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Geometry of system-bath coupling and gauge fields in bosonic ladders: Manipulating currents and
driving phase transitions
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Quantum systems in contact with an environment display a rich physics emerging from the interplay between
dissipative and Hamiltonian terms. Here we focus on the role of the geometry of the coupling between the system
and the baths. Specifically we consider a dissipative boundary driven ladder in the presence of a gauge field that
can be implemented with ion microtrap arrays. We show that, depending on the geometry, the currents imposed
by the baths can be strongly affected by the gauge field, resulting in nonequilibrium phase transitions. In different
phases both the magnitude of the current and its spatial distribution are significantly different. These findings
allow for strategies to manipulate and control transport properties in quantum systems.
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I. INTRODUCTION

Quantum systems in contact with an environment can
present a very rich phenomenology due to the interplay
between the Hamiltonian and dissipative dynamics. While
the Hamiltonian can allow the emergence of quantum phase
transitions, the dissipator can drive the system to a particular
steady state (or more than one), the properties of which
vary depending on the Hamiltonian itself. In these systems
nonequilibrium phase transitions may occur [1–4]. Recent
advances on quantum fluids of light [5] and on ultracold gases
in cavities [6] have allowed experimental exploration of this
physics.

A particularly important set of open systems is the boundary
driven systems in which the setup is connected at its boundaries
to the environment. A typical example is that of a chain of
particles connected, at its extremities, to two different baths,
thus imposing a flow within the system. This scenario has
been studied both theoretically and experimentally for various
kinds of physical realizations including spin systems, photonic
lattices, ions, metals, semiconductors, and Josephson junctions
arrays [7,8]. Experiments with ion traps promise to be an ideal
setup to simulate boundary driven systems [9–11].

Abelian gauge fields, like the magnetic field acting on
electrons, are known to be able to steer the motion of particles
while they are transported. The quantum Hall effect is a
striking example of the effects of a gauge field on transport
[12,13]. In recent experiments with Josephson junctions it was
possible to modify heat transport with a magnetic field [14].
Moreover, experimental advances have allowed the production
of synthetic gauge fields with ultracold atoms [15,16]. A
theoretical proposal has described how to produce synthetic
gauge fields in microtrap arrays for ions [17]. A simple
geometry that can show the nontrivial effects of a gauge field is
that of a ladder, i.e., two connected chains. This geometry has
been extensively studied both in Josephson junctions arrays
and bosonic atoms in optical lattices and in the presence of
interactions [18–34]. To be highlighted is the emergence of
a quantum phase transition for bosonic particles, which is
characterized by the order parameter chiral current, defined as
the difference of current between the upper and lower chains.

We study the interplay between the dissipation (and the
geometry of its coupling to the system) that favors current flow

and the gauge potential that tends to steer it. The gauge field can
also cause significant changes in the energy levels’ structure.
We find that by tuning this field, combined with altering the
geometry of the system-bath coupling, it is possible to drive
nonequilibrium phase transitions, which significantly affect
the current flow both in its magnitude and in the pattern formed.
This provides a means to control the flow in this boundary
driven systems. In particular, one phase transition occurs
for the same parameters as the quantum phase transition,
although the emerging properties, characterized, for instance,
by the chiral current, of the system are strikingly different
in the dissipative or in the Hamiltonian systems. The other
phase transition occurs when a gap opens in the spectrum
of the Hamiltonian system. At this transition, depending on
the geometry of the system-bath coupling, an abrupt change
of the total current may occur. In Sec. II we describe the
model studied. We then analyze the total (Sec. III) and chiral
(Sec. IV) currents in the system. The current modulations are
further discussed in Sec. V and then we present symmetry
considerations in Sec. VI. We summarize in Sec. VII.

