq. (A10).
In Fig. 10 we compare the results for Q′

5 using the various
cutoff procedures to the homogeneous result Q5 and the
analytic approximation (A7) that we use in this paper. These

results are for the same size droplets considered in Ref. [26].
These results clearly show that the cutoff procedure has little
effect on the value of Q′

5 over the homogeneous result, and
clearly the simple analytic approximation (A6) is justified
[which is the basis of our choice for γQF in this work;
see Eq. (5), also see [25]]. Consistent with other treatments
(see [25–27]) we neglect any (typically small) imaginary part
in Q5, arising from the soft modes for εdd > 1.
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