II. MODEL

The system we study is represented in Fig. 1: a ladder
made of two coupled chains (or legs) of l local bosonic modes
that is coupled at its extremities to four baths. This could be
realized with ion trap microarrays [17], which are driven at
the boundaries by sideband cooling [35]. The evolution of an
observable Ô is given by

dÔ

dt
= − i

�
[Ô,Ĥ ] + DH (Ô), (1)

where the Hamiltonian is given by

Ĥ = −
⎛
⎝J ‖ ∑

p,j

ei(−1)p+1φ/2â
†
j,pâj+1,p

+ J⊥ ∑
j

â
†
j,1âj,2

⎞
⎠ + H.c. (2)

Here J ‖ is the tunneling constant in the legs, J⊥ for the rungs,
and âj,p (â†

j,p) annihilates (creates) a boson in the upper (for

2469-9926/2016/94(3)/033610(7) 033610-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.033610


CHU GUO AND DARIO POLETTI PHYSICAL REVIEW A 94, 033610 (2016)

FIG. 1. (a) Ladder made of two coupled linear chains, referred
to as legs of the ladder, with local bosonic excitations described by
the annihilation operators at site j , âj,p, where p = 1,2, respectively,
for the upper and the lower leg. Here J ⊥ is the tunneling between
the legs, on what are referred to as rungs of the ladder, while J ‖ is
the amplitude of tunneling between sites in the legs. A gauge field
imposes a phase φ. The coupling to the baths is represented by the
thick arrows. Each bath is characterized by the average density of
bosons n̄j the bath itself imposes on the rung j and the strength
of the coupling �(1 ± νj ). (b) Three characteristic configurations:
In the R (reflection symmetric) configuration the baths are coupled
only to the upper chain, in the S (symmetric) configuration they
are equally coupled to both chains, and in the C (centrosymmetric)
configuration one bath is coupled to the upper chain and the other
to the lower one. Note that the configurations are only symmetric
regarding the geometric coupling to the bath but not considering the
baths’ parameters.

p = 1) or lower (p = 2) chain at the j th rung of the ladder.
The tunneling in the legs has a complex phase φ/2 due to our
choice of the gauge. The coupling to the baths is modeled by
a dissipator

DH (Ô) =
∑
j,p

�(j,p),(j,p)[n̄j,p(âj,pÔâ
†
j,p − âj,pâ

†
j,pÔ)

+ (n̄j,p + 1)(â†
j,pÔâj,p − â

†
j,pâj,pÔ) + H.c.]

(3)

in Lindblad form [36,37], where j = 1 or l, � is a diagonal
matrix, with diagonal elements �(j,p),(j,p) = �[1 − (−1)pνj ],
which means the coupling constant of the bosons at site j ,
and n̄j,p is the local particle density that the dissipator would
impose on the ion if isolated. Here � is the overall coupling
constant and νj is the asymmetric component of the dissipative
coupling to the baths. Varying the values of νj alters the
geometry of the system-bath coupling, making the coupling
to the upper chain different from that to the lower one and
gradually turns the system from the S (νj = 0) to the R or
C configurations depicted in Fig. 1(b). As we will see later in
detail, changing νj (i.e., the geometry of the coupling) strongly
affects the current flow generated in the ladder.

Solving the equation for the quadratic operator

Now we introduce two diagonal matrix �+ and �−,
which satisfy �+

(j,p),(j,p) = �(j,p),(j,p)n̄j,p and �−
(j,p),(j,p) =

�(j,p),(j,p)(n̄j,p + 1), which implies that � = �− − �+. We

define another Hermitian matrix h of which the nonzero
elements are

h(j,p),(j+1,p) = h(j+1,p),(j,p)
∗ = J ‖ei(−1)p+1φ, (4)

h(j,1),(j,2) = h(j,2),(j,1) = J⊥, (5)

so that Ĥ can compactly be written as Ĥ =∑
(j,p),(k,q) h(j,p),(k,q)â

†
j,pâk,q , where 1 � j , k � l, and

p,q = 1,2. We focus on the quadratic observables
X(j,p),(k,q) = tr(â†

j,pâk,q ρ̂). Substituting X into the master
equation (1), we get

dX
dt

= −2PX − 2XP† + 2�+, (6)

where we have written P = (−iht + �)/2. Therefore, in the
steady state we have

PX + XP† = �+. (7)

We use this equation to compute the steady-state properties of
the system.

III. TOTAL CURRENT

We study the current in the steady state of the system. The
steady state is unique except for special cases (we will discuss
this more in detail in Sec. VI). The total current J = ∑

p Jj,p

is given by the sum of the current in the legs Jj,p. The gauge
invariant leg and rung particle currents are

Jj,p = 〈iJ ‖ei(−1)p+1φ/2â
†
j,pâj+1,p + H.c.〉 (8)

and

Jj,1→2 = 〈iJ⊥â
†
j,1âj,2 + H.c.〉, (9)

derived from the continuity equations

∂〈n̂j,1〉
∂t

= Jj−1,1 − Jj,1 − Jj,1→2 (10)

and

∂〈n̂j,2〉
∂t

= Jj−1,2 − Jj,2 − Jj,2→1 (11)

for 1 < j < l.
Tuning the phase φ allows us to vary the total current J

transported in the ladder. In particular, for sufficient coupling
strength to the baths � and asymmetric configurations, the
current undergoes an abrupt change, showing a nonequilibrium
quantum phase transition. This is clearly depicted in Fig. 2:
In Figs. 2(a) and 2(b) we show the current J versus the
phase φ for different couplings to the baths, from the S

(ν = 0) to the R (ν = 1) and C (ν = −1) configurations and
intermediate cases. We stress two particular aspects: When the
geometry of the coupling to the baths is close to the R or C

configurations, the total current can be highly (or completely)
suppressed around φ = π . Moreover, there is a sharp change
of the functional form of the current versus phase, signaling the
presence of a nonequilibrium phase transition. With Figs. 2(c)
and 2(d) we explore the influence of the tunneling between the
legs J⊥. Figures 2(c) and 2(d) show the shift, and eventually the
disappearance, of the transition as J⊥ is varied. The transition
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FIG. 2. (a) Total current in the ladder as a function of phase
φ and asymmetric coupling ν. In the positive range of ν we have
chosen ν1 = νl = ν, while in the negative range ν1 = −νl = −ν.
This implies that the line νl = 1 corresponds to the R configuration,
νl = 0 to the S configuration, and νl = −1 to the C configuration.
Here J ⊥ = J ‖. In (b) the light blue curves are for νl > 0 and the dark
purple curves are for νl < 0. The values of νl are, from top to bottom,
±0.4, ±0.96, ±0.98, and ±1. The red vertical lines indicate the values
of the phase φ = 2π/3 and 4π/3 at which, as discussed later, a gap
opens between the lower and upper bands in the energy spectrum
of the ladder. The light purple dotted line is for the S configuration,
i.e., ν = 0. (c) Depiction of the total current as a function of J ⊥

and φ for the (c1) R and (c2) C configurations. The white dashed
lines are given by Eq. (19). (d) Selected curves from (c) showing J
versus φ for J ⊥/J ‖ = 0.5,1,1.5,2.5 (from bottom to top at φ = 0).
The position of the transition shifts as J ⊥ varies and it disappears for
J ⊥ � 2J ‖. The light blue and dark purple curves are for the C and R

configurations, respectively. In all figures shown the number of rungs
l = 500, n̄1 = 0.5, n̄l = 0.1, and the strength of the coupling to the
baths is � = 5J ‖/� (unless stated otherwise).

is demarcated by the dashed white curve, which is derived later
to be Eq. (19).

IV. CHIRAL CURRENT

An analysis of the chiral current

Jc =
∑

j

(Jj,1 − Jj,2)/l (12)

shows that, unlike the unitary case without baths for which only
one transition occurs, there can be two transitions. Moreover,
symmetry guarantees that the chiral current vanishes for the
symmetric coupling to the baths S and the centrosymmetric
coupling C and scenarios in between, as shown in Sec. VI.
Results for the R configuration are depicted in Figs. 3(a)
and 3(b), where we show the combined effect of J⊥ and
φ. At a smaller value of J⊥, the chiral current presents two
abrupt changes in its derivative with respect to φ [some of
these points are highlighted with arrows in Fig. 3(b)]; then, at
intermediate values of J⊥, two regions with chiral current are
clearly separated and drift apart until, at large values of J⊥,
the chiral current is only present near φ = π . Detail of one
transition are shown in Fig. 3(c1). In Fig. 3(c2) we show that
the chiral current goes to 0 as a power law at the transition point
as the system’s size increases, signaling a phase transition. In

FIG. 3. (a) Chiral current as a function of perpendicular tunneling
J ⊥ and phase φ. (b) Chiral current versus φ for the selected values of
J ⊥/J ‖ = 0.5,1,1.5,1.7,2 (from top to bottom). In (a) we show that
the two transitions happen at values of the phase given by Eqs. (20)
(dash-dotted line) and (19) (dashed line). (c) Details of the phase
transition for J ⊥ = 1.7J ‖ in the R configuration: (c1) a zoom-in of the
transition for l = 1000 and (c2) scaling of the chiral current versus the
system size (number of rungs l) at the transition point φ ≈ 0.3532 . . .,
as given by Eq. (19) [transition highlighted by the red dashed arrow in
(b) and (c1)]. The circles are numerical data, while the straight line is a
power-law fit with exponent −1. (d) Chiral current versus phase φ for
ν = ν1 = νl = 0.02,0.18,0.38,0.78,1 (from bottom to top) showing
chiral current inversion. The arrows in (b) and (d) highlight some
transitions.

Fig. 3(d) we study the role of the amplitude of the asymmetric
coupling ν as the system varies from the S towards the R

configurations while keeping J⊥ = J ‖. We also note a chiral
current inversion for large enough ν, which is clearly shown
in Fig. 3(d). Unlike in [34], the chiral current reversal is due
to the interplay between the dissipative and the Hamiltonian
dynamics.

V. MOMENTUM DISTRIBUTION

To gain deeper insight into the distribution of the current
flow in the system we study the Fourier transform of the current
in the lower legJ k,2. In Figs. 4(b1)–4(b3) we depict the typical
results for |J k,2| (excluding k = 0). If |J k,2| is zero for any
k it means that the current is uniform within the leg, which
implies no rung current. Instead the presence of peaks results
in modulating patterns in the rung current. To gain an under-
standing of the spatial modulation we consider the spectrum
for an infinite ladder with periodic boundary conditions. The
quadratic Hamiltonian can be readily diagonalized as

Ĥ =
∑

k

E±
k α̂

†
k,±α̂k,±, (13)

with

E±
k = − 2J ‖ cos(φ/2) cos(k)

±
√

J⊥2 + [2J ‖ sin(φ/2) sin(k)]2 (14)

and α̂k,± the annihilation operator of a particle at momentum
k in the upper (+) or lower (−) band. The spectrum presents
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FIG. 4. (a1)–(a5) Energy spectrum of the ladder for the phase
φ = 2π/3 and the amplitude of tunneling in the bulk J ⊥/J ‖ =
0.5,1,1.5,3,5, respectively. The dashed line in (a2) highlights that
this corresponds to the critical value of J ⊥ at which the gap between
the lower and upper bands is 0. The dashed line in (a4) points
out that J ⊥ = 3J ‖ is the critical value at which the minima have
merged. (b1)–(b3) Momentum probability distribution for the current
in the lower leg as a function of φ and the momentum k for
the R configuration (other configurations, except the symmetric S

configuration, present a similar structure). In the three plots J ⊥/J ‖

is, respectively, 1, 1.8, and 3. The white dashed lines are analytically
obtained from Eq. (15) and highlight the current due to bath-induced
intraband coupling as depicted, for example, in (a1) by the green
arrows. The white solid lines are given by Eq. (16) and are due to
interband coupling [one example is the red arrow in (a1)]. Note that
the point k = 0 has been removed to make the patterns more visible.

three typical scenarios [Figs. 4(a1), 4(a3), and 4(a5)] separated
by the transition points in Figs. 4(a2) and 4(a4). In Fig. 4(a1)
the two bands overlap and each band has either two minima
(lower band) or two maxima (higher band); in Fig. 4(a3) the
two bands do not overlap and each band still has either two
minima or two maxima; in Fig. 4(a5) each band has only
one minimum (lower band) or maximum (higher band). In
Fig. 4(a2) the two bands separate, while in Fig. 4(a4) there
is a transition from two minima (maxima) to one minimum
(maximum).

We can now intuitively understand the occurrence and
spatial period of the modulation by a perturbative analysis
of the system for small coupling to the bath � (in a parallel
way to [38]). At zeroth order, any single-particle correlator of
the type 〈α̂†

k,σ α̂k′,σ ′ 〉 is constant in time as long as Eσ
k = Eσ ′

k′ .
The dissipation, being local, can possibly couple all different
momenta and, in first order, acts strongly on this constant
manifold. It thus couples different energetically degenerate
momenta, whether in the same band (intraband) or in different
bands (interband). This results in a modulation given by the
difference or sum of the two momenta k and k′. Hence the
maxima of |J k,2| occur at

kintra = ±2arccos(θintra), (15)

kinter = ±arccos(θinter), (16)

respectively from the intraband and interband coupling. Here

θintra = cot(φ/2)
√

sin2(φ/2) + (J⊥/2J ‖)2 (17)

and

θinter = 2 cos(φ/2)[cos(φ/2) − (J⊥/2J ‖)] − 1. (18)

It is at the occurrence of degeneracies that a phase transition
manifests itself, provided the coupling via the bath is nonzero.
The critical values of J⊥/J ‖ and φ for the transition lines
can be readily computed from the analytical expression of the
spectrum, resulting in

J̄⊥ = 2J ‖ cos(φ̄/2), (19)

J̃⊥ = 2J ‖ tan(φ̃/2) sin(φ̃/2), (20)

respectively, for the gap opening (the condition being E+
0 =

E−
π ) and for the transition between one to two minima. The

phase transition lines are highlighted in Fig. 3(a) by the white
dashed curve [Eq. (19)] and the dash-dotted white curve
[Eq. (20)]. Moreover, the opening of the gap also results in
an abrupt reduction of the total current as shown by the dashed
curves in Figs. 2(c1)–2(c2). It is easy to show that in the
symmetric S configuration, the coupling via the bath of the 0
and π momenta vanishes, which results in a smooth change of
the total current and no phase transition occurs [see the light
purple dotted line in Fig. 2(b)].

VI. SYMMETRY CONSIDERATIONS

Here we discuss some properties of the system that can be
derived from symmetry considerations. We will first show the
effect of changing φ → −φ (Sec. VI A), then of linear changes
of the baths parameters n̄i,p (Sec. VI B), symmetry properties
of the total and chiral currents depending on the configuration
(Sec. VI C), and last the case of φ = π (Secs. VI D and VI E).

A. Change of phase φ → −φ

Let us consider a transformation from φ → −φ. The
dissipation is untouched, while the new Hamiltonian Ĥ ′ is
such that Ĥ ′ = Ĥ ∗ (the complex conjugate of Ĥ ). We thus
have that h′ = h∗. Denoting the quadratic observables of the
new system by X′, using the particular form of h and the
fact that �+ and �− are diagonal, it can be proved (see the
Appendix) that

X′
(j,p),(j+k,p+q) = (−1)k+qX∗

(j,p),(j+k,p+q). (21)

This implies that, unlike in the unitary system for which the
current is antisymmetric for a change of φ → −φ, in the
dissipative case it is symmetric. For instance, the rung current
for a phase −φ, from Eq. (9),

Jj,1→2(−φ) = −2J⊥I(X′
(j,1),(j,2))

= −2J⊥I(X(j,1),(j,2))

= Jj,1→2(φ), (22)

where I(·) takes the imaginary part of its argument. Similarly
for the leg current, from Eq. (8),

Jj,p(−φ) = −2J ‖I(e−i(−1)p+1φ/2X′
(j,p),(j+1,p))

= −2J ‖I(ei(−1)p+1φ/2X(j,p),(j+1,p))

= Jj,p(φ). (23)
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B. Linear change of the baths parameters n̄ j, p

Let us consider a change in X such that X′ = X + s1, where
1 means the identity matrix. It is straightforward, from Eq. (7),
to see that X′ satisfies the equation

PX′ + XP† = �+′
, (24)

with �+′ = �+ + s�. The consequence of Eq. (24) is ap-
parent: X′ will be a solution to another system with �′ = �

but with an average occupation shifted as n̄′
j,p = n̄j,p + s. A

change in the average occupation fixed by the dissipation thus
only changes the local occupations but not the currents or the
kinetic energy.

In a similar manner it is also easy to realize that X′ = sX is
the solution to the system with the same h and �, but n̄′

j,p =
sn̄j,p. A natural consequence of the results in this section is
that it is possible to compute the observables for the case in
which one boundary is set to n̄j,p = 0 while the other is set to
any value and then compute all the other possible cases by a
shift or a dilation in n̄j,p.

C. Symmetries of total and chiral currents in the various
configurations

In this section we analyze the symmetry of both the
Hamiltonian and the dissipation. First, it is easy to see that
if there is a unitary transformation U such that X′ = U†XU,
which is X = UX′U†, then X′ satisfies

U†PUX′ + X′U†P†U = U†�+U, (25)

which means that X′ is the solution to the system with P′ =
U†PU and �+′ = U†�+U.

1. The R configuration

In the R configuration, we define the transformation U
such that it has nonzero elements only on the antidiagonal
U(i,p),(l−i+1,p) = 1; then we have

h′ = U†hU = h∗, (26)

�′ = U†�′U = � (27)

and �+′ = U†�+U satisfies �+′
(1,1),(1,1) = �+

(l,1),(l,1) and
�+′

(l,1),(l,1) = �+
(1,1),(1,1). From Sec. VI B we know that the

off-diagonal terms of X are invariant to a shift of �+ by a
scalar. So we can just set �+

(1,1),(1,1) = 0 and this will not affect
the off-diagonal terms. Then we find that �+′ and �+ are
related by

�+′ = −�+ + �+
(l,1),(l,1)1. (28)

Defining P′
φ = P−φ (as P is a function of Ĥ , it is also a function

of φ, which we now show explicitly), we can thus write

P′
φX′ + X′P†

φ

′ = �+′
,

P−φX′ + X′P†
−φ = −�+ + �+

(l,1),(l,1)1. (29)

Equation (29), together with Eqs. (22) and (23) and considering
that the current is independent of a constant shift in �+, results
in

Jl+1−i,1→2 = −Ji,1→2 (30)

and

Jl−i,p = Ji,p. (31)

2. The C configuration

For the C configuration the system Hamiltonian is invariant
under the transformations i → l + 1 − i and p → 3 − p and
the dissipation will be reverted. Therefore, P′

φ = Pφ and we
can write

P′
φX′ + X′P†

φ

′ = �+′
,

PφX′ + X′P†
φ = −�+ + �+

(l,1),(l,1)1. (32)

Again, since the current is independent of a constant shift of
�+, we can state that

Jl+1−i,1→2 = Ji,1→2 (33)

and

Jl−i,3−p = Ji,p. (34)

We can hence derive that the chiral current Jc = 0 in the C

configuration.

3. The S configuration

In this case the system has the symmetry of both the R

configuration and the C configuration. This means that we
have

Jl−i,3−p = Ji,p = Ji,3−p, (35)

which also implies that the current on the rungs Ji,1→2 and the
chiral current are 0.

D. φ = π and an even number of rungs

For an even number of rungs l = 2N , we can arrange the
Hamiltonian such that

Ĥ = {â1,1,â3,1, . . . ,â2N−1,1,â2,2,â4,2, . . . ,â2N,2}
× H{â†

1,2,â
†
3,2, . . . ,â

†
2N−1,2,â

†
2,1,â

†
4,1, . . . ,â

†
2N,1} + H.c.

(36)

The coefficient matrix H can be written as

H =
(

A B
C D

)
, (37)

where A, B, C, and D comprise an N × N matrix with the only
nonzero components being Aj,j = J⊥, Dj,j = J⊥, Bj,j =
J ‖e−iφ/2, Bj+1,j = J ‖eiφ/2, Cj,j = J ‖e−iφ/2, and Cj,j+1 =
J ‖eiφ/2. Considering the singular value decomposition H =
USV†, then we can perform two unitary transformation to the
system as

{â1,1,â3,1, . . . ,â2N−1,1,â2,2,â4,2, . . . ,â2N,2} = b̂1→2N U†

{â†
1,2,â

†
3,2, . . . ,â

†
2N−1,2,â

†
2,1,â

†
4,1, . . . ,â

†
2N,1} = Vĉ

†
1→2N .
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Writing Ĥ in terms of these 4N new modes b̂1→2N , ĉ1→2N , we
get

Ĥ =
2N∑
j=1

Sj,j b̂j ĉ
†
j + H.c. (38)

When φ = π , the tunneling terms J
‖
i,1 = −J

‖
i,2, which implies

that B = −C†. This results in H†H and HH† being block
diagonal. Hence we can choose the left transformation U to be
block diagonal, which means that {â1,1,â3,1, . . . ,â2N−1,1} will
belong to one block and {â2,2,â4,2, . . . ,â2N,2} to another. In the
C configuration, the jump operator â1,1 and âl,2 each belong to
a different block. Hence there will be no connections between
the two subblocks and each subsystem will reach steady state
independently. This exact symmetry for φ = π and an even
number of rungs has an interesting consequence. In fact, this
implies that, even as l increases, the value of the total current
for an even or odd number of site ladders will have a finite
difference.

E. φ = π and an odd number of rungs

In the case l = 2N + 1 we can arrange the Hamiltonian
similarly to Eq. (36), where the coefficient matrix H has a
structure identical to Eq. (37). However, in this case A is an
(N + 1) × (N + 1) matrix, B is (N + 1) × N , C is N × (N +
1), and D is N × N , whose elements are the same as for the
even case. Hence, also in this case, when φ = π , B = −C†,
which implies that the Hamiltonian can be written as two
blocks. For the R configuration only one block is connected to
the baths, which implies the existence of 2N dark modes.

VII. CONCLUSION

We have analyzed a rich quantum system in which,
depending of the Hamiltonian parameter, there can be a
quantum phase transition and a gap opening. We have shown
that these two features can be used to gain a high degree
of control of the transport properties of the system when it
is coupled to baths at its boundaries. Most importantly, we
have shown how the characteristics of the system can change
significantly depending on the geometry of the system-bath
coupling. In particular, we have shown that the interplay
between (a) the current-imposing baths at the boundaries,
(b) their geometrical coupling to the ladder, and (c) a gauge
field that tends to alter the current flow and causes significant
changes in the energy spectrum of the bulk system results in
nonequilibrium phase transitions in which the magnitude and
the pattern of the current transported can change significantly.
This phenomenology extends and differs significantly from
the one studied in the ground state of the Hamiltonian system.
We have shown the presence of two regions in which chiral
currents can emerge and we have connected the boundaries
of these regions with (i) the emergence of two minima in
the energy spectrum and (ii) an opening of a gap between
the lower and higher bands. The opening of the gap also
causes a significant reduction of the total current transported
for asymmetric system-bath couplings. We have also com-
plemented our analysis with symmetry considerations, which
allow us to show that chiral current is nonzero only in the

R configuration, and the peculiar behavior for φ = π . These
results shed light on general ways to manipulate and control
transport in quantum systems due to quantum phase transitions
and opening of gaps in the bulk spectrum of the system. In
future works, the role of the geometry of the system-bath
coupling could be studied further as a means to generate useful
nonequilibrium quantum phases.
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APPENDIX: DETAILS OF INVERSION φ → −φ

In this appendix we will prove Eq. (21). First it is useful to
write Eq. (7) in a different form

htX − Xht = i(2�+ − �X − X�). (A1)

We consider another system whose dissipation is the same
while the Hamiltonian h′ = h∗ (due, for instance, to an
inversion of φ → −φ). The steady state of this system, which
we assume to be unique as for the original system h, will be
X′, which will then be the solution to the equation

h†X′ − X′h† = i(2�+ − �X′ − X′�). (A2)

Taking the complex conjugate of both sides and writing X′′ =
X′∗, we get

htX′′ − X′′ht = −i(2�+ − �X′′ − X′′�). (A3)

We now show that

X′′
(j,p),(j+k,p+q) = (−1)k+qX(j,p),(j+k,p+q), (A4)

where X solves Eq. (7) and hence Eq. (A1). To prove the
validity of this ansatz, we substitute Eq. (A4) on the left-hand
side of Eq. (A3) and get

(htX′′ − X′′ht )(i,m),(j,n)

=
∑
(k,p)

h(k,p),(i,m)X′′
(k,p),(j,n) − X′′

(i,m),(k,p)h(j,n),(k,p)

= h(i−1,m),(i,m)X′′
(i−1,m),(j,n) + h(i+1,m),(i,m)X′′

(i+1,m),(j,n)

+ h(i,3−m),(i,m)X′′
(i,3−m),(j,n) − X′′

(i,m),(j−1,n)h(j,n),(j−1,n)

− X′′
(i,m),(j+1,n)h(j,n),(j+1,n) − X′′

(i,m),(j,3−n)h(j,n),(j,3−n)

= (−1)j−i+1+n−mh(i−1,m),(i,m)X(i−1,m),(j,n)

+ (−1)j−i−1+n−mh(i+1,m),(i,m)X(i+1,m),(j,n)

+ (−1)j−i+n+m−3h(i,3−m),(i,m)X(i,3−m),(j,n)

− (−1)j−i−1+n−mX(i,m),(j−1,n)h(j,n),(j−1,n)

− (−1)j−i+1+n−mX(i,m),(j+1,n)h(j,n),(j+1,n)

− (−1)j−i+3−n−mX(i,m),(j,3−n)h(j,n),(j,3−n)

= (−1)j−i+n−m−1[h(i−1,m),(i,m)X(i−1,m),(j,n)
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+ h(i+1,m),(i,m)X(i+1,m),(j,n) + h(i,3−m),(i,m)X(i,3−m),(j,n)

− X(i,m),(j−1,n)h(j,n),(j−1,n) − X(i,m),(j+1,n)h(j,n),(j+1,n)

− X(i,m),(j,3−n)h(j,n),(j,3−n)]

= (−1)j−i+n−m−1(htX − Xht )(i,m),(j,n). (A5)

For a portion of the right-hand side of Eq. (A3) we get

(−�X′′ − X′′�)(i,m),(j,n)

= (−1)j−i+n−m(−�(i,m),(i,m) − �(j,n),(j,n))X(i,m),(j,n).

Therefore, using the fact that �+ is diagonal, we have that the
full right-hand side of Eq. (A3) becomes

−i(2�+ − �X′′ − X′′�)(i,m),(j,n)

= i(−1)j−i+n−m−1(2�+ − �X − X�)(i,m),(j,n). (A6)

Combining Eqs. (A1), (A5), and (A6), we can see that Eq. (A4)
is indeed a solution of Eq. (A3). Since we have assumed that
the system has a unique steady state and X′′ is the complex
conjugate of X′, we have proved Eq. (21).

For the case in which the Hamiltonian is real, we know that
X′ = X, which means that

X(j,p),(j+k,p+q) = (−1)k+qX∗
(j,p),(j+k,p+q). (A7)

Therefore, we have X(j,p),(j+k,p) = (−1)kX∗
(j,p),(j+k,p), which

means that the observables Xj,p,j+2k,p are purely real and
the observables X(j,p),(j+2k+1,p) are purely imaginary. The ob-
servables on the rungs satisfy X(j,p),(j,3−p) = −X∗

(j,p),(j,3−p),
therefore they are purely imaginary, which implies that the
kinetic energy on the rungs is 0.
